地下水石油污染原位修复三维中试模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油类污染占地下水污染的三分之一左右,其溶解度一般都非常的小,一般称为非亲水相流体(Non Aqueous Phase Liquid,NAPL)。这类污染物对于人体健康和生态环境具有很大的危害,而且进入土壤地下水后会形成长期、大范围的污染,危害巨大。由于污染的土壤与地下水修复费用大、时效长,因此要求高效、低费用的修复技术成为研究热点,而原位生物修复技术因其费用低、效果好、无二次污染而受到了广泛关注,各种室内实验及现场研究广泛开展以研究原位生物修复。但是现在的室内一维、二维实验难以反映野外实际情况,现场试验高费用又限制了原位生物修复的研究,这也是目前生物原位生物修复技术没有广泛应用的原因之一。
     本研究主要通过在室内开展的三维中试试验,探索石油类污染在地下水中的输移特征,并开展原位生物修复。具体研究内容包括:
     (1)设计为室内地下水在土壤中水动力模拟的三维条件,通过三维反应器中增加不同土层,同时控制上下游水位以模拟地下水的流动,通过预埋井观测地下水水位变化。
     (2)在中试反应器中,通过上游添加汽油,同时利用预埋井采样,对BTEX利用GC(气相色谱仪)分析其浓度,以观察在不同要求下石油污染物的迁移、扩散过程。
     (3)设计抽提修复过程方案,上游选择三口预埋井,下游选择三口预埋井,通过蠕动泵分别注水、抽水,通过采样,分析地下水中BTEX变化,改变下游抽水井的位置,评价不同修复条件下的污染去除效果。
     (4)通过实验接种三类嗜油菌株,并在一定条件下培养,接种激活后的微生物、配比相应的N、P营养物以及双氧水以提供氧气,连同水一起,以一定速率通过蠕动泵灌入地下水,以开展原位生物修复技术,探讨生物修复效果。
     本论文成功研制了地下水石油类污染原位修复三维中试条件,并开展了不同的原位修复试验,对比分析了不同方案下的修复效果,为后续进一步开展原位生物修复过程设计提供基础。
Petroleum-hydrocarbon leakage is one of the main causes of soil and groundwater contamination. Petroleum pollutants, generally voted as non aqueous phase liquid, NAPL due to low solubility, have great threaten to humanity health and ecological system. It needs huge cost and long time to restore contaminated sites, therefore, approaches on high efficiency and low cost remediation techniques have been undertaken extensively. In-situ bioremediation has been widely concerned due to its high efficiency and low cost characteristics. Many lab experiments and field tests were undertaken to study in-situ bioremediation. However, one- and two-dimensional lab physical models can’t reflect real field conditions, and expensive cost of field test limits efficient approaches to be undertaken. This is one of the main reasons that in-situ bioremediation techniques have not been widely used to practices.
     In this thesis, it is expected to reveal movement characteristics of petroleum contaminants in subsurface, and to undertaken in-situ bioremediation processes through carrying pilot-scale experiments in designed 3-D reactor. The tasks entail:
     (1) designing a 3-D reactor for simulating hydrodynamic characteristics of groundwater in subsurface. Different soils are loaded into 3-D reactor at different level to reflect subsurface complex. Water levels of upstream and downstream are controlled to simulate groundwater flow. Wells are installed to reach different layers to facilitate observing water level.
     (2) The gasoline is added into soil through a well located at upstream to simulate petroleum contamination. Water samples are taken through wells, and BTEX concentration are analyzed with GC. The nature attenuation process of pollutants is observed.
     (3) Various Pump & Treat scenarios are designed. Three wells in upstream and three wells in downstream are selected to undertake P&T operation according to observing pollutant plumes. During experiments pumping wells are re-selected to evaluate its impacts on pollutant removal efficiency.
     (4) The microbial strains, which are petroleum-hydrocarbon oriented trained are re-activated. Nutrients of N、P、H 2 O2 and activated biomass are pumped into subsurface with water flow. The in-situ bioremediation process is undertaken and its efficiency is investigated through monitoring BTEX concentration variation in groundwater.
     In this thesis, a 3-D pilot-scale experiment system is designed and produced for undertaking in-situ bioremediation of petroleum contaminated groundwater. Various in-situ remediation experiments are undertaken. The efficiencies are compared under different remediation scenarios. The achievements supply useful information for further approaches on remediation conditions of in-situ bioremediation.
