聚丙烯阻燃协效、成炭机理和新型膨胀阻燃体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯(PP)具有易加工、耐化学药品等优良特性,广泛应用于家电、建筑和汽车等领域,然而聚丙烯极易燃烧,使其应用领域受到极大限制。本论文在大量文献调研的基础上,综述聚丙烯膨胀阻燃技术以及聚丙烯纳米复合阻燃技术研究进展,在聚丙烯阻燃新技术和阻燃机理等方面开展了大量探索性工作,取得一系列原创性研究成果。采用水热合成的方法制备多种多孔金属磷酸盐,并将其与膨胀阻燃剂组成新型聚丙烯协效阻燃体系。研究多孔金属磷酸盐与膨胀阻燃剂的协效作用,并深入探讨该膨胀体系的协效阻燃机理:此外还制备膨胀阻燃聚丙烯/双氢氧化物(LDH)纳米复合材料,部分生物可降解聚丙烯阻燃复合材料以及具有耐水性好、阻燃效率优异的新型膨胀阻燃聚丙烯材料等。主要研究工作如下:
     1.采用水热合成的方法制备具有多孔结构的磷酸镍(VSB-1),研究其在PP基体中与膨胀阻燃剂(IFR, APP/PER=2:1)的协效作用。极限氧指数(LOI)、UL94测试和锥型量热计(Cone)研究结果表明添加适量VSB-1的膨胀阻燃PP的阻燃性能比未添加VSB-1时显著增加,材料具有更高的火灾安全性。与硼酸锌(ZB)、4A分子筛、蒙脱土这些阻燃协效剂相比,在相同的添加量时VSB-1体系表现出最好的协效作用,添加VSB-1的阻燃PP能够以最低的阻燃剂添加量达到UL94 V-0级。同时,利用实时红外研究该膨胀体系的热氧化分解行为,表明VSB-1的加入能够提高材料的热稳定性。利用扫描电镜(SEM)对复合材料燃烧后残余炭层形貌进行表征,结果显示含有VSB-1的膨胀炭层更加致密。力学测试表明在保持阻燃性能相同的情况下,添加VSB-1能够明显减少阻燃剂的添加量,从而显著改善阻燃材料的力学性能。上述研究表明,在PP的基体中VSB-1对于膨胀阻燃剂具有明显协效作用,添加适量的VSB-1大幅度提高阻燃PP的热稳定性和阻燃性能。VSB-1的添加是设计新型高效膨胀阻燃材料的有效途径之一。
     2.将过渡金属离子(Fe, Zn)引入到VSB-1结构中,通过水热法合成两种过渡金属离子掺杂的磷酸镍盐(TMIVSB-1),并研究TMIVSB-1在PP基体中与IFR的协效作用。同时选择另一种磷酸盐-焦磷酸铁(FePP),研究其与膨胀阻燃剂的协效作用及作用机理。LOI和UL94研究结果表明,TMIVSB-1和FePP均能明显提高IFR体系的阻燃性能。利用XPS分析受热相同时间取得的样品,研究表明,添加FePP可延迟基体的氧化分解,提高材料的耐热性能。此外,通过热重红外联用(TG-IR)研究发现PP/IFR/FePP复配体系的阻燃机理是凝聚相阻燃机理。
     3.采用一步法制备十二烷基硫酸钠改性的锌铝双氢氧化物ZnAl (SDS)-LDH,并对其结构进行表征。通过熔融共混法制备膨胀阻燃PP/ZnAl(SDS)-LDH纳米复合材料。采用LOI、热重分析仪(TGA)和差热扫描分析仪(DSC)等表征手段研究有机改性的LDH对膨胀阻燃PP的阻燃性能、热稳定性和结晶性能的影响,并且研究阻燃材料的制备工艺对阻燃性能的影响。
     4.利用同步辐射真空紫外单光子电离和飞行时间质谱相结合的技术研究PP真空热裂解产物,并分析PP裂解机理;通过熔融共混制备PP/OMT/Ni2O3复合材料,研究不同因素如气氛、温度、组分等对该复合材料成炭机制的影响,结合上述同步辐射技术的研究结果阐述催化成炭机理,并研究材料的燃烧性能,为深入研究新型阻燃聚合物复合材料的理论研究和工程应用提供帮助。
     5.采用熔融共混法制备淀粉(starch)基的部分生物可降解PP阻燃复合材料。选用微胶囊化包裹聚磷酸铵(MCAPP)作为阻燃剂,同时由于微胶囊的外表保护壳层的存在,MCAPP可阻止复合材料加工过程中聚磷酸铵(APP)与淀粉中的羟基之间的反应,提高阻燃复合材料的加工稳定性。LOI、UL94、Cone和TGA结果表明将MCAPP加入淀粉基的PP复合材料后,材料的阻燃性和热性能显著提高。研究结果表明:将MCAPP加入到淀粉基的PP复合材料,MCAPP与starch可形成膨胀阻燃体系,在高温下能够在材料表面形成膨胀炭层,起到隔热、隔氧以及减缓可燃性气体逸出的作用,从而提高材料的阻燃性能。
     6.将MCAPP与大分子三嗪类衍生物成炭剂(CFA)复配为新型膨胀阻燃体系,制备新型膨胀阻燃PP材料。研究表明CFA/MCAPP之间存在协效效应,CFA/MCAPP的复配比例对材料热稳定性和阻燃性能具有重要影响。PP/MCAPP和PP/CFA均易燃烧,然而当二者以适当比例复配后体系的阻燃性能显著提高。只有CFA与合适比例复配,体系才能形成致密的膨胀炭层。耐水性研究表明CFA/MCAPP=1:2时,材料的耐水性最好,在70℃热水中浸泡168h后仍能达到UL94 V-0级。
Polypropylene (PP) has broad applications in electronics, architectural materials, cars and so on, due to its easy processing, chemical resistance and other excellent properties. However, PP is flammable, so it is necessary to improve the flame retardancy of PP in order to expand its application. In this dissertation, a lot of literatures have been reviewed on the basis of intumescent flame retardant PP and flame retardant PP nanocomposites. Some porous metal phosphates were prepared by hydrothermal synthesis, and were used in the intumescent flame retardant PP. We also prepared flame retardant PP/layer double hydroxide (LDH) nanocomposites, some semi-biodegradable flame retardant PP composites, and new high efficiency intumescent flame retardant PP materials with good water resistant property. Main research works are as follows:
