稳定核素示踪法应用于内毒素诱导兔高代谢脓毒症的代谢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脓毒血症休克是引起重症监护室病人死亡的重要原因之一。在感染初期,机体往往出现以体温升高、心率加快、血压正常或轻微下降为特点的高动力状态。此时机体的代谢表现为高代谢和分解代谢,因此又称此期为高代谢脓毒症。尽管给予机体足量的热卡和氨基酸,但此时机体的瘦体组织仍大量丢失,延缓了病人的恢复速度并且降低了机体抵抗疾病的能力,甚至可导致更为严重的后果。研究表明:此期的针对性治疗极其重要,如能给予足量且合适的液体复苏措施,并去除病因、炎症介质及有害的代谢物质等,再提供合理的支持治疗,将能阻止病情进展为脓毒症的失代偿期,从而提高治疗效果,降低死亡率。
     高代谢脓毒症时,机体存在着非常显著的高代谢和分解代谢。糖代谢表现为有氧代谢明显减弱,糖酵解过程加强,而同时糖异生作用也增强,导致血糖、血乳酸升高以及代谢性酸中毒,促进了病情的恶化;蛋白质代谢表现为外周的结构蛋白分解代谢显著加强,氨基酸入血增加,此时肝脏对氨基酸的摄取、转运能力以及氨基酸糖异生作用也明显增强,临床上表现为明显的负氮平衡、瘦体组织丢失以及免疫功能下降;而乳酸作为导致机体代谢性酸中毒的重要因素,其代谢同样出现明显改变,糖酵解过程增强导致其血浓度显著上升,同时它还起着提供能量的作用,并还可通过糖异生作用再生成葡萄糖,是一个综合复杂的过程。因此探索高代谢脓毒症时机体器官间底物的流动过程对于临床营养支持策略是非常重要的。
     研究机体物质代谢的传统方法有如体重、血常规、血浆蛋白、转铁蛋白的测定以及身体测量等静态营养评价方法,还包括能量代谢以及氮平衡等动态营养评价方法。但它们都只能测定代谢改变的结果,并不能告知我们此时机体各类营养物质流动和代谢的具体参数和途径。稳定核素示踪法作为测定活体内物质代谢的方法,具有精度高、安全、有效的特点,在国外已应用于动物实验和人体实验,但国内目前尚缺乏相应的研究资料。
     本课题拟通过内毒素持续灌注法建立实验兔的高代谢脓毒症模型,探讨其各类物质的代谢改变,并用~(13)C标记的葡萄糖、氨基酸和乳酸作为示踪剂,利用气相质谱仪测定呼出气中的~(13)C标记的CO_2含量,利用气相色谱.质谱联用法(GC-MS)测定血中~(13)C标记的各类物质含量,探讨高代谢脓毒症时各类营养底物的流动过程。
     实验分为三部分:
     研究目的:脓毒症是目前临床上较为棘手的问题,一旦转入休克期,其死亡率极高,因此目前的研究方向主要是避免机体转入失代偿休克期。而在高动力代偿期,由于机体同时存在着极为明显的高代谢状态,导致营养物质利用差、酸碱平衡紊乱以及免疫功能下降等,因此了解此期机体各物质的代谢情况对于治疗脓毒症极为重要。而要加强这方面的研究,首先需要建立完善的高代谢脓毒症动物模型,文献有采用兔、鼠、羊和猪等建立高代谢脓毒症模型的报道,由于兔对内毒素的反应与人类相似,且可获得足够血量,因此本研究拟采用微量的LPS(内毒素)持续静脉输注法建立兔高代谢脓毒症模型,模型建立标准为:实验兔体温显著升高、心率显著加快而血压正常或轻度下降。
     材料和方法:1)分两组各取健康新西兰兔8只,禁食12小时但可随意饮水;2)采用氯胺酮和安定肌肉注射麻醉后,分别行气管插管、颈动脉、颈静脉及股动脉插管;3)通过颈静脉以10ng/kg·min速度持续灌注LPS(内毒素)3h;4)采用多功能心电监护仪和动态有创血压监护仪监测各组实验兔的体温、心率、呼吸及血压变化;5)取血测定血常规及血浆内毒素含量;6)数据分析处理采用ANOVA分析。
     结果:LPS持续灌注3h后,结果如下:1)高代谢脓毒症组的心率升高至334.0次/min、体温升高至41.0℃,而对照组则分别为274.9次/min和38.2℃,两组间有显著的统计学差异,p=0.000;血压在高代谢脓毒症组是97.1mmHg,而对照组为95.9mmHg,两组间无统计学差异;脓毒症组的呼吸加快至94.3次/min,对照组则提高至76.4次/min,两组间无统计学差异(p=0.212);2)其血浆内毒素含量为0.088EU/ml,而对照组为0.013 EU/ml,两组间有显著的统计学差异,p=0.002;3)血中性粒白细胞比值升高至82.73%,对照组则为64.39%,两组间有显著的统计学差异(P=0.001);白细胞总数则明显下降至1.90×10~9/ml,而对照组则为7.58×10~9/ml,p=0.001,两组间有显著的统计学差异;两组间的红细胞数及血细胞比容均无统计学差异。
     结论:通过内毒素诱导法可成功建立高代谢脓毒症兔模型,表现出心率明显加快、体温明显升高,而血压不变等典型的临床表现。
     第二部分内毒素诱导兔高代谢脓毒血症的代谢改变
     研究目的:在高代谢脓毒症期,由于长期处于严重的高分解状态,机体会出现体重明显减轻、血浆白蛋白降低、贫血、机体免疫力下降以及代谢紊乱等难以控制的临床表现,其中代谢紊乱是最为棘手的问题之一,而其还可引起机体的连串反应,进一步加重病情。因此探讨高代谢脓毒症时的代谢紊乱情况对于提高脓毒症的治疗效果非常重要,本研究拟通过前面建立的高代谢脓毒症兔模型,评估高代谢脓毒症实验兔的糖代谢、能量代谢、氨基酸代谢以及酸碱平衡改变。
     材料和方法:1)分两组各取健康新西兰兔8只,建模方法同第一部分;2)采用强生公司血糖试纸测定实验兔基础血糖值及实验后30min、60min、120min以及180min时的血糖值;3)采用乳酸测试盒测定实验前后的血乳酸含量;3)血样处理后,采用氨基酸分析仪测定建模前后的血浆氨基酸含量,对其变化进行评估;4)采用自动血气分析仪测定实验兔基础的、30min、60min、120min以及180min的动脉血气,评估高代谢脓毒症时的酸碱平衡情况;5)采用能量代谢仪对实验兔的二氧化碳生成量(VCO_2)、氧耗量(VO_2)及能量消耗(EE)以及呼吸商(RQ)进行监测;6)数据分析处理采用ANOVA分析。
     结果:建模后,高代谢脓毒症组实验兔的代谢改变如下:1)血糖升至9.79mmol/L,较对照组的7.28mmol/L升幅明显,有显著的统计学意义,p=0.000;2)血乳酸明显升高至7.26mmol/L,对照组仅为4.50mmol/L,p=0.013,有统计学意义;3)尽管各氨基酸表现不一,但总体氨基酸水平较对照组的下降明显;4)动脉血气见PCO_2、HCO_3分别降至15.16mmHg、9.11mmHg,同时BE值降至-12.73mmol/L,均较对照组有显著差异,p<0.01,同期pH值及PO_2不变;5)能量代谢仪监测指标显示高代谢脓毒症时二氧化碳生成量(VCO_2)、氧耗量(VO_2)及能量消耗(EE)分别降至5.46ml/min、6.29 ml/min以及42.88kcal/24hr,与对照组相比p<0.05,有统计学意义;呼吸商(RQ)轻度升高,但p=0.066,无统计学意义。
     结论:高代谢脓毒症时机体处于代谢性酸中毒代偿期状态,此时可表现为高。糖、高乳酸血症,血浆总氨基酸水平下降,有氧代谢减弱。
     第三部分稳定核素示踪法应用于内毒素诱导兔高代谢脓毒血症的代谢研究
     研究目的:通过第二部分的研究,明确了高代谢脓毒症时机体所处的高糖、高乳酸以及低氨基酸血症;由于机体处于脓毒症早期且代偿能力较强,因此表现为代谢性酸中毒代偿期;通过能量代谢仪的动态检测,我们发现此时机体尽管处于高代谢状态,但主要表现为分解代谢增强,而有氧代谢明显减弱。通过目前的常规方法不能反映此时机体营养底物的流动及代谢情况,文献报道可通过稳定核素示踪法观察活体内各物质的代谢情况,据此我们拟采用~(13)C标记的亮氨酸、葡萄糖和乳酸持续灌注法,评价高代谢脓毒症时的氨基酸、葡萄糖和乳酸的代谢情况,并对稳定核素示踪法的应用进行评估。
     材料和方法:1)分亮氨酸、葡萄糖和乳酸三组各取健康新西兰兔16只,每组再分为高代谢脓毒症组和对照组两部分,建模方法同第一部分;2)三组分别先静脉弹丸式推注再持续灌注~(13)C标记的亮氨酸、葡萄糖和乳酸;3)灌注前抽取动脉血作为背景值,灌注达150,160,170和180min分别抽取动脉血2ml用于质谱分析;4)实验开始后前30min中每5min收集呼出气一次,随后每30min收集呼出气一次,用于气相质谱分析;5)血样经过低温离心取上清液,过阳离子及阴离子交换树脂,再经衍生化处理;6)处理过的血样进入气相色谱—质谱仪(GC/MS),测量其~(13)C标记的亮氨酸、葡萄糖和乳酸丰度[Ep(%)];7)实验兔的呼出气通过~(13)CO_2气相质谱分析仪测定其中的~(13)CO_2丰度(E~(13)CO_2);8)利用文献提供的公式算出CO_2总生成率(V~(13)CO_2)以及机体各物质的通量(Q)、氧化速率(C)以及物质代谢百分比(%)等;9)数据分析处理采用t检验。
     结果:建模且灌注~(13)C标记的物质后,结果如下:1)灌注~(13)C-Leucine后,高代谢脓毒症组的E~(13)CO_2和V~(13)CO_2分别为13.53‰和76.79μmol/kg·h,均较对照组显著升高(p<0.01);灌注~(13)C-Glucose后,高代谢脓毒症组的E~(13)CO_2和V~(13)CO_2分别为99.16‰和670.29μmol/kg·h,较对照组明显升高,p值均小于0.01,有显著的统计学意义;灌注~(13)C-Lactate后,高代谢脓毒症组的E~(13)CO_2和V~(13)CO_2分别为469.92‰和3050.48μmol/kg·h,均较对照组显著升高(p<0.01);2)GC/MS测定结果表明灌注~(13)C-Leucine后,高代谢脓毒症组的E_(Leucine)值为1.02,较对照组明显下降(p=0.000),E_(Glucose)和E_(Lactate)分别为0.22和2.87,较对照组显著升高(p值分别等于0.002和0.001);灌注~(13)C-Glucose后,高代谢脓毒症组的E_(Glucose)值为1.00,较对照组显著降低(p=0.001),E_(Lactate)值为1.29,较对照组显著升高(p=0.001);而灌注~(13)C-Lactate后,高代谢脓毒症组的E_(Lactate)值为1.11较对照组明显下降(p=0.002),而E_(Glucose)则升高至0.36,p=0.001,有显著的统计学差别;3)高代谢脓毒症的的亮氨酸及葡萄糖的通量(Q)分别是408.12和1636.06μmol/kg·h,较对照组明显升高,p值分别等于0.000和0.002,而乳酸的通量(Q)为8632.03μmol/kg·h,虽然绝对值较大,但与对照组相比无统计学意义(p=0.068);4)高代谢脓毒症组中葡萄糖、亮氨酸以及乳酸的氧化速率(C)值分别为826.75μmol/kg·h、91.7μmol/kg·h和39.03μmol/kg·h,较对照组都出现了可观的升幅,p值均等于0.000,提示与对照组相较有显著的统计学意义;5)高代谢脓毒症的亮氨酸、葡萄糖和乳酸物质代谢百分比(%)分别是22.92%、51.33%及39.03%,较对照组明显升高,p值均小于0.01,有显著的统计学差异。