引文
[1]李隋.表面活性剂强化抽取处理修复DNAPL污染含水层的实验研究—以硝基苯为例.吉林大学博士学位论文,2008.
    [2]王锐.非水相流体在土壤中运移规律研究.西北农林科技大学硕士学位论文,2004.
    [3]李木金.地下水生物修复释氧过程及污染物迁移研究.天津大学硕士学位论文,2006.
    [4]胥思勤,王焰新.土壤及地下水有机污染生物修复技术研究进展[J].工程与技术,2001,2:21~37.
    [5]王秉忱.受污染含水层抽水—处理最优化及对地下水污染生物修复的基本认识[J].工程勘察,2006,8:1~5.
    [6]蔡勇,马宏瑞.石油污染地下水吸附—降解联合修复方法的研究[J].首届全国农业环境科学学术研讨会论文集,2005,11:316~319.
    [7]薛晓菲,崔建国.地下水环境修复技术进展[J].科技情报开发与经济,2006,16(6):148~150.
    [8]王业耀,孟凡生.石油烃污染地下水原位修复技术研究进展[J].化工环保,2005,25(2):117~120.
    [9]冉德发,王建增.石油类污染地下水的原位修复技术方法论述[J].探矿工程,2005增刊:206~208.
    [10]陈翠柏,杨琦,沈照理.地下水三氯乙烯(TCE)生物修复的研究进展[J].华东地质学院学报,2003,26(1):10~14.
    [11]刘永娟,韩宝平,王小英.地下水四氯化碳污染现状与治理技术研究进展[J].水资源保护,2005,21(2):5~8.
    [12]张文静,董维红,苏小四,柳富田.下水污染修复技术综合评价[J].水资源保护,2006,22(5):1~4.
    [13]吴玉成,钟佐燊,陈亮.去除地下水芳香烃污染物:实验室含水层土柱研究[J].长春科技大学学报,2000,30(1):61~64.
    [14]刘庆生,邱廷省.受污染土壤及地下水修复的新进展[J].能源环境保护,2004,18(5):25~28.
    [15]孟凡生,王业耀,汪春香,贺晓庆.三氯乙烯污染地下水的原位修复技术研究及应用现状[J].四川环境,2005,24(3):70~73.
    [16]杨琦,尚海涛,李惠娣.四氯乙烯(PCE)厌氧生物修复的国外研究进展[J].中国沼气,2006,24(2):16~24.
    [17]李玮,陈家军,郑冰,智天翼.轻质油污染土壤及地下水的生物修复强化技术[J].安全与环境学报,2004,4(5):47~51.
    [18]季秀玲,魏云林.低温微生物环境污染修复技术研究进展[J].环境污染治理技术与设备,2006,7(10):6~11.
    [19]叶为民,金麒,黄雨,唐益群.地下水污染试验研究进展[J].水利学报,2005,36(2):251~255.
    [20]宋志文,夏文香,曹军.海洋石油污染物的微生物降解与生物修复[J].生态学杂志,2004,23(3):99~102.
    [21]朱雪强,韩宝平,尹儿琴.地下水DNAPLs污染的研究进展[J].四川环境,2005,24(2):65~70.
    [22]王业耀,孟凡生.地下水污染修复的渗透反应格栅技术[J].地下水,2004,26(2):97~100.
    [23]王战强,张英,姜斌,李鑫钢,黄国强.地下水有机污染的原位修复技术[J].环境保护科学,2004,30(125):10~12.
    [24]罗启仕,王慧,张锡辉,钱易.电动力学技术强化原位生物修复研究进展[J].环境污染与防治,2004,26(4):269~271.
    [25]赵素丽,谯华.生物修复技术的发展现状[J].重庆工业高等专科学校学报,2004,19(5):14~16.
    [26]汪春香,孟凡生,王业耀.石油烃污染地下水的修复[J].新疆环境保护2005,27(2):25~28.
    [27]谢丹平.石油污染生物修复研究.暨南大学硕士学位论文,2004.
    [28]朱恂,刘磊.污染土壤原位生物修复理论模型[J].工程热物理学报,2004,25增刊:135~138.
    [29]牛炳旭.细菌与石油污染的治理[J].生物学通报,2004,39(4):13~14.
    [30] Zhi Y. Hu,Guo H. Huang,Christine W. Chan. A fuzzy process controller for in situ groundwater bioremediation[J].Engineering Applications of Artificial Intelligence,2003,16:131~147.