     1. A novel synergist-nanoporous nickel phosphates VSB-1 was prepared by hydrothermal synthesis. Then we investigated the synergistic effect of the VSB-1 with intumescent flame retardants (IFR, APP/PER=2:1) in PP matrix. From the results of LOI, UL94 and Cone test, it can be found that flame retardant PP material with the suitable content of VSB-1 has a better flame retardant properties and a higher fire safety. Compared with ZB,4A zeolite and OMT which are very effective synergists with intumescent flame retardants, VSB-1 shows the best synergistic effect at the same loading. In addition, real-time infrared studies thermo-oxidative degradation mechanism of the intumescent system, and the addition of VSB-1 is found to increase the thermal stability. Scanning electron microscopy (SEM) is used to characterize the morphology of char layer after the oxygen index test, and the result shows that the VSB-1 containing char layer is more compact. Mechanical testing shows that keeping the flame retardant properties unchange, the addtion of VSB-1 can significantly improve the mechanical properties of flame retardant PP. Through the research we want to provide a more promising way for design new efficient intumescent material that can further reduce the addition of flame retardants.
     2. We continue further study of previous work by the isomorphous substitution of transition metal ions (Fe, Zn) into the nickel phosphates VSB-1 framework. Then, the two kinds of transition metal ion-incorporated nickel phosphates (TMIVSB-1) materials were synthesized using a hydrothermal method. Meanwhile, a low cost synergist-ferric pyrophosphate (FePP) was used in intumescent flame retardant PP. The synergistic effects of TMIVSB-1 or FePP with intumescent flame retardants (IFR, APP/PER=2:1) in PP matrix were investigated. According to their flammability tests (LOI, UL94 test), TMIVSB-1 or FePP can obviously improve the flame retardant properties of PP composites. The results of XPS show that the addition of FePP can greatly improve the high temperature performance of flame retardant PP.TG-IR results also demonstrate that the flame retardant mechanism of PP/IFR/FePP system is in the condensed phase rather than in the gas phase.
     3. Sodium dodecyl sulfate modified zinc-aluminum layered double hydroxide ZnAl(SDS)-LDH was prepared via one-step method, and its structure was characterized. Intumescent flame retardant PP/ZnAl(SDS)-LDH nanocomposites were prepared by melt blending. The effects of organic modified LDH on the flame retardant properties, thermal stability and crystal properties of the intumescent flame retardant PP composites have been studied by limiting oxygen index (LOI), thermal gravimetric analysis (TGA) and differential scanning analyzer (DSC). The influence of preparation method on flame retardant performance of materials has been studied as well.
