一种非线性隔振器的设计及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大部分工程实际中,隔振广泛存在,它与我们的生活息息相关,对国民经济、人民生活都起着十分重要的作用。在传递路径中加入隔振装置,可以减小振源对于机械系统的影响,对保证民生起到了积极的作用。本文在总结前人对于隔振器设计经验的基础上,设计并实验验证了一种新型的非线性隔振器,该隔振器具有很好的通用性和良好的隔振效果。具体说来,本文的主要研究成果和结论如下:
     1、分析了斜薄壁梁结构,在竖直方向力的作用下的屈曲特性,通过两只斜向布置的薄壁梁与竖直方向弹簧结构的并联,在平衡位置附近,随着承载力的变化,位移的变化更显著且承载力的变化很小。
     2、分析了该装置在受谐波激励作用下的动力特性,即在工作区间具有较小的动刚度。通过与线性系统(竖直弹簧结构)的比较,发现该装置具有较低的共振频率,从而具有更大的隔振区间。同时该系统具有更小的位移传递率,可以有效隔离来自地基、底座等的振动,从而达到保护承载物的目的。
     3、通过该系统的动力学模型,结合静力学实验结果,推导出系统的动力学方程。由于薄壁梁结构的屈曲特性,使得并联结构的特性发生了改变,其振动可以用Duffing方程描述。通过谐波平衡法得到了系统的近似解,用Runge-Kutta法求得了数值解,分析了该系统可能出现的分岔、系统稳定性以及出现的跳跃现象。
     4、设计了该隔振器的验证样机,该样机具有可调节性,通过移动在滑槽中的支撑板,来调节水平方向上的距离,竖直方向的调节旋钮用来调节竖直方向的距离,可以扩大样机的承载能力,该样机具有通用性。
     5、在振动台上测试了线性系统和该隔振器的加速度传递率,实验结果与理论分析基本吻合。通过实验结果可知,该隔振器可使系统的固有频率减小,从而扩大隔振区间。
In most practical engineering situation, vibration isolation is widespread, it plays a very important role in the national economy and our lives. Set a vibration isolator system in the transmission path, which can reduce vibration from the source to the receiver. This paper summarizes the previous accumulated design for the isolation, designs and analyzes a new type of nonlinear vibration isolator. The isolator has good versatility and good vibration isolation. Specifically, the paper's main findings and conclusions are as follows:
     1、Analyze the oblique thin-walled beam structure’s buckling force characteristics in the vertical direction. By two thin diagonal layout thin-walled beam in parallel with the spring, and nearby the equilibrium position, it has such characteristic that with the capacity change, the displacement has more significant changes but the capacity force has small changes.
     2、Analyze the device’s dynamic characteristics under harmonic excitation, which has a smaller range of dynamic stiffness in the work region. Contrast with the linear system (vertical spring structure), it was found that the device has a low resonance frequency, which can enlarge the zone of vibration isolation. The system also has a smaller displacement transmissibility, and can effectively isolate the vibration from the ground, base and so on, to achieve the purpose of protecting the object.
     3、Through the dynamics model of the system, combined with static test results, the system’s dynamic equation is derived. Since the buckling force properties of thin-walled beam structure, the composite structure’s characteristic has changed, the vibration can be described by Duffing equation. By the harmonic balance method, the approximate solution can be obtained. By using Runge-Kutta solution, we can obtain exact solution. Analyze the dynamic system , it may occur such phenomenon that bifurcation ,system stability and the jumps.
     4、Design a isolator prototype to verify the theory. The model is adjustable. Moving the supportable plate in the chute to adjust the distance between the horizontal direction. Vertical direction of the adjustment knob is to adjust the vertical distance. The model can expand the carrying capacity, and it has versatility.
     5、The acceleration transmissibility of linear spring and the isolator are tested on vibration table test. Basically, experimental results are consistent with the theoretical analysis. Through experimental results, the isolator can reduce the natural frequency of the system, thereby expanding the range of vibration isolation.
引文
[1]徐庆善.隔振技术的进展与动态.全国振动理论及应用学术会议论文集[C], 1993.
    [2]张建卓.基于正负刚度并联的超低频隔振系统研究[D]. 2004.
    [3]李国平.精密设备系统主动隔振的基础理论与技术[J].兵工学报2004, 25 (4).
    [4]张建卓.新型非线性超低频水平隔振系统的研制[J].机械设计2005, 22 (5).
    [5]殷华林.负刚度被动隔振器的动力学特性研究[D]. 2008.
    [6]徐庆善.隔振技术的进展与动态.全国振动理论及应用学术会议论文集[C], 1994.
    [7]束立红.国外舰船隔振器研究进展[J].舰船科学技术2006, 28 (3).
    [8]严济宽.隔振降噪技术的新进展[J].噪声与振动控制1991, 1.
    [9]王开岭,雷静雅,杨辉.隔震技术的发展应用研究[J].国外建材科技2007, 28 (002),118-121.