    [31] Y.F. Huang, G.H. Huang,G.Q. Wang,Q.G.Lin, A. Chakma.An integrated numerical and physical modeling system for an enhanced in situ bioremediation process[J].Environmental Pollution,2006,144: 872~885.
    [32]装婕.地下水及土壤污染的生物修复技术研究简介[J].厦门教育学院学报,2003,5(2):51~52.
    [33]陆秀君,郭书海,孙清,梁成华.石油污染土壤的修复技术研究现状及展望[J].沈阳农业大学学报,2003,34(1):63~67.
    [34] Daniel Hunkeler,Patrick Hohener,Stefano Bernasconi,Josef Zeyer. Engineered in situ bioremediation of a petroleum hydrocarbon-contaminated aquifer: assessment of mineralization based on alkalinity, inorganic carbon and stable carbon isotope balances[J].Journal of Contaminant Hydrology,1999,37:201~223.
    [35] Mio Takeuchi,Kenji Nanba,Hiroshi Iwamoto, Hisashi Nirei,Takashi Kusuda,Osamu Kazaoka,Masato Owaki,Ken Furuya.In situ bioremediation of a cis-dichloroethylene-contaminated aquifer utilizing methane-rich groundwater from an uncontaminated aquifer[J].Water Research,2005,39:2438~2444.
    [36] Mehrdad Farhadian,Cedric Vachelard,David Duchez,Christian Larroche. In situ bioremediation of monoaromatic pollutants in groundwater[J].Bioresource Technology,2008,99:5296~5308.
    [37] M. K. MANNISTO,M. S. SALKINOJA-SALONEN,J. A. PUHAKKA.In situ polychlorophenol bioremediation potential of the indigenous bacterial community of boreal groundwater[J]. Water Research,2001, 35:2496~2504.
    [38] J.F. Devlin,D. Katic,J.F. Barker.In situ sequenced bioremediation of mixed contaminants in groundwater[J].Journal of Contaminant Hydrology,2004,69:233~261.
    [39] Zhiying Hu,Christine W. Chan,Gordon H. Huang. Multi-objective optimization for process control of the in-situ bioremediation system under uncertainty[J].Engineering Applications of Artificial Intelligence,2007,20: 225~237.
    [40] Kate M Scow,Kristin A Hicks.Natural attenuation and enhanced bioremediation of organic contaminants in groundwater[J].Current Opinion in Biotechnology,2005,16:246~253.
    [41] T.T. Tsai,C.M. Kao,A. Hong,S.H. Liang,H.Y. Chien.Remediation of TCE-contaminated aquifer by an in situ three-stage treatment train system[J].Colloids and Surfaces A: Physicochem. Eng. Aspects,2008,322:130~137.
    [42] RICHARD M. GERSBERG,MARIA J. CARROQUINO,DEBORAH E. FISCHER,JOHN DAWSEY.Biomonitoring of toxicity reduction during in situ bioremediation of monoaromatic compounds in groundwater[J]. Water Resarch,1995,29:545~550.
    [43]薛强,梁冰,刘晓丽.有机污染物在土壤中迁移转化的研究进展[J].土壤与环境,2002,11(1):90~93.
    [44]王丽英,张国印,王志军等.土壤污染的生物修复技术研究现状及展望[J].河北农业科学,2003,7增刊:76~79.
    [45]罗兰.我国地下水污染现状与防治对策研究[J].中国地质大学学报(社会科学版),2008,8(2):72~75.
    [46]李继洲,程南宁,陈清锦.污染水体的生物修复技术研究进展[J].环境污染治理技术与设备,2005,6(1):25~30.
    [47]杨国栋.污染土壤微生物修复技术主要研究内容和方法[J].农业环境保护,2001,20(4):286~288.
    [48]李家伦,孙菽芬,洪钟祥.地下水污染生物处理方法研究综述[J].气候与环境研究,1998,3(2):151~157.
    [49]李宝明.石油污染土壤微生物修复的研究.中国农业科学院博士学位论文,2007.
    [50]郜彗,余国忠,张祥耀.污染地下水的生物修复[J].河南化工,2007,24(3):11~15.
    [51]张宝良.油田土壤石油污染与原位生物修复技术研究.大庆石油学院博士学位论文,2007.