     4. Combining synchrotron radiation vacuum ultraviolet single-photon ionization and reflection time of flight mass spectrometry technology to characterize vacuum pyrolysis products of PP in order to study the mechanism of PP pyrolysis; PP/organically modified montmorillonite (OMT)/Ni2O3 composite were prepared by melted blending, and then investigated the influence of different factors such as atmosphere, temperature, composition on the carbonization of PP composites. In this work a detailed mechanism for the formation and the growth of MWCNTs is proposed based on the experimental analysis. Furthermore, the flame retardancy of PP composites was also investigated. From this work, we hope to help theoretical research and engineering applications of novel flame retardant polymer composites.
     5. Starch containing polypropylene (SCP) semi-biocomposites were prepared by melted blend method. Microencapsulated ammonium polyphosphate (MCAPP) was added to the SCP not only to improve its flame retardant properties but also to restrain the reaction between ammonium polyphosphate (APP) and starch during processing. The flame retardant properties of the flame retardant SCP composites have been investigated by limited oxygen index (LOI), UL94 test and cone calorimeter test. The results show that flame retardant properites of SCP improve substantially compared with that of pure PP. MCAPP and starch can form an intumescent system to protect the matrix from further burning, so the flame retardant properties of SCP semi-biocomposites improve.
     6. A novel flame retardant PP materials were prepared by the addtion of the intumescent flame retardants (IFR) consisting of a novel char forming agent (CFA) and MCAPP. With the loading 30wt% IFR(CFA/MCAPP=1/2), PP composites present the most effective flame retardancy ability with the value of LOI to 36.5. Even with 25wt% IFR (CFA/MCAPP=1/2), PP composites can still pass V-0 rating. The results of cone calorimeter show that heat release rate peak (pHRR), total heat release (THR), and the mass loss rate (MLR) of PP/30wt% IFR(CFA/MCAPP=1/2) decrease substantially when compared with those of pure PP, the pHRR decreasing from 1140 to 100 kW/m2, the THR decreaing from 96 to 16.8 MJ/m2and the MLR decreasing from 100% to 40%. SEM demonstrates the quality of char layers of PP/MCAPP/CFA systems are superior to those of PP/MCAPP and PP/CFA systems. From water resistant test, it shows that the sample of PP/30wt% IFR(CFA/MCAPP=1/2) also has excellent water resistant property, after 168h the sample can still obtain a UL94 V-0 rating.
引文
[1]Ruban L, Zaikov G. Importance of intumescence in problem of polymers fire retardancy. J Polym Mater,2000,23:1-11.
    [2]Merrry H. Non-halogenated name retardant systems for olenns. In:fecent Advance in name etardant polymer materials. New York:2000,237-245.
    [3]Lewin M, Endo M. Intumescent system for name retarding of polypropylene. Acs Sympser Fire and polymers Ⅱ,1995,599:91-116.
    [4]Camino G, Lomakin S. Intumescent materials in Fire retardant matcrials. Cambridge English, 2001.
    [5]王建祺。无卤阻燃聚合物基础与应用[M]。北京科学出版社,2005。
    [6]Chju SH, Wang WK. Flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives. Polymer,1998,39:1951.
    [7]Hofacek H, Stefan P. The importance of intumescent systems for fire protection of plastic materials. Polymer Int,2000,49:1106-1114.
    [8]Reshetnikov I, Antonov A, Rudakova T, Aleksjuk G, Khalturinskij N. Some aspects of intumescent fire retardant systems. Polym Degrad stab,1996,54:137-141.
    [9]Camino G, Costa L, Maninaddo G. Intumescent Fire-Retardant Systems. Polym Degrad Stab, 1989,23:359-376.
    [10]Wang Q, Chen YH, et al. Performance of an intumescent-flameretardant master batch synthesized by twin-screw reactive extrusion:effect of the polypropylene carrier resin. Polym Int,2004,53:439-448.
    [11]Li Q, Jiang PK, Wei P. Studies on the properties of polypropylene with a new silicon-containing intumescent flame retardant. Journal of Polymer Science Part B-Polymer Physics,2005,43(18):2548-2556.
    [12]Song PG, Fang ZP, Tong LF, Xu ZB. Synthesis of a Novel Oligomeric Intumescent Flame Retardant and its Application in Polypropylene. Polymer Engineering and Science,2009, 49(7):1326-1331.