     结论:高代谢脓毒症时,亮氨酸、葡萄糖和乳酸的通量(Q)、氧化速率(C)以及物质代谢百分比(%)均较对照组显著升高,证实机体处于高代谢状态;此时机体的分解代谢增强,亮氨酸、葡萄糖转化成乳酸的速率增快,血乳酸升高,
    同时肝脏糖异生加强,血糖升高;另外,乳酸分解代谢生成CO_2和异生成糖的速率显著加快,且其Q(通量)和C(氧化速率)要远高于葡萄糖和亮氨酸,提示乳酸在此时机体物质、能量代谢中起着不可或缺的作用,其机理有待于进一步探讨。稳定核素示踪法有助于我们了解机体中各种营养物质的代谢改变,有较强的临床参考意义。
stage of infection, human body experiences hyperdynamic state with elevated temperature and heart rate, normal or slightly decreased blood pressure, hyper-metabolism or catabolism. So, it is also called hypermetabolic sepsis. The mean body mass decreases rapidly even enough calorie and amino acid is administrated and subsequently impares immune system and prolongs the recovery period. Recent study showed that the pertinence treatment is important. Removing the disease causes, inflammation mediators and hazard metabolic substances together with suitable fluid resuscitation support treatment can prevent the progressing of septic state and can improve the effectiveness of treatment.
    During hypermetabolic sepsis, the body presents hypermetabolism and catabolism. The decrease of glucose oxidation together with the enhanced glucose anabolism and glucogenesis elevates blood glucose and lactic acid concentrations causing the formation of metabolic acidosis. Enhanced peripheral structural protein catabolism causes increased entrance of amino acids into blood flow induces the increase of amino acids uptaking, transportation and glucogenesis in liver. Clinically it presents negative nitrogen balance, mean body mass loss and impaired immune system. The metabolism of lactic acid, the most important substance causing metabolic acidosis, changes as well. The anabolism increases blood lactic acid concentration for energy providing, glucogenesis. It is important to investigate the interorganic substrates flow for establishing better nutrition support stategy.
    There are lots of traditional methods to study substances metabolism, such as body weight test, regular blood examination, plasma protein transferron test, resting nutrition assessment, energy metabolism assessment, and dynamic nitrogen balance assessment as well. But all these methods can not tell the detailed flow and path of all kinds of nutrients during altered metabolism. Stable isotope tracing (SIT) can examine the substance metabolism state in life body with higher accuracy, safety and efficacy. It is widely employed in animal and human experiments abroad without any domestic report.
    This study try to establish an experimental rabbit hypermetabolic sepsis model through the administration of endotoxin. Then inject ~(13)C labeled glucose, amino acid, and lactic acid as tracer. After that, examine the concentration of ~(13)C labeled CO_2 in exhalation and ~(13)C labeled various substance in blood flow so that we can have an idea of the alteration for various substrates flow during hypermetabolic sepsis.
    The study is divided into three parts:
    Part 1: Establish rabbit hypermetabolic sepsis model using LPS
    Study aim: Sepsis is a dangerous clinical situation. The mortality is very high once it processing to shock stage. So the research emphasis lies on how to block its way to shock. During compensative hyperdynamic stage, the body present impaired nutrients utility ability, confused acid-base balance, and diminished immunity all because of hypermetabolism. It is very important to deep investigate the metabolic flow of all kinds of nutrients for the treatment of such situation. There are all kinds of hypermetabolic sepsis animal models such as rabbit, rodent, sheep and pig as well in the reference reports. We here use rabbit as animal model because they react similarly to endotoxin as homo sabien. Besides, we can obtain enough blood from a rabbit. We used micro-injection pumps continuously inject LPS (endotoxin) so as to form rabbit hypermetabolic sepsis model. The success criteria is that we can find elevated body temperatures , accelerated heart beat, and normal or slightly decreased blood pressure in rabbits.
    Materials and Methods: 1) Healthy New Zealand rabbits were divided into 2 groups with 8 rabbits each. Rabbits were fastened for 12 hrs with the permission of drinking water as will. 2) Animals were anaesthetized through intermuscular injection of chloramine and diazepam. Then trachea intubation, jugular artery, jugular vein and femoral artery were catherizations were performed. 3) LPS were continuously administrated trough jugular vein at a velocity of 10ng/kg.min for 3hrs. 4) Rabbits body temperature, HR, breath, and BP were read out from multifunctional intensive care monitors. 5) Blood were obtained for blood RT and plasma endotoxin concentration check. 6) All data underwent ANOVA analysis.