    [52]潘芳,杜锁军.地下水污染生物修复技术研究进展[J].江苏环境科技,2008,21(增刊第一期):112~116.
    [53]陆军,王菊思,赵丽辉,贾智萍,陈梅雪.苯系化合物好氧降解菌的驯化和筛选[J].环境科学,1996,17(6):1~4.
    [54]王琳.海洋苯系物降解菌的多样性及降解特性的初步研究.国家海洋局第三海洋研究所硕士学位论文,2006.
    [55]张文静.佳木斯地区地下水、土中硝基苯迁移转化机理及其模拟预测.吉林大学博士学位论文,2007.
    [56]邢新会,刘则华.环境生物修复技术的研究进展[J].化工进展,2004,23(6):579~584.
    [57]刘娜.地下水中阿特拉津污染的原位生物修复研究.吉林大学博士学位论文,2006.
    [58]王晓燕,郑建中,翟建平.SEAR技术修复土壤和地下水中NAPL污染的研究进展[J].环境污染治理技术与设备,2006,7(10):1~5.
    [59]王旭兆.有机污染物在土壤非饱和带中迁移转化数学模型研究进展[J].太原科技,2008,8:33~34.
    [60]程国玲.矿物油污染土壤的菌根生物修复研究.东北林业大学博士学位论文,2004.
    [61]段云霞.生物通风(BV)法去除土壤中石油污染物的研究.天津大学硕士学位论文,2004.
    [62]刘宪华.受典型氨基甲酸酯农药污染土壤的生物修复及相关研究.南开大学博士学位论文,2003.
    [63]殷晓曦.污染物在土壤及地下水中运移特征与防治研究—以淮南大通垃圾填埋场为例.安徽理工大学硕士学位论文,2006.
    [64]张平.杭州市空气中苯系物的污染特征、来源及健康风险.浙江大学硕士学位论文,2007.
    [65]武文华,李锡夔.多孔介质中含均相/非均相反应传质过程数值模拟[J].岩土力学,2008,29(5):1152~1157.
    [66]徐翯.三氯乙烯在天然土壤中的吸附行为及其影响因素.北京化工大学硕士学位论文,2006.
    [67]张倩.浅议地下水污染治理技术方法及进展[J].干旱环境监测,2008,22(3):570~574.
    [68]杨强,李金轩,丁伟翠.浅析地下水污染的主要途径、危害及防治[J].地下水,2007,29(3):27~30.
    [69]杨梅,费宇宏.地下水污染修复技术的研究综述[J].勘察科学技术,2008,4:21~26.
    [70] Cooley A I,Billings G K.Bio-sparging:An integrated remediation technology for petroleum hydrocarbon sites[A].Petro-Safe'93/4th Annual Oil,Gas,and Petrochemical Industries Environmental and Safety Conference[C].1993,33-60.
    [71] Hogg D.S.,Burden R.J.,Riddel P.J.,HMCRI R&D Conference,San Francisco,February.1992.
    [72] Boopathy R.[J].International Biodeterioration and Biodegradation,2000 ,46 : 29~36.
    [73] R ichard E Saichek,K rishra R R eddy.EffectofpH controlatthe anode forelectrokinetic rem ovalofphenanthrene from K aolin soil[ J].Chem osphere,2003,51:273-287.
    [74] Turlough F G, S tuart H T,M cGovern B D. A n app lica tion of pe rm eable reac tive barrie r technology to pe troleum hydroca rbon contam ina ted groundwater. Water Research,2002, 36 (1):15~24.
    [75] Harkness M R et al.1999.Use of bioaugmentation to stimulae complete reductive dechlorination of trichloroethene in Dover soilcolumns[J ] . Environmental Science and Technology ,33 : 1100~1109.
    [76]薛强.石油污染物在地下环境系统中运移的多相流模型研究.辽宁工程技术大学博士学位论文,2004.
    [77]陈惠强.水源水有机物污染与监测[J].科技信息,2008,4:34.
    [78]李丽和.石油烃污染场地风险评价及案例研究.北京化工大学硕士学位论文,2007.
    [79]王震.辽宁地区土壤中多环芳烃的污染特征、来源及致癌风险.大连理工大学博士学位论文,2007.
    [80]韩冰.地下水有机污染场地健康风险评价.中国地质大学(北京)硕士学位论文,2006.
    [81]汪水兵,贾永刚,罗先香,方丰华.PRBs与P&T技术处理地下水污染的比较研究[J].安徽农业科学,2006,34(13):3142~3145.