    [13]Wang XY, Li Y, Liao WW, et al. A new intumescent flame-retardant:preparation, surface modification, and its application in polypropylene.2008, Polymers for Advanced Technologies,19(8):1055-1061.
    [14]Zhang QB, Xing HT, Sun CY, et al. The Mechanical Properties and Thermal Performances of Polypropylene with a Novel Intumescent Flame Retardant. Journal of Applied Polymer Science,115(4):2170-2177.
    [15]Peng QP, Zhou Q, Wang DY and Wang YZ. A novel charring agent containing caged bicyclic phosphate and its application in intumescent flame retardant polypropylene systems Journal of Industrial and Engineering Chemistry,2008,14(5):589-595.
    [16]欧育湘,李昕。双环笼状磷酸酯类膨胀阻燃聚丙烯的研究。高分子材料科学与工程,2003,19:198-205。
    [17]Xing WY, Song L, et al. Flame retardancy and thermal degradation of intumescent flame retardant polypropylene with MP/TPMP. Polymers for Advanced Technologies,2009,20(8): 696-702.
    [18]冯才敏,何杰全。新型膨胀阻燃聚丙烯结构与性能研究。现代塑料加工应用,2009,3:56-59。
    [19]王雪峰,吴荣梁,孙春梅,王幸宜。膨胀型类磷酸酯蜜胺盐阻燃剂的合成及应用研究[J].功能高分子学报,2004,17:630-634。
    [20]彭治汉。材料阻燃新技术新品种[M],北京:化学工业出版社,2004,78-79。
    [21]金胜明。新型阻燃剂季戊四醇双磷酸二氢酯三聚氰胺盐的合成与应用[J]。邵阳高等专科学校学报,2000,13(3):161-163.
    [22]任元林,程博闻,张金树.新型膨胀阻燃剂阻燃聚丙烯的应用研究.高分子材料科学与工程,2008,24(1):116-119。
    [23]Hu XP, Li YL, Wang YZ, et al. Synergistic effect of the charring agent on the thermal and flame retardant properties of polyethylene. Macromolecular Materials and Engineering,2004, 289(2):208-212.
    [24]He Q L, Lu HD, et al. Flammability and Thermal Properties of a Novel Intumescent Flame Retardant Polypropylene. Journal of Fire Sciences,2009,27(4):303-321.
    [25]Zhou S, Wang ZZ, et al. A Study of the Novel Intumescent Flame-Retarded PP/EPDM Copolymer Blends. Journal of Applied Polymer Science,2008,110(6):3804-3811.
    [26]Zhou S, Song L, et al. Flame retardation and char formation mechanism of intumescent flame retarded polypropylene composites containing melamine phosphate and pentaerythritol phosphate. Polymer Degradation and Stability,2008,93(10):1799-1806.
    [27]Li B, Xu. MJ. Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polym Degrad Stabil,2006,91:1380-1386.
    [28]Bourbigot S,4A Zeolite Synergistic Agent in New Flame Retardant Intumescent Formulations of Polyethylenic Polymers-study of the Efect of the Constituent Monomers.Polym Degra and Stab,1998, (54):275-287.
    [29]Demir H. Synergistic effect of natural zeolites on flame retardant additives. Polymer Degradation and Stability,2005,89:478-483.
    [30]Lewin M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polymers for Advanced Technologies,2003,14(1):3-11.
    [31]Chen XC, Ding Y P and Tang T. Synergistic efect of nickel formate on the thermal and flame retardant properties of polypropylene[J]. Polymer International,2005,54:904-908.
    [32]Wang XL, Song Y, Bao JC. Synergistic effects of nano-Mno.4Zno.6Fe204 on intumescent flame-retarded polypropylene. J VINYL & ADDIT TECHN,2008,14:120-125.
    [33]Chen, XL and Jiao CM. Synergistic effects of hydroxy silicone oil on intumescent flame retardant polypropylene system. Fire Safety Journal,2009,44(8):1010-1014.
    [34]Lv P,Wang ZZ, et al. Study on effect of polydimethylsiloxane in intumescent flame retardant polypropylene. Journal of Polymer Research,2009,16(2):81-89.
    [35]Wu N, Yang RJ, et al. Synergistic effect of metal oxides on intumescent flame-retardant pp systems. Acta Polymerica Sinica 2009, (12):1205-1210.