    [10]杨迪雄,李刚,程耿东.隔震结构的研究概况和主要问题[J].力学进展2003, 33 (003), 302-312.
    [11]周福霖.工程结构隔震减震研究进展[M].地震出版社: 2004.
    [12]张涛,张富有.基础隔震技术国内外研究新进展[J].西部探矿工程2003, 15 (012), 118-120.
    [13]张涛,张富有.基础隔震技术国内外研究新进展[J]. 2003.
    [14]吴章珠.结构隔震的研究与应用综述[J].华南地震1991, 11 (004), 62-66.
    [15]薛春霞.金属橡胶隔振系统的研究进展[J].华北工学院学报2003, 24 (3).
    [16] Carrella, A., Brennan, M. J., Waters, T. P.. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration 2007, 301 (3-5), 678-689.
    [17] Carrella, A., Brennan, M. J., Waters, T. P., et al.. On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets[J]. Journal of Sound and Vibration 2008, 315 (3), 712-720.
    [18]马大猷.噪声与振动控制工程手册[M].机械工业出版社: 2002; Vol. 9.
    [19]倪振华.振动力学[M].西安交通大学出版社: 1989; Vol. 5.
    [20] Carrella, A., Brennan, M. J., Kovacic, I., et al.. On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J]. Journal of Sound and Vibration 2009, 322 (4-5), 707-717.
    [21] Kovacic, I., Brennan, M., Waters, T.. A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic[J]. Journal of Sound and Vibration 2008, 315 (3), 700-711.
    [22] Zhou, N., Liu, K.. A tunable high-static-low-dynamic stiffness vibration isolator[J]. Journal of Sound and Vibration 2010, 329 (9), 1254-1273.
    [23] Kovacic, I., Brennan, M. J., Lineton, B.. On the resonance response of an asymmetric Duffing oscillator[J]. International Journal of Non-Linear Mechanics 2008, 43 (9), 858-867.
    [24] Kovacic, I., Brennan, M. J., Lineton, B.. Effect of a static force on the dynamic behaviour of a harmonically excited quasi-zero stiffness system[J]. Journal of Sound and Vibration 2009, 325 (4-5), 870-883.
    [25] Kovacic, I., Brennan, M. J.,Lineton, B.. Erratum to "On the resonance response of an asymmetric Duffing oscillator": [International Journal of Non-Linear Mechanics 43 (9) (2008) 858-867][J]. International Journal of Non-Linear Mechanics 2009, 44 (7), 829-829.
    [26] Kovacic, I., Brennan, M. J., Waters, T. P.. A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic[J]. Journal of Sound and Vibration 2008, 315 (3), 700-711.
    [27] Carrella,A.,Passive vibration isolators with high-static-low-dynamic-stiffness[J]. 2008.
    [28] Bayly, P. V., Virgin, L. N.. An Experimental Study of an Impacting Pendulum[J]. Journal of Sound and Vibration 1993, 164 (2), 364-374.
    [29]汪铁民.准零刚度隔振装置[J].四川省汽车工程学会第一届二次年会论文集1991.
    [30]彭献,黎大志.准零刚度隔振器及其弹性特性设计[J].振动.测试与诊断1997, 17(004), 44-46.
    [31]李世才.低频精密主动隔振技术研究[D]. 2003.
    [32]路纯红.超低频非线性隔振系统的研究[J].噪声与振动控制2010, 30 (4).
    [33]徐登峰.超精密系统中主被动隔振技术的应用及隔振性能测试分析[J].制造技术与机床2007, (1).
    [34]史鹏飞,吴斌.拟负刚度阻尼减振结构的动力特性与减振效果分析[J].防灾减灾工程学报2009, (03), 300-305.
    [35]史鹏飞,吴斌.拟负刚度与粘滞阻尼混合减振结构的动力特性与减振效果分析[J].振动与冲击2009, (11), 163-167+211.
    [36]童根树,罗澎.压杆轴力的等效抗折负刚度[J].工程力学2010, (08), 66-71.
    [37]王维锐,吴参,潘双夏, et al..车辆半主动悬架负刚度控制策略研究[J].浙江大学学报(工学版) 2009, (06), 1129-1133.
    [38]吴云芳.动力方程的一种直接积分方法在负刚度条件下的收敛性和稳定性[J].世界地震工程2000, (02), 70-73.
    [39]吴云芳. Newmark法在负刚度条件下的收敛性和稳定性[J].重庆建筑大学学报2001, (01), 21-24.
    [40]吴云芳,肖明葵.一种积分法在负刚度条件下的收敛性和稳定性[J].重庆建筑大学学报2000, (S1), 133-138.
    [41]许茂,冯加权,何昌荣.负刚度结构的刚度分析
    [42]杨波,王寿荣,李坤宇, et al..利用负刚度效应调谐的硅调谐式陀螺仪[J].光学精密工程2010, (11), 2398-2406.
    [43]赵军.求解结构负刚度问题的多维虚加弹簧法[J].河南大学学报(自然科学版) 2006, (03),113-117.