    Results: After 3hrs of LPS injection, 1) in hypermetabolic sepsis (HS) group, the average HR went to 334/min, the average body temperature went to 41.0℃, while in control group they were 274.9/min and 38.2℃ respectively. p=0.000, presented significant statistical differences. The average BP and breath rate in HS group were 97.1mmHg and 94.3/min , while they were 95.9mmHg and 76.4/min in control group, respectively presenting no statistical differences. 2) In HS group plasma endotoxin concentration was 0.088EU/ml while it was 0.013 EU/ml in control group presenting statistical significance, p=0.002. 3) Blood white cell ratio and total white cell counting were 82.73% and 1.90 ×10~9 in HS group, while they were 64.39% and 7.58×10~9 in control group presenting very significant statistical differences(p=0.001). There was no statistical significances in RBC counting and hemocrit between two groups.
    Conclusions: The rabbit hypermetabolic sepsis model was successfully established through LPS infusing with typical clinical manifestation of accelerated HR, elevated body temperature and unchanged BP.
    Part II: Metabolic changes happened in endotoxin induced rabbit hypermetabolic sepsis
    Study aim: After a period of extreme catabolism during hypermetabolic sepsis, the body develop a serial of hard-to-control clinical situations such as decreased body weight, lowed plasma albumin concentration, anemia, impaired immunity and metabolism disturbance. The metabolism disturbance is a key step which can trigger a cascade of subsequent reactions making the situations much worse. So it is very important to explored the metabolism disturbance situation for improving therapy efficacy. Based on previous depict animal model it is possible for us to better investigate the glucose/ energy, amino acid metabolism and acid-base balance change during hypermetabolic sepsis.
    Materials and Methods: 1) Animal model and group were depict before; 2) Blood was drew before and 30, 60,120 and 180 min after the initiation of the experiment for baseline and time line blood glucose concentration test. 3) Blood lactic acid concentration were obtain through lactic acid examine kits; 4)Blood amino acid concentration was examined and evaluated through amino acid analyzer. 5) Rabbit baseline and 30, 60, 120, and 180 min post-experimental blood gas value were obtain through automatic blood gas analyzer to evaluate acid-base balance during hypermetabolic sepsis; 6)Rabbits carbon dioxide production (VCO_2), oxygen consumption (VO_2), energy consumption (EE), and breath quote (RQ) were monitored through energy-metabolism analyzer; 7) All data was analyzed through ANOVA.
    Results: The metabolism change was as follow: 1) The average BG was 9.79mmol/L in HS group compare to 7.28mmol/L in control group presenting statistical significances. 2) Blood lactic acid was 7.26mmol/L in HS group compare to 4.50mmol/L in control group presenting statistical significances; 3) Although every distinct amino acid had their own changes, the total amino acid level was decreased in HS group compare to control group; 4) Artery blood PCO_2, HCO_3, and BE decreased to 15.16mmHg, 9.11mmHg, and -12.73mmol, respectively presenting statistical significances compare to control group, while pH value and PO_2 had no change; 5) The VCO_2, VO_2 and EE were decreased to 5.46ml/min, 6.29ml/min and 42.88kcal/24hr respectively in HS group present statistical significances compare to control group. RQ elevated slightly in HS group with no statistical significances.
    Conclusions: During hypermetabolic sepsis, the body presents compensated metabolic acidosis state with elevated blood glucose concentration, hyperlactemia, decreased total amino acid level and diminished oxygen metabolism.
    Part III: Metabolism research in LPS induced rabbit HS through stable isotope tracing techniques
    Study aim: Part II results provided evidences of hyperglycemia, hyperlactemia, and hypoprotemia during HS; at this early stage of sepsis, the body presented strong compensation ability. The internal environment exhibited compensated metabolic acidosis. Although the body experiences hyper-metabolic state, catabolism is the main melody. Oxygen needed metabolism was minimized. So, it is impossible to show real nutrients substrates flow and their metabolism during this stage through regular methods. There were some references reports about using stable isotopes as tracer to find out the substrates metabolic pathway during this stage. So we designed continuous administration techniques using ~(13)C labeled leucine, glucose, and lactic acid as tracers to evaluate metabolism situation of different substrates. We also evaluated the efficacy of this method.
    Materals and Methods: 1) Healthy New Zealand rabbits were divided into three groups with 16 rabbits in each group. In every group, rabbits were subdivided into experimental and control subgroups. 2) Rabbits were bullets injected followed by continuous injected with ~(13)C labeled leucine, glucose, and lactic acid; 3) Blood were drewed before and 150,160,170, and 180 min after the initiation of isotopes injection for material analysis; 4) Exhale gas were collected every 5 min in the first 30 min followed by every 30 min there after for material analysis; 5) After centrifuge in low temp the supernatant of the blood samples were collected and went through axon and anon exchange column treatment; 6) Treated blood sample was used for ~(13)C labeled leucine, glucose lactic acid examination through mass spectrograph; 7) The exhale gas was collected for ~(13)CO_2 exam through gas-phase mass spectrograph; 8) CO_2 total production rate (V~(13)CO_2), body various substances production (Q), oxidation speed (C), and substances metabolic percentage (%) all can be calculated through equations provided by references below; 9) Data was processed through student t test.
    Results: 1) After given ~(13)C-leucine the E~(13)CO_2 and V~(13)CO_2 were 13.53% and 76.79umol/kg.h, in HS group respectively elevated significantly (p<0.01) compare to control group. After given ~(13)C-glucose, the E~(13)CO_2 and V~(13)CO_2 were 99.16% and 670.29umol/kg.h, in HS group respectively elevated significantly (p<0.01) compare to control group.After given ~(13)C-lactic acid, the E~(13)CO_2 and V~(13)CO_2 were 469.92% and 3050.48umol/kg.h, in HS group respectively elevated significantly (p<0.001) compare to control group; 2) GC/MS examine showed that after given ~(13)C-leucine, the E_(leucine) value was 1.02 in HS group decreased siginificantly (p=0.000)compare to control group, while E_(glucose) and E_(lactate) were 0.22 and 2.87 in HS group elevated significantly (p=0.002 and 0.001) compare to control group; After given ~(13)C-glucose, the E_(glucose) value was 1.0 in HS group decreased siginificantly (p=0.001)compare to control group, while E_(lactate) was 1.29in HS group elevated significantly (p=0.001) compare to
    control group; After given ~(13)C-lactate, the E_(lactate) value was 1.11 in HS group decreased siginificantly (p=0.002)compare to control group, while E_(glucose) was 0.36 in HS group elevated significantly (p=0.001) compare to control group; 3)In HS state, the production (Q) of leucine and glucose were 408.12 and 1636.06 umol/kg.h elevated significantly (p<0.001, p<0.05) compare to control groups. The production (Q) of lactate although had a high value of 8632.03umol/kg.h, presented no statistical significance compare to control groups; 4)The oxidation speed (C) of glucose, leucine and lactate were 826.75, 91.7, and 39.03umol/kg.h respectively in HS group presenting signifigant elevation (p=0.000); 5) The substances metabolic percentage of leucine, glucose, and lactate were 22.92%, 51.33%, and 39.03% respectively in HS group elevated significantly (p<0.01) compare to control group.
    Conclusions: During HS, the body experiences hyper-metabolism state proved by elevated leucine, glucose and lactate production (Q), oxidation speed (C), and substances metabolism percentage (%); At this time, enhanced catabolism turns leucine and glucose rapidly into lactate elevating blood lactate concentration. The accelerated glucogenesis in liver elevates blood glucose concentration. In another hand, the accelerated catabolism of lactate into CO_2 and glucose with higher Q and C than that of glucose and leucine suggesting the indispensable role of lactate in substances and energy metabolism. The underline mechanism is waiting for future investigation. The stable isotope tracing techniques is an efficacious method to investigate nutrients metabolic changes in different situations.