    [82]吴玉成.治理地下水有机污染抽出处理技术影响因素分析[J].水文地质工程地质,1998,1:72~73.
    [83]陆光华,刘颖洁.地下水有机污染的生物修复技术及应用[J].水资源保护,2003,4:15~18.
    [84]陈炼钢.土壤地下水污染治理健康风险分析系统研究.清华大学硕士学位论文,2005.
    [85]束善治,袁勇.污染地下水原位处理方法:可渗透反应墙[J].环境污染治理技术与设备,2002,3(1):83~87.
    [86]卢杰,丁金城,张子间,刘家第,李梦红.地下水三氯甲烷污染治理技术[J].金属矿山,2006年8月增刊:485~488.
    [87]宋汉周,Allan D.Woodbury.抽出处理措施的有效性评价—某碳酸盐岩含水层中地下水有机污染及其去除研究之三[J].河海大学学报,2000,28(4):67~71.
    [88] Cesar Gomez-Lahoz,Rafael A. Garcia-Delgado,DAVID J. WILSON. A MODEL WITH MASS TRANSPORT LIMITATIONS FOR PUMP AND TREAT REMEDIATION OF SOILS POLLUTED WITH NAPL[J].Environmental Monitoring and Assessment,1994,32:161~186.
    [89] Douglas M. Mackay,John A. Cherry.Groundwater contamination: pump-and-treat remediation[J].Environ. Sci. Technol.,1989, 23 (6): 630~636.
    [90] Allison A. MacKay, Yu-Ping Chin, John K. MacFarlane, Philip M. Gschwend. Laboratory Assessment of BTEX Soil Flushing[J]. Environ. Sci. Technol.,1996, 30 (11):3223~3231.
    [91] Stephen A. Boyd,Shaobai Sun.Residual petroleum and polychlorobiphenyl oils assorptive phases for organic contaminants in soils[J]. Environ. Sci. Technol., 1990, 24 (1):142~144.
    [92] Bau, D.A.; Mayer, A.S.Optimal design of pump-and-treat systems under uncertain hydraulic conductivity and plume distribution[J].Source Journal of Contaminant Hydrology,2008 ,100(1-2):30~46.
    [93] Beth L. Parke,Steven W. Chapman,Martin A. Guilbeault. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation[J]. Journal of Contaminant Hydrology ,2008,12:86~104.
    [94] M. Riva, A. Guadagnini , X. Sanchez-Vila. Effect of Sorption Processes on Pump-and-Treat Remediation Practices Under Heterogeneous Conditions[J].Geostatistics for Environmental Applications, 153~164.
    [95]白毓谦,方善康,高东,施安辉.微生物实验技术[M].山东:山东大学出版社,1987.96~165.
    [96] Bedient, P. B. and H. S. Rifai (1992). Groundwater contaminant modeling bioremediation: a review, Journal of Hazardous Materials, 32: 225-243.
    [97] Brown, C. L., G. A. Pope, L. M. Abriola, and K. Sepehrnoori (1994). Simulation of surfactant enhanced aquifer remediation, Water Resources Research, 30(11): 2959-2978.
    [98] Celia, M. A., J. S. Kindred, and I. Herrera (1989). Contaminant transport and biodegradation, I.A. numerical model for reactive transport in porous media, Water Resources Research, 25: 1141-1148.
    [99] Chang, H. and L. Alvarez-Cohen (1995). Model for the cometabolic biodegradation of chlorinated organics, Environmental Science and Technology, 29(9), 2357-2367.
    [100] Chen, Y., L. M. Abriola, P. J. J. Alvarez, P. J. Anid and T. M. Vogel (1992). Modeling transport and biodegradation of benzene and toluene in sandy aquifer material: comparisons with experimental measurements, Water Resources Research, 28(7): 1833-1847.
    [101] de Blanc, P. C. (1998). Development and demonstration of a biodegradation model for non-aqueous phase liquids in groundwater, Ph.D. dissertation, The University of Texas at Austin, USA.
    [102] de Blanc, P. C., D. C. McKinney and G. E. Speitel, Jr. (1995). Modeling Subsurface Biodegradation of Non-aqueous Phase Liquids: a Literature Review, The University of Texas at Austin.