    [44]赵军.求解比例加载下结构负刚度问题的虚加弹簧法[J].力学季刊2008, (01), 173-179.
    [45] Virgin, L. N.. Postbuckling dynamics of struts as related to their loading devices[J]. Engineering Structures 1986, 8 (2), 127-133.
    [46] Virgin, L. N., Davis, R. B.. Vibration isolation using buckled struts[J]. Journal of Sound and Vibration 2003, 260 (5), 965-973.
    [47] Virgin, L. N., Plaut, R. H.. Postbuckling and vibration of linearly elastic and softening columns under self-weight[J]. International Journal of Solids and Structures 2004, 41 (18-19), 4989-5001.
    [48]李辉光,刘恒,杨利花, et al..控制时滞对负刚度Duffing系统动力学特性的影响[J].西安交通大学学报2007, (07), 811-814.
    [49]邓伟.一类中立型Duffing方程的周期解[J].科技信息.
    [50]何敏,朱诵文,王其申.无阻尼情况下Duffing方程解的研究[J].安庆师范学院学报(自然科学版).
    [51]黄茂娟,鲁世平.一类具偏差变元的二阶Duffing方程周期解的存在性[J].安庆师范学院学报(自然科学版).
    [52]蹇玲玲. Banach空间中Duffing方程的周期边值问题[J].淮阴师范学院学报(自然科学版).
    [53]李晓静.一类线性项前系数可变号的高阶Duffing方程周期解的存在性和唯一性[J].数学年刊a辑(中文版).
    [54]李晓静,鲁世平.一类非线性项前系数可变号的高阶Duffing方程的周期解存在性问题[J].系统科学与数学.
    [55]刘刚,张卫国,杨桂考.一类Duffing方程的新显式精确解[J].上海理工大学学报.
    [56]胡海岩.应用非线性动力学[M].航空工业出版社: 2000.
    [57]刘延柱,陈立群.非线性振动[M].高等教育出版社: 2001.
    [58]马青,关于超线性Duffing方程的碰撞周期解的存在性[J].浙江工业大学学报.
    [59]潘建丹,周伟灿.应用山路引理证Duffing方程周期解的存在性[J].阜阳师范学院学报(自然科学版).
    [60]尚慧琳.时滞位移反馈Duffing方程的复杂吸引子及其吸引域[J].科技导报.
    [61]唐磊清.具有次线性脉冲的超线性Duffing方程的调和解[J].苏州大学学报(自然科学版).
    [62]汪小明.半线性Duffing方程的Aubry-Mather集[J].数学学报.
    [63]汪小明,杨联华.具无界恢复力Duffing方程Mather集的存在性[J].四川师范大学学报(自然科学版).
    [64]兀旦晖,李秦君,杨萍.噪声对基于Duffing方程弱信号检测的影响研究[J].计算机测量与控制.
    [65]闫旭东,杨涛,徐国旺.三阶时滞Duffing方程周期解的存在性[J].湖北工业大学学报.
    [66]王凤如.巧妙使用Simulink绘制非线性系统的相轨迹[J].电气电子教学学报2004,26(006), 109-112.
    [67]朱因远,周纪卿.非线性振动和运动稳定性[M].西安交通大学出版社: 1992.
    [68]赵玫.机械振动与噪声学[M].科学出版社: 2004.
    [69]裘揆,陈乐生,陈大跃.力隔振试验系统的结构设计和性能分析[J].机械工程学报2007, 43 (002), 168-172.
    [70]吴锋民,杨惠山.非线性Mathieu方程的混沌及其控制[J].振动与冲击1997, (03).
    [71]张善杰,沈耀春.马丢函数的数值计算[J].电子学报2000, (02).
    [72]姜东平.强迫Mathieu方程的概周期解[J].南京大学学报(自然科学版) 1998, (03).
    [73]吴锋民,张存元,范竞藩.一类Mathieu对方程的分叉性和复杂性[J].杭州大学学报(自然科学版) 1995, (09).
    [74]徐慧东,张建刚,褚衍东, et al..一类Mathieu方程的混沌控制
    [75]陶明德.有阻尼Mathieu方程的渐近解[J].应用数学和力学1985, (03).
    [76]吴锋民,张存元.周期激振力法控制Mathieu方程的混沌[J].自然杂志1995, (02).
    [77] Taylor, J., Narendra, K.. Stability regions for the damped Mathieu equation[J]. SIAM Journal on Applied Mathematics 1969, 17 (2), 343-352.
    [78] Nayfeh, A., Corporation, E.. Perturbation methods[M]. Wiley Online Library: 1973; Vol. 6.
    [79] Hagedorn, P.. Non-linear oscillations[J]. 1981.
    [80] Malatkar, P., Nayfeh, A. H.. CALCULATION OF THE JUMP FREQUENCIES IN THE RESPONSE OF s.d.o.f. NON-LINEAR SYSTEMS[J]. Journal of Sound and Vibration 2002, 254 (5), 1005-1011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700