引文
1. Beal AL, Cerra FB. Multiple organ failure syndrome in the 1990s. Systemic inflammatory response and organ dysfunction. JAMA.1994; 271(3):226-33
    2. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992;101(6): 1644-55
    3. Deitch EA. Multiple organ failure: Pathophysiology and potential future therapy. Ann Surg 1992; 216(2):117-34
    4. Wilmore DW. Alterations in protein, carbohydrate, and fat metabolism in injured and septic patients. J Am Coll Nutr 1983;2(1):3-13
    5.吴肇汉 主编.实用临床营养治疗学.上海:上海科学技术出版社,2001
    6. Bochud PY, Calandra T. Pathogenesis of sepsis: new concepts and implications for future treatment. BMJ. 2003,326(7383):262-6
    7. Wilmore DW. Alterations in protein, carbohydrate, and fat metabolism in injured and septic patients. J Am Coll Nutr 1983,2(1):3-13
    8. Matthews DE, Battezzati A. Regulation of protein metabolism during stress. Curr Opin Gen Surg 1993:72-7
    9. Siegel JH, Cerra FB, Coleman B, et al. Physiological and metabolic correlations in human sepsis. Invited commentary. Surgery. 1979,86(2):163-93
    10. Allary J., Annane D. Glucocorticoids and sepsis. Minerva Anestesiol. 2005,71(12):759-68
    11. Rivers EP, McIntyre L, Morro DC, et al. Early and innovative interventions for severe sepsis and septic shock: taking advantage of a window of opportunity. CMAJ. 2005,173(9):1054-65
    12. Ewaschuk JB, Naylor JM, Zello GA. D-lactate in human and ruminant metabolism. J Nutr. 2005,35(7):1619-25
    13. Spitzer JJ, Bagby GJ, Meszaros K, et al. Altered control of carbohydrate metabolism in endotoxemia. Prog Clin Biol Res 1989;286:145-65
    14. Gore DC, Jahoor F, Hibbert JM, et al. Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surg 1996 ;224(1):97-102
    15. Agwunobi AO, Reid C, Maycock P, et al. Insulin resistance and substrate utilization in human endotoxemia. J Clin Endocrinol Metab 2000;85(10):3770-8
    16. Virkamaki A, Yki-Jarvinen H. Mechanisms of insulin resistance during acute endotoxemia. Endocrinology 1994;134(5):2072-8
    17. Carlson GL. Insulin resistance in sepsis. Br J Surg 2003;90(3):259-60
    18. Border JR. Metabolic response to short-term starvation, sepsis, and trauma. Surg Annu 1970;2(0):11-34
    19. Kinney JM, Gump FE, Long CL. Energy and tissue fuel in human injury and sepsis. Adv Exp Med Biol 1972;33(0):401-7
    20. Meszaros K, Bojta J, Bautista AP, et al. Glucose utilization by Kupffer cells, endothelial cells, and granulocytes in endotoxemic rat liver. Am J Physiol 1991;260(1 Pt 1):G7-12
    21. Fischer JE, Hasselgren PO. Cytokines and glucocorticoids in the regulation of the "hepato-skeletal muscle axis" in sepsis. Am J Surgl991;161(2):266-7
    22. Goldstein SA, Elwyn DH. The effects of injury and sepsis on fuel utilization. Annu Rev Nutr 1989;9:445-73
    23. Makhija P, Yadav S, Thakur A. Tumor necrosis factor alpha and Interleukin 6 in infants with sepsis. Indian Pediatr 2005;42(10): 1024-8
    24. Pittiruti M, Siegel JH, Sganga G, et al. Determinants of urea nitrogen production in sepsis. Muscle catabolism, total parenteral nutrition, and hepatic clearance of amino acids. Arch Surg 1989;124(3):362-72
    25. Fischer CP, Bode BP, Abcouwer SF, et al. Hepatic uptake of glutamine and other amino acids during infection and inflammation. Shock 1995;3(5):315-22
    26. Pearl RH, Clowes GH Jr, Hirsch EF, et al. Prognosis and survival as determined by visceral amino acid clearance in severe trauma. J Trauma 1985;25(8):777-83
    27. Remick DG, Bolgos G, Copeland S, et al. Role of interleukin-6 in mortality from and physiologic response to sepsis. Infect Immun 2005;73(5):2751-7
    28. Speyer CL, Gao H, Rancilio NJ, et al. Novel chemokine responsiveness and mobilization of neutrophils during sepsis. Am J Pathol 2004;165(6):2187-96
    29. Di Giantomasso D, May CN, Bellomo R. Vital organ blood flow during hyperdynamic sepsis. Chest. 2003;124(3):1053-9
    30. Guzman JA, Dikin MS, Kruse JA. Lingual, splanchnic, and systemic hemodynamic and carbon dioxide tension changes during endotoxic shock and resuscitation. JAppl Physiol. 2005; 98(1):108-13
    31. Koutelidakis I, Papaziogas B, Giamarellos-Bourboulis EJ, et al. Systemic endotoxaemia following obstructive jaundice: the role of lactulose. J Surg Res. 2003; 113(2): 243-7
    32. Tredget EE, Yu YM, Zhong S, et al. Role of interleukin 1 and tumor necrosis factor on energy metabolism in rabbits. Am J Physiol. 1988, 255(6 Pt 1): E760-8
    33. Hu RH, Yu YM, Costa D, et al. A rabbit model for metabolic studies after burn injury. J Surg Res. 1998;75(2): 153-60
    34. Bruins MJ, Deutz NE, Soeters PB. Aspects of organ protein, amino acid and glucose metabolism in a porcine model of hypermetabolic sepsis. Clin Sci (Lond). 2003;104(2):127-41
    35. Chevalier S, Burgess SC, Malloy CR, et al. The greater contribution of gluconeogenesis to glucose production in obesity is related to increased whole-body protein catabolism. Diabetes. 2006;55(3):675-81
    36. Hellerstein MK, Neese RA, Schwarz JM. Model for measuring absolute rates of hepatic de novo lipogenesis and reesterification of free fatty acids. Am J Physiol 1993; 265(5 Pt 1): E814-20
    37. Berthold HK, Hachey DL, Reeds PJ, et al. Uniformly 13C-labeled algal protein used to determine amino acid essentiality in vivo. Proc Natl Acad Sci 1991; 88(18): 8091-5
    38. Marchini JS, Castillo L, Chapman TE, et al. Phenylalanine conversion to tyrosine: comparative determination with L-[ring-~2H_5] phenylalanine and L-[1-13C] phenylalanine as tracers in man. Metabolism 1993; 42(10): 1316-22
    39. Fink MP, Heard SO. Laboratory models of sepsis and septic shock. J Surg Res. 1990,49(2):186-96
    40. Streat SJ, Hill GL. Nutritional support in the management of critically ill patients in surgical intensive care. World J Surg 1987;11(2):194-201
    41. Streat SJ, Beddoe AH, Hill GL. Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients. J Trauma 1987;27(3):262-6
    42. Chiolero R, Revelly JP, Tappy L. Energy metabolism in sepsis and injury. Nutrition 1997;13(9 Suppl):45S-51S
    43. Phang PT, Rich T, Ronco J. A validation and comparison study of two metabolic monitors. JPEN 1990;14(3):259-61
    44. Weissman C, Sardar A, Kemper M. In Vitro Evaluation of a Compact Metabolic Measurement Instrument. JPEN 1990; 14(2):216-221
    45. Hultman E, Bergstrom J, Nilsson LH. Normal carbohydrate metabolism and carbohydrate metabolism in trauma. Acta Anaesthesiol Scand Suppl. 1974; 55: 28-49
    46. Lang CH. Sepsis-induced insulin resistance in rats is mediated by a beta-adrenergic mechanism. Am J Physiol. 1992;263(4 Pt 1):E703-11
    47. Lang CH, Bagby GJ, Spitzer JJ. Carbohydrate dynamics in the hypermetabolic septic rat. Metabolism. 1984;33(10):959-63
    48. Dunn A, Katz J, Golden S, et al. Estimation of glucose turnover and recycling in rabbits using various [~3H, ~(14)C]glucose labels. Am J Physiol. 1976; 230(4): 1159-62
    49. Lang CH, Dobrescu C, Bagby GJ, et al. Altered glucose kinetics in diabetic rats during gram-negative infection. Am J Physiol. 1987; 253(2 Pt 1):E123-9
    50. Duke T. Dysoxia and lactate. Arch Dis Child. 1999;81(4):343-50
    51. Moseley L, Jentjens RL, Waring RH, et al. Measurement of exogenous carbohydrate oxidation: a comparison of [U-~(14)C]glucose and [U-~(13)C]glucose tracers. Am J Physiol Endocrinol Metab. 2005; 289(2):E206-11
    52. Lewanczuk RZ, Paty BW, Toth EL. Comparison of the [~(13)C]glucose breath test to the hyperinsulinemic-euglycemic clamp when determining insulin resistance. Diabetes Care. 2004; 27(2): 441-7