    [103] Essaid, H. I. and B. A. Bekins (1997). BIOMOC, A multispecies solute transport Model with biodegradation, U.S. Geological Survey, Water-Resources Investigation Report 97-4022, Menlo Park, CA, USA.
    [104] Fabritz, J. E. (1995). A Two Dimensional Numerical Model for Simulating the Movement and Biodegradation of Contaminants in a Saturated Aquifer, Thesis, Civil Engineering, University of Washington, USA.
    [105] Gallo, C. and G. Manzini (2001). A fully coupled numerical model for two-phase flow with contaminant transport and biodegradation kinetics, Communications in Numerical Methods in Engineering, 17: 325-336.
    [106] Huesemann, M. H. (1995). Predictive model for estimating the extent of petroleum hydrocarbon biodegradation in contaminated soils, Environmental Science and Technology, 29: 7-18.
    [107] Lang, M. M., P. V. Roberts, and L. Semprini (1997). Design simulations in support of field scale design and operation of bioremediation based on cometabolic degradation, Ground Water, 35(4): 565-573.
    [108] Lenczewski, M., P. Jardine, C. Mckay, and A. Layton (2003). Natural attenuation of trichloroethylene in fractural shale bedrock, Journal of Contaminant Hydrology, 64: 151-168.
    [109] Malone, D. R., C. M. Kao, and R. C. Borden (1993). Dissolution and biorestoration of nonaqueous phase hydrocarbons: model development and laboratory evaluation, Water Resources Research, 29(7): 2203-2213.
    [110] Molz, F. J., M. A. Widdowson, and L. D. Benefield (1986). Simulation of microbial growth dynamics coupled to nutrient and oxygen transport in porous media, Water Resources Research, 22(8): 1207-1216.
    [111] Nicol, J. P., W. R. Wise, F. J. Molz, and L. D. Benefield (1994). Modeling biodegradation of residual petroleum in a saturated porous column, Water Resources Research, 30(12), 3313-3325.
    [112] Norris, R. D., D. J. Wilson, and E. Chang (1999). Bioremediation with oxygen-releasing solids: a mathematical model, Environmental Mornitoring and Assessment, 58: 243-281.
    [113] Odencrantz, J. E. (1991). Modeling the Biodegradation Kinetics of Dissolved Organic Contaminants in a Heterogeneous Two-Dimensional Aquifer, Ph.D. dissertation, the University of Illinois at Urbana-Champaign, USA.
    [114] Park, J. H., X. Zhao, and T. C. Voice (2001). Biodegradation of nondesorbable naphthalene in soils, Environmental Science and Technology, 35: 2734-2740.
    [115] Rifai, H. S., P. B. Bedient, R. C. Borden, and J. G. Hasbeek (1987). BIOPLUME II, computer model for two-dimensional contaminant transport under the influence of oxygen-limited biodegradation in groundwater, User’s Manual, Department of Environmental Science and Engineering, Rice University, USA, 431-450.
    [116] Sarkar, A. K., G. Georgiou, and M. M. Sharma (1994). Transport of bacteria in porous media: II. a model for convective transport and growth, Biotechnology and Bioengineering, 44: 499-508.
    [117] Schoefs, O., M. Perrier, and R. Samson (2004). Estimation of contaminant depletion in unsaturated soils using a reduced-order biodegradation model and carbon dioxide measurement, Appl. Microbiol. Biotechnol., 64: 53-61.
    [118] Semprini, L. and P. L. McCarty (1991). Comparison between model simulations and field results for in-situ biorestoration of chlorinated aliphatics: part1. Biostimulation of methanotrophic bacteria, Ground Water, 29(3): 365-374.
    [119] Waddill, D. W. and M. A. Widdowson (1998). Three-dimensional model for subsurface transport and biodegradation, Journal of Environmental Engineering, 124 (4): 336-344.
    [120] Widdowson, M. A., F. J. Molz, and L. D. Benefield (1988). A numerical transport model for oxygen- and nitrate-based respiration linked to substrate and nutrient availability in porous media, Water Resources Research, 24(9): 1553-1565.
    [121] Woo, S. H., J. M. Park, and B. E. Rittmann (2001) Evaluation of the interaction between biodegradation and sorption of phenanthrene in soil-slurry systems, Biotechnol. Bioeng., 73: 12-24.
    [122] Zhao, X. and T. C. Voice (2000). Assessment of bioavailability using a multicolumn system, Environmental Science and Technology, 34:1506-1512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700