    53. Chevalier S, Burgess SC, Malloy CR, et al. The greater contribution of gluconeogenesis to glucose production in obesity is related to increased whole-body protein catabolism. Diabetes. 2006;55(3):675-81
    54. Wagenmakers AJ. Tracers to investigate protein and amino acid metabolism in human subjects. Proc Nutr Soc. 1999;58(4):987-1000
    55. Landau BR, Wahren J, Ekberg K, et al. Limitations in estimating gluconeogenesis and Cori cycling from mass isotopomer distributions using [U-~(13)C6]glucose. Am J Physiol. 1998;274(5 Pt 1):E954-61
    56. Yu YM, Wagner DA, Tredget EE, et al. Quantitative role of splanchnic region in leucine metabolism: L-[1-13C,15N]leucine and substrate balance studies. Am J Physiol. 1990;259(1 Pt 1):E36-51
    57. Gruetter R, Adriany G, Choi IY, et al. Localized in vivo 13C NMR spectroscopy of the brain. NMR Biomed. 2003;16(6-7):313-38
    58. Roden M, Shulman GI. Applications of NMR spectroscopy to study muscle glycogen metabolism in man. Annu Rev Med. 1999;50:277-90
    59. Van den Akker CH, Te Braake FW, Wattimena DJ, et al. Effects of early amino acid administration on leucine and glucose kinetics in premature infants. Pediatr Res. 2006; 59(5): 732-5
    60. Allick G, Sprangers F, Weverling GJ, et al. Free fatty acids increase hepatic glycogen content in obese males. Metabolism. 2004; 53(7): 886-93
    61. Landau BR. Quantifying the contribution of gluconeogenesis to glucose production in fasted human subjects using stable isotopes. Proc Nutr Soc. 1999; 58(4): 963-72
    62. Landau BR. Limitations in the use of [U-~(13)C_6] glucose to estimate gluconeogenesis. Am J Physiol. 1999; 277(3 Pt 1): E408-13
    63. Hellerstein MK, Neese RA, Linfoot P, et al. Hepatic gluconeogenic fluxes and glycogen turnover during fasting in humans. A stable isotope study. J Clin Invest. 1997; 100(5): 1305-19
    64. Elia M, Farrell R, Ilic V, et al. The removal of infused leucine after injury, starvation and other conditions in man. Clin Sci (Lond). 1980;59(4):275-83
    65. Felig P, Owen OE, Wahren J, et al. Amino acid metabolism during prolonged starvation. J Clin Invest. 1969;48(3):584-94
    66. Schurr A. Lactate: the ultimate cerebral oxidative energy substrate? J Cereb Blood Flow Metab. 2006;26(1): 142-52
    67. Muller MJ, Paschen U, Seitz HJ. Effect of ketone bodies on glucose production and utilization in the miniature pig. J Clin Invest. 1984;74(1):249-61
    68. Beylot M, Khalfallah Y, Riou JP, et al. Effects of ketone bodies on basal and insulin-stimulated glucose utilization in man. J Clin Endocrinol Metab. 1986; 63(1): 9-15
    1. Shires, G. T. III, Canizaro, P. C., Carrico, J., and Shires, G. T. Shock. In S. Schwartz, G. Shires, and F.Spencer (Eds.), Principles of Surgery. New York: McGraw Hill Inc., 1989, Pp. 137-177
    2. Beal AL, Cerra FB. Multiple organ failure syndrome in the 1990s. Systemic inflammatory response and organ dysfunction. JAMA.1994;271(3):226-33
    3. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992;101(6): 1644-55
    4. Deitch EA. Multiple organ failure: Pathophysiology and potential future therapy. Ann Surg 1992;216(2):117-34
    5. Wilmore DW. Alterations in protein, carbohydrate, and fat metabolism in injured and septic patients. J Am Coll Nutr 1983;2(1):3-13
    6.吴肇汉主编.实用临床营养治疗学.上海:上海科学技术出版社,2001
    7. Sands KE, Bates DW, Lanken PN, et al. Epidemiology of sepsis syndrome in 8 academic medical centers. JAMA 1997;278(3):234-40
    8. Casey LC. Immunologic response to infection and its role in septic shock. Crit Care Clin 2000 ;16(2):193-213
    9. Calandra T, Bochud PY, Heumann D. Curr Clin Top Infect Dis 2002;22:1-23
    10. Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines. Adv Immunol 1994;55:97-179
    11. Newsholme EA, Newsholme P, Curi R. The role of the citric acid cycle in cells of the immune system and its importance in sepsis, trauma and burns. Biochem Soc Symp 1987;54:145-62
    12. Januszkiewicz A, Essen P, McNurlan MA, et al. Determination of in vivo protein synthesis in human T lymphocytes. Clin Nutr 2001;20(2):181-2
    13. Matthews DE, Battezzati A. Regulation of protein metabolism during stress. Curr Opin Gen Surg 1993;72-7
    14. Border JR. Metabolic response to short-term starvation, sepsis, and trauma. Surg Annu 1970;2(0):11-34
    15. Kinney JM, Gump FE, Long CL. Energy and tissue fuel in human injury and sepsis. Adv Exp Med Biol 1972;33(0):401-7
    16. Woolf LI, Groves AC, Duff JH. Amino acid metabolism in dogs with E. coli bacteremic shock. Surgery 1979;85(2):212-8
    17. Spitzer JJ, Bagby GJ, Meszaros K, et al. Altered control of carbohydrate metabolism in endotoxemia. Prog Clin Biol Res 1989;286:145-65
    18. Gore DC, Jahoor F, Hibbert JM, et al. Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surg 1996 ;224(1):97-102
    19. Agwunobi AO, Reid C, Maycock P, et al. Insulin resistance and substrate utilization in human endotoxemia. J Clin Endocrinol Metab 2000;85(10):3770-8
    20. Virkamaki A, Yki-Jarvinen H. Mechanisms of insulin resistance during acute endotoxemia. Endocrinology 1994;134(5):2072-8
    21. Carlson GL. Insulin resistance in sepsis. Br J Surg 2003;90(3):259-60
    22. Meszaros K, Bojta J, Bautista AP, et al. Glucose utilization by Kupffer cells, endothelial cells, and granulocytes in endotoxemic rat liver. Am J Physiol 1991;260(1 Pt 1):G7-12
    23. Fischer JE, Hasselgren PO. Cytokines and glucocorticoids in the regulation of the "hepato-skeletal muscle axis" in sepsis. Am J Surg 1991;161(2):266-71
    24. Goldstein SA, Elwyn DH. The effects of injury and sepsis on fuel utilization. Annu Rev Nutr 1989;9:445-73
    25. Streat SJ, Hill GL. Nutritional support in the management of critically ill patients in surgical intensive care. World J Surg 1987;11(2):194-201
    26. Streat SJ, Beddoe AH, Hill GL. Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients. J Trauma 1987;27(3):262-6
    27. Michie HR. Metabolism of sepsis and multiple organ failure. World J Surg 1996;20(4):460-4
    28. Chiolero R, Revelly JP, Tappy L. Energy metabolism in sepsis and injury. Nutrition 1997;13(9 Suppl):45S-51S
    29. Makhija P, Yadav S, Thakur A. Tumor necrosis factor alpha and interleukin 6 in infants with sepsis. Indian Pediatr 2005;42(10): 1024-8
    30. Remick DG, Bolgos G, Copeland S, et al. Role of interleukin-6 in mortality from and physiologic response to sepsis. Infect Immun 2005;73(5):2751-7
    31. Speyer CL, Gao H, Rancilio NJ, et al. Novel chemokine responsiveness and mobilization of neutrophils during sepsis. Am J Pathol 2004;165(6):2187-96
    32. Riedemann NC, Guo RF, Hollmann TJ, et al. Regulatory role of C5a in LPS-induced IL-6 production by neutrophils during sepsis. FASEB J 2004;18(2):370-2
    33. Read RC. Experimental therapies for sepsis directed against tumour necrosis factor. J Antimicrob Chemother 1998;41 Suppl A:65-9
    34. Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood 1991;77(8):1627-52
    35. Long CL. Energy balance and carbohydrate metabolism in infection and sepsis. Am J Clin Nutr 1977;30(8):1301-10
    36. Wolfe RR, Burke JF. Effect of glucose infusion on glucose and lactate metabolism in normal and burned guinea pigs. J Trauma 1978;18(12):800-5
    37. Beisel WR, Wannemacher RW Jr. Gluconeogenesis, ureagenesis, and ketogenesis during sepsis. JPEN 1980;4(3):277-85
    38. Gelfand RA, Matthews DE, Bier DM, et al. Role of counterregulatory hormones in the catabolic response to stress. J Clin Invest 1984;74(6):2238-2248
    39. Black PR, Brooks DC, Bessey PQ, et al. Mechanisms of insulin resistance following injury. Ann Surg 1982;196(4):420-35
    40. Neyrinck AM, Alexiou H, Delzenne NM. Kupffer cell activity is involved in the hepatoprotective effect of dietary oligofructose in rats with endotoxic shock. J Nutr 2004;134(5):1124-9
    41. Lang CH, Dobrescu C. Sepsis-induced increases in glucose uptake by macrophage-rich tissues persist during hypoglycemia. Metabolism 1991;40(6):585-93
    42. Meszaros K, Bojta J, Bautista AP, et al. Glucose utilization by Kupffer cells, endothelial cells, and granulocytes in endotoxemic rat liver. Am J Physiol 1991;260(1 Pt 1):G7-12
    43. Spolarics Z, Schuler A, Bagby GJ, et al. In vivo metabolic response of hepatic nonparenchymal cells and leukocytes to granulocyte-macrophage colony-stimulating factor. J Leukoc Biol 1992;51(4):360-5
    44. Mizock BA. Alterations in carbohydrate metabolism during stress: a review of the literature. Am J Med. 1995;98(1):75-84
    45. Tredget EE, Yu YM. The metabolic effects of thermal injury. World J Surg. 1992; 16(1):68-79
    46. Zenni GC, McLane MP, Law WR, et al. Hepatic insulin resistance during chronic hyperdynamic sepsis. Circ Shock. 1992;37(3):198-208
    47. Rusavy Z, Sramek V, Lacigova S, et al. Influence of insulin on glucose metabolism and energy expenditure in septic patients. Crit Care. 2004; 8(4): R213-20
    48. Spitzer JJ, Spitzer JA. Alterations in carbohydrate and lipid metabolism following administration of endotoxin. Klin Wochenschr. 1982;60(14):717-9
    49. Russell ST, Tisdale MJ. Effect of a tumour-derived lipid-mobilising factor on glucose and lipid metabolism in vivo. Br J Cancer. 2002;87(5):580-4
    50. Cerra FB. Hypermetabolism, organ failure, and metabolic support. Surgery
    51. Dahn MS, Lange P, Lobdell K, et al. Splanchnic and total body oxygen consumption differences in septic and injured patients. Surgery 1987;101(1):69-80
    52. Sax HC, Hasselgren PO, Talamini MA, et al. Amino acid uptake in isolated, perfused liver: effect of trauma and sepsis. J Surg Res 1988;45(1):50-5
    53. Takala J. Regional contribution to hypermetabolism following trauma. Baillieres Clin Endocrinol Metab 1997;11(4):617-27
    54. Freund H, Atamian S, Holroyde J, et al. Plasma amino acids as predictors of the severity and outcome of sepsis. Ann Surg 1979;190(5):571-6
    55. Pearl RH, Clowes GH Jr, Hirsch EF, et al. Prognosis and survival as determined by visceral amino acid clearance in severe trauma. J Trauma 1985;25(8):777-83
    56. Pittiruti M, Siegel JH, Sganga G, et al. Determinants of urea nitrogen production in sepsis. Muscle catabolism, total parenteral nutrition, and hepatic clearance of amino acids. Arch Surg 1989;124(3):362-72
    57. Fischer CP, Bode BP, Abcouwer SF, et al. Hepatic uptake of glutamine and other amino acids during infection and inflammation. Shock 1995;3(5):315-22
    58. Druml W, Heinzel G, Kleinberger G Amino acid kinetics in patients with sepsis. Am J Clin Nutr 2001;73(5):908-13
    59. Hasselgren PO, Pedersen P, Sax HC, et al. Current concepts of protein turnover and amino acid transport in liver and skeletal muscle during sepsis. Arch Surg 1988;123(8):992-9
    60. Druml W, Fischer M, Liebisch B, et al. Elimination of amino acids in renal failure. Am J Clin Nutr 1994;60(3):418-23
    61. Druml W, Burger U, Kleinberger G, et al. Elimination of amino acids in acute renal failure. Nephron 1986;42(1):62-7
    62. Herndon DN, Wilmore DW, Mason AD Jr, et al. Abnormalities of phenylalanine and tyrosine kinetics. Significance in septic and nonseptic burned patients. Arch Surg 1978;113(2):133-5
    63. Bernardini P, Fischer JE. Amino acid imbalance and hepatic encephalopathy. Annu Rev Nutr 1982;2:419-54
    64. Laidlaw SA, Kopple JD. Newer concepts of the indispensable amino acids. Am J Clin Nutr. 1987;46(4):593-605
    65. Hasselgren PO, Pedersen P, Sax HC, et al. Current concepts of protein turnover and amino acid transport in liver and skeletal muscle during sepsis. Arch Surg 1988;123(8):992-9
    66. Hasselgren PO, Jagenburg R, Karlstrom L,et al. Changes of protein metabolism in liver and skeletal muscle following trauma complicated by sepsis. J Trauma 1984;24(3):224-8
    67. Shaw JH, Wildbore M, Wolfe RR. Whole body protein kinetics in severely septic patients. The response to glucose infusion and total parenteral nutrition. Ann Surg 1987;205(3):288-94
    68. Cianciaruso B, Bellizzi V, Napoli R, et al. Hepatic uptake and release of glucose, lactate, and amino acids in acutely uremic dogs. Metabolism 1991;40(3):261-9
    69. Suojaranta-Ylinen R, Poyhonen M, Takala J. Accelerated splanchnic amino acid uptake after cardiac surgery. Clin Nutr 1998;17(2):51-5
    70. Greisen J, Grofte T, Hansen PO, et al. Acute non-traumatic pain increases the hepatic amino- to urea-N conversion in normal man. J Hepatol 1999;31(4):647-55
    71. Hasselgren PO, Fischer JE. Sepsis: stimulation of energy-dependent protein breakdown resulting in protein loss in skeletal muscle. World J Surg 1998;22(2):203-8
    72. Salleh M, Ardawi M. Hepatic glutamine metabolism in the septic rat. Clin Sci (Lond) 1992 ;82(6):709-16
    73. Tiao G, Lieberman M, Fischer JE, et al. Intracellular regulation of protein degradation during sepsis is different in fast- and slow-twitch muscle. Am J Physiol 1997;272(3 Pt 2):R849-56
    74. Vesali RF, Klaude M, Rooyackers O, et al. Amino acid metabolism in leg muscle after an endotoxin injection in healthy volunteers. Am J Physiol Endocrinol Metab 2005;288(2 ):E360-4
    75. Karinch AM, Pan M, Lin CM, et al. Glutamine metabolism in sepsis and infection. J Nutr 2001;131(9 Suppl):2535S-8S
    76. Ohtake Y, Clemens MG Interrelationship between hepatic ureagenesis and gluconeogenesis in early sepsis. Am J Physiol 1991;260(3 Pt 1):E453-8
    77. Shaw JH, Klein S, Wolfe RR. Assessment of alanine, urea, and glucose interrelationships in normal subjects and in patients with sepsis with stable isotopic tracers. Surgery 1985;97(5):557-68
    78. Baracos V, Rodemann HP, Dinarello CA, et al. Stimulation of muscle protein degradation and prostaglandin E2 release by leukocytic pyrogen (interleukin-1). A mechanism for the increased degradation of muscle proteins during fever. N Engl J Med 1983;308(10):553-8
    79. Voisin L, Breuille D, Combaret L, et al. Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, Ca2+ -activated, and ubiquitin-proteasome proteolytic pathways. J Clin Invest 1996;97(7): 1610-7
    80. Deval C, Mordier S, Obled C, et al. Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting. Biochem J 2001;360(Pt 1): 143-50
    81. Breuille D, Arnal M, Rambourdin F, et al. Sustained modifications of protein metabolism in various tissues in a rat model of long-lasting sepsis. Clin Sci (Lond) 1998;94(4):413-23
    82. Webel DM, Finck BN, Baker DH, et al. Time course of increased plasma cytokines, cortisol, and urea nitrogen in pigs following intraperitoneal injection of lipopolysaccharide. J Anim Sci 1997;75(6):1514-20
    83. Miles JM. Lipid fuel metabolism in health and disease. Curr Opin Gen Surg. 1993;:78-84
    84. Schroder NW, Schumann RR. Non-LPS targets and actions of LPS binding protein (LBP). J Endotoxin Res. 2005;11(4):237-42
    85. Tobias PS, Mathison J, Mintz D, et al. Participation of lipopolysaccharide-binding protein in lipopolysaccharide-dependent macrophage activation. Am J Respir Cell Mol Biol. 1992;7(3):239-45.
    86. Bach AC, Storck D, Meraihi Z. Medium-chain triglyceride-based fat emulsions: an alternative energy supply in stress and sepsis. JPEN J Parenter Enteral Nutr. 1988;12(6 Suppl):82S-88S
    87. Borum PR, Bennett SG Carnitine as an essential nutrient. J Am Coll Nutr. 1986;5(2): 177-82
    88. Biolo G, Toigo G, Ciocchi B, et al. Metabolic response to injury and sepsis: changes in protein metabolism. Nutrition. 1997;13(9 Suppl):52S-57S
    89. Fink M. Cytopathic hypoxia in sepsis. Acta Anaesthesiol Scand Suppl. 1997;110:87-95
    90. Holloway P, Benham S, St John A. The value of blood lactate measurements in ICU: an evaluation of the role in the management of patients on haemofiltration. Clin Chim Acta. 2001;307(1-2):9-13
    91. Kellum JA, Kramer DJ, Lee K, et al. Release of lactate by the lung in acute lung injury. Chest. 1997;111(5):1301-5
    92. Haji-Michael PG, Ladriere L, Sener A, et al. Leukocyte glycolysis and lactate output in animal sepsis and ex vivo human blood. Metabolism. 1999;48(6):779-85
    93. Proulx F, Lacroix J, Farrell CA, et al. Blood lactate and gastric intramucosal pH during severe sepsis. Crit Care Med. 1996;24(6):1092
    94. Sapin V, Nicolet L, Aublet-Cuvelier B, et al. Rapid decrease in plasma D-lactate as an early potential predictor of diminished 28-day mortality in critically ill septic shock patients. Clin Chem Lab Med. 2006;44(4):492-6
    95. Levraut J, Ichai C, Petit I, et al. Low exogenous lactate clearance as an early predictor of mortality in normolactatemic critically ill septic patients. Crit Care Med. 2003;31(3):705-10
    96. Chai J, Wu Y, Sheng ZZ. Role of ubiquitin-proteasome pathway in skeletal muscle wasting in rats with endotoxemia. Crit Care Med. 2003;31(6): 1802-7
    97. Januszkiewicz A, Lore K, Essen P, et al. Response of in vivo protein synthesis in T lymphocytes and leucocytes to an endotoxin challenge in healthy volunteers. Clin Exp Immunol. 2002;130(2):263-70
    98. Das UN. Current advances in sepsis and septic shock with particular emphasis on the role of insulin. Med Sci Monit. 2003;9(8):RA181-92
    99. Kanemaki T, Kitade H, Kaibori M, Interleukin 1beta and interleukin 6, but not tumor necrosis factor alpha, inhibit insulin-stimulated glycogen synthesis in rat hepatocytes. Hepatology. 1998;27(5):1296-303
    100. Pan M, Choudry HA, Epler MJ, et al. Arginine transport in catabolic disease states. J Nutr. 2004;134(10 Suppl):2826S-2829S
    1、吴肇汉主编.实用临床营养治疗学.上海:上海科学技术出版社,2001
    2、Wilmore, D. W. Alterations in protein, carbohydrate, and fat metabolism in injured and septic patients. J. Am. Coll. Nutr 1983; 2(1): 3-13
    3、Matthews, D. E. and Battezzati, A. Regulation of protein metabolism during stress. Curr. Opin. Gen. Surg 1993;:72-7.review
    4、Biolo G, Toigo G, Ciocchi B, et al. Metabolic response to injury and sepsis: Changes in protein metabolism. Nutrition 1997; 13(suppl): 52s-57s
    5、Chiolero R, Revelly JP, Tappy A. Energy metabolism in sepsis and injury. Nutrition 1997; 13(suppl): 45s-51s
    6、Rivers EP, McIntyre L, Morro DC, et al. Early and innovative interventions for severe sepsis and septic shock: taking advantage of a window of opportunity. CMAJ 2005; 173(9):1054-65
    7、Stentz FB, Umpierrez GE, Cuervo R, et al. Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises. Diabetes 2004;53:2079-2086
    8、Jeschke MG, Klein D, Bolder U, Einspanier R. Insulin attenuates the systemic inflammatory response in endotoxemic rats. Endocrinology 2004;145:4084-4093
    9、Streat SJ, Plank LD, Hill GL. Overview of modern management of patients with critical injury and severe sepsis. World J Surg 2000;24(6):655-63. Review
    10、Mansell PI, Macdonald IA. Reappraisal of the Weir equation for calculation of metabolic rate. Am J Physiol 1990; 258(6pt2): R1347-54
    11、Weir JB, De V. New Methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 1949; 109(1-2):1-9.
    12 Phang PT, Rich T, Ronco J. A validation and comparison study of two metabolic monitors. JPEN 1990;14(3):259-61
    13 Weissman C, Sardar A, Kemper M. In Vitro Evaluation of a Compact Metabolic Measurement Instrument. JPEN 1990; 14(2):216-221
    14 Lifson N, McClintock R. Theory of use of the turnover rates of body water for measuring energy and material balance. J Theor Biol 1966;12(1):46-74
    15 Schoeller DA, van Santen E. Measurement of energy expenditure in man by the doubly labeled water method. JAppl Physiol 1982;53:955-959
    16 Suzanne MP, Jams NR, Michelle Sandow-Pajewski, et al. Alteration in growth and body composition during puberty. IV. Energy intake estimated by the Youth-Adolescent Food-Frequency Questionnaire: validation by DLW method. Am J Clin Nutr 2000;72:1455-1460
    17 Racette SB, Sheller DA, Shay K, et al. Relative dilution spaces of ~2H-and ~(18)O-labeled water in humans. Am J Physiol 1994; 267: 585-90
    18 Elizabeth JB, Janice O'Connor, Rebecca A, et al. Total energy expenditure, body fatness, and physical activity in children aged 6-9y. Am J Clin Nutr 2001;74(4):524-28
    19 Michael IG Measurement issues related to studies of childhood obesity: Assessment of body composition, body fat distribution, physical activity, and food intake. Pediatrics 1998;101(3 pt 2):505-18 Review
    20 Barton R, Cerra FB. The hypermetabolism. Multiple organ failure syndrome. Chest 1989;96(5):1153-60 Review
    21 Dahn MS, Lange P, Lobdell K, et al. Splanchnic and total body oxygen consumption differences in septic and injured patients. Surgery 1987;101(1):69-80
    22 Sax HC, Hasselgren PO, Talamini MA, et al. Amino acid uptake in isolated, perfused liver: effect of trauma and sepsis. J Surg Res 1988;45(1):50-5
    23 Takkala J. Regional contribution to hypermetabolism following trauma. Baillieres Clin Endocrinol Metab 1997;11(4):617-27. Review
    24 Freund H, Atamian S, Holroyde J, et al. Plasma amino acids as predictors of the severity and outcome of sepsis. Ann Surg 1979;190(5):571-6
    25 Courtney Moore M, Hsieh P-S, Flakoll PJ, et al. Net hepatic gluconeogenic amino acid uptake in response to peripheral versus portal amino acid infusion in conscious dogs. J Nutr 1999; 129(12):2218-24
    26、Tessari P, Barazzoni R, Zanetti M. Differences in estimates of forearm protein synthesis between leucine and phenylalanine tracers following unbalanced amino acid infusion. Metabolism 1999;48(12):1564-9
    27、Janis LJ, Kovach PM, Riggin RM, et al. Protein liquid chromatographic analysis in biotechnology. Methods Enzymol 1996; 271: 86-113. Review
    28、Walker V, Mills GA. Quantitative methods for amino acid analysis in biological fluids. Ann Clin Biochem 1995;32(Pt1):28-57. Review.
    29、Miller C, Rivier J. Peptide chemistry: development of high performance liquid chromatography and capillary zone electrophoresis. Biopolymers 1996; 40(3):265-317. Review
    30、马礼敦主编.高等结构分析.复旦大学出版社,2001
    31、Wilfred D, Gǖnther H, Gunter K. Amino acid kinetics in patients with sepsis. Am J Clin Nutr 2001; 73:908-13
    32、周自衡.有机质谱仪器.北京:教育部质谱培训班,1984
    33、Gohlke RS. Time-of-Flight Mass Spectrometry and Gas-Liquid Partition Chromatography. Analytical Chemistry 1959;31:535-41
    34、Watson JT, Biemann K. Direct Recording of High Resolution Mass Spectra of Gas Chromatographic Effluents. Analytical Chemistry 1965; 37:844-51
    35、Wolfe RR. Radioactive and Stable Isotope Tracers in Biomedicine: Principles and Practice of Kinetic Analysis. New York: Wiley-Liss 1992
    36、Henri B. Applications of mass isotopomer analysis to nutrition research. Annu Rev Nutr 1997;17:559-96
    37、Landau BR, Wahren J, Chandramouli V, et al. Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest 1996;98(2):378-85
    38、Landau BR, Wahren J, Chandramouli V, et al. Use of ~2H_2O for estimating rates of gluconeogenesis. Application to the fasted state. J Clin Invest 1995; 95(1): 172-78
    39、Hazey JW, Powers L, Previs SF, et al. Tracing gluconeogenesis with deuterium enrichments on carbons 6 and 2 of glucose. Anal Biochem 1997; 248(1): 158-67
    40、Hachey DL, Patterson BW, Reeds PJ, et al. Isotopic determination of organic keto acid pentafluorobenzyl esters in biological fluids by negative chemical ionization gas chromatography/mass spectrometry. Anal Chem 1991; 63(9): 919-23
    41、Breuer O, Bjorkhem I. Use of an 18O2 inhalation technique and mass isotopomer distribution analysis to study oxygenation of cholesterol in rat. Evidence for in vivo formation of 7-oxo-, 7 beta-hydroxy-, 24-hydroxy-, and 25-hydroxycholesterol. J Biol Chem 1995;270(35):20278-84
    42、Cline GW, Shulman GI. Mass and positional isotopomer analysis of glucose metabolism in periportal and pericentral hepatocytes. J Biol Chem 1995; 270(47): 28062-7
    43、Kalderon B, Gopher A, Lapidot A. Metabolic pathways leading to liver glycogen repletion in vivo, studied by GC-MS and NMR. FEBS Lett 1986;204(1):29-32
    44、Kalderon B, Korman SH, Gutman A, et al. Glucose recycling and production in glycogenosis type Ⅰ and Ⅲ: stable isotope technique study. Am J Physiol 1989;257(3 Pt 1):E346-53
    45、Kalderon B, Lapidot A, Korman SH, et al. Glucose recycling and production in children with glycogen storage disease type Ⅰ, studied by gas chromatography/mass spectrometry and [U-~(13)C]glucose. Biomed Environ Mass Spectrom 1988;16(1-12):305-8
    46、Katz J, Lee WN. Application of mass isotopomer analysis for determination of pathways of glycogen synthesis. Am J Physiol 1991;261(3 Pt 1):E332-6
    47、Katz J, Wals PA, Lee WN. Determination of pathways of glycogen synthesis and the dilution of the three-carbon pool with [U-~(13)C]glucose. Proc Natl Acad Sci 1991;88(6):2103-7
    48、Katz J, Lee WN, Wals PA, et al. Studies of glycogen synthesis and the Krebs cycle by mass isotopomer analysis with [U-13C]glucose in rats. J Biol Chem 1989; 264(22):12994-3004.
    49、Radziuk J, Lee WP. Measurement of gluconeogenesis and mass isotopomer analysis based on [U-~(13)C]glucose. Am J Physiol 1999;277(2 Pt 1):E199-207
    50、Ekberg K, Chandramouli V, Kumaran K, et al. Gluconeogenesis and glucuronidation in liver in vivo and the heterogeneity of hepatocyte function. J Biol Chem 1995;270(37):21715-7
    51、Hellerstein MK, Greenblatt DJ, Munro HN. Glycoconjugates as Noninvasive Probes of Intrahepatic Metabolism: Pathways of Glucose Entry into Compartmentalized Hepatic UDP-glucose Pools during Glycogen Accumulation. PNAS 1986; 83(18): 7044-7048
    52、Hellerstein MK, Kaempfer S, Reid JS, et al. Rate of glucose entry into hepatic uridine diphosphoglucose by the direct pathway in fasted and fed states in normal humans. Metabolism 1995;44(2):172-82
    53、Magnusson I, Chandramouli V, Schumann WC, et al. Quantitation of the pathways of hepatic glycogen formation on ingesting a glucose load. J Clin Invest 1987;80(6):1748-54
    54、Hellerstein MK, Neese RA, Schwarz JM. Model for measuring absolute rates of hepatic de novo lipogenesis and reesterification of free fatty acids. Am J Physiol 1993;265(5 Pt 1):E814-20
    55、Berthold HK, Hachey DL, Reeds PJ, et al. Uniformly ~(13)C-labeled algal protein used to determine amino acid essentiality in vivo. Proc Natl Acad Sci 1991;88(18):8091-5
    56、Berthold HK, Reeds PJ, Klein PD. Isotopic evidence for the differential regulation of arginine and proline synthesis in man. Metabolism 1995;44(4):466-73
    57、Marchini JS, Castillo L, Chapman TE, et al. Phenylalanine conversion to tyrosine: comparative determination with L-[ring-~2H_5]phenylalanine and L-[1-~(13)C]phenylalanine as tracers in man. Metabolism 1993;42(10):1316-22
    58、Boza JJ, Jahoor F, Reeds PJ. Ribonucleic acid nucleotides in maternal and fetal tissues derive almost exclusively from synthesis de novo in pregnant mice. J Nutr 1996;126(7):1749-58
    59、宋枭禹,包尚联.医学的诺贝尔奖授予两位MRI物理学家所带来的思考.世界医疗器械2004.10(1):16-17
    60、Sugar IP, Xu Y. Computer simulation of 2D-NMR (NOESY) spectra and polypeptide structure determination. Prog Biophys Mol Biol 1992; 58(1):61-84
    61、Jeng MF, Englander SW, Elove GA, et al. Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry 1990;29(46):10433-7
    62、Nagayama K. Two-dimensional NMR spectroscopy: an application to the study of flexibility of protein molecules. Adv Biophys 1981;14:139-204
    63、Kessler H, Gehrke M, Griesinger C. Two-Dimensional NMR Spectroscopy: Background and Overview of the Experiments. Angewandte Chemi 1998;27(4):490
    64、Rosen BR, Brady TJ. Principles of nuclear magnetic resonance for medical application. Semin Nucl Med 1983;13(4):308-18
    65、Houssami N, French J, Brennan M, et al. Breast cancer-new and emerging technologies for diagnosis and management. Aust Fam Physician 2005; 34(8): 657-61
    66、Biederer J. Magnetic resonance imaging: technical aspects and recent developments. Med Klin (Munich) 2005;100(1):62-72
    67、Kwock L. Localized MR spectroscopy: basic principles. Neuroimaging Clin N. Am 1998;8:713-731
    68、Lee SK, Kim DW, Kim KK, et al. Effect of seizure on hippocampus in mesial temporal lobe epilepsy and neocortical epilepsy: an MRS study. Neuroradiology 2005; 47(12): 916-23
    69、Moore GJ. Proton magnetic resonance spectroscopy in pediatric neuroradiology. Pediatr Radiol 1998;28:805-814
    70、Shevell MI, Ashwal S, Novotny E. Proton magnetic resonance spectroscopy: clinical applications in children with nervous system diseases. Semin Pediatr Neurol 1999;6:68-77
    71、Warren KE. NMR spectroscopy and pediatric brain tumors. Oncologist 2004;9(3):312-8
    72、Morikawa S, Inubushi T, Takahashi K, et al. Gluconeogenesis and phosphoenergetics in rat liver during endotoxemia. J Surg Res 1998; 74(2): 179-86
    73、Cohen SM. Application of ~(13)C and ~(31)P NMR to the study of hepatic metabolism. Fed Proc 1984;43:2657
    74、Morikawa S, Inubushi T, Takahashi K, et al. Relationship between gluconeogenesis and phosphoenergetics in rat liver assessed by in vivo ~(13)C and ~(31)P NMR spectroscopy. NMR Biomed 1997;10(1):18-24
    75、Morikawa S, Inubushi T, Takahashi K, et al. Glucose and energy metabolism in rat liver after ischemic damage assessed by ~(13)C and ~(31)P NMR spectroscopy. J Surg Res 1996;63(2):393-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700