    [36]Song RJ, Zhang BY, et al. Synergistic Effect of Supported Nickel Catalyst with Intumescent Flame-Retardants on Flame Retardancy and Thermal Stability of Polypropylene. Journal of Applied Polymer Science,2006,102:5988-5993.
    [37]Wu Q, Qu BJ. Synergistic effects of silicotungistic acid on intumescent flame-retardant polypropylene. Polymer Degradation and Stability,2001,74:255-261.
    [38]Li YT, Li B, et al. Synergistic Efects of Lanthanum Oxide oll a Novel Intumescent F1 ame Retardant Polypropylene System[J]. Polymer Degradation and Stab ility,2008,93:9-16.
    [39]Wu J, Hu Y, Song L, et al. Synergistic effect of lanthanum oxide on intumescent flame-retardant polypropylene-based formulations. Journal of Fire Sciences,2008,26: 399-414.
    [40]Hassan MA, Shehatale AB. Efect of Some Polymeric Metal Chelates on the Flammability Properties of Polypropylene [J]. Polymer Degradation and Stability,2004,85:733-740.
    [41]Chen XC, Ding YP, et al. Synergistic effect of nickel formate on the thermal and flame-retardant properties of polypropylene. Polymer International,2005,54(6):904-908.
    [42]Chen X L and Jiao CM. Synergistic effects of hydroxy silicone oil on intumescent flame retardant polypropylene system. Journal of Polymer Research,2009,16(5):537-543.
    [43]Li Y, Yin B, et al. Effect of Ultrafine Full-Vulcanized Powdered Rubber on the Properties of the Intumescent Fire Retardant Polypropylene. Journal of Macromolecular Science Part B-Physics.2010,49(1):143-154.
    [44]Tang Y, Hu Y, et al. Polypropylene/montmorillonite nanocomposites and intumescent, flame-retardant montmorillonite synergism in polypropylene nanocomposites. Journal of Polymer Science Part a-Polymer Chemistry,2004,42(23):6163-6173.
    [45]Wu QA, Qu BJ. A new synergist for intumescent flame retardant polypropylene. Chinese Journal of Polymer Science,2002,20(4):377-380.
    [46]Yang DD, Hu Y, et al. Catalyzing carbonization function of alpha-ZrP based intumescent fire retardant polypropylene nanocomposites. Polymer Degradation and Stability,2008,93(11): 2014-2018.
    [47]Ye L, Wu QH, et al. Synergistic Effects of Fumed Silica on Intumescent Flame-Retardant Polypropylene. Journal of Applied Polymer Science.2009,115(6):3508-3515.
    [48]Zhang P, Song L, et al. Synergistic effect of nanoflaky manganese phosphate on thermal degradation and flame retardant properties of intumescent flame retardant polypropylene system. Polymer Degradation and Stability,2009,94(2):201-207.
    [49]Atikler U, Demir H, et al. Optimisation of the effect of colemanite as a new synergistic agent in an intumescent system.Polymer Degradation and Stability,2006,91(7):1563-1570.
    [50]Lv P, Wang ZZ, et al. Effect of metallic oxides in polypropylene composites containing melamine phosphate and pentaerythritol. Plastics Rubber and Composites,2008,37(7): 311-318.
    [51]Wu QA and Qu BJ. A new synergist for intumescent flame retardant polypropylene. Chinese Journal of Polymer Science,2002,20(4):377-380.
    [52]赵贵哲,刘亚青,林开成。环状氯化磷氰包裹阻燃剂的制备及性能研究[J]。中北大学学报,2005,26:119-211.
    [53]吴志平,舒万良,胡云楚等。脲醛树脂包裹包覆红磷阻燃剂制备工艺的研究—包覆工艺研究[J]。应用化工,2005,34:408-411.
    [54]王爱民,刘云飞,罗道友。包裹红磷阻燃剂的制备及其在玻纤增强尼龙6中的应用[J]。 塑料,2004,33:37-40。
    [55]Wu K, Song L, et al. Microencapsulation of ammonium polyphosphate with PVA-melamine-formaldehyde resin and its flame retardance in polypropylene. Polymers for Advanced Technologies,2008,19(12):1914-1921.
    [56]Wu K, Song L, et al. Preparation and characterization of double shell microencapsulated ammonium polyphosphate and its flame retardance in polypropylene. Journal of Polymer Research,2009,16(3):283-294.
    [57]郝冬梅,林倬仕。EP包裹APP对阻燃PP性能的影响。现代塑料加工应用,2008,20:37-40.
    [58]郝冬梅,林倬仕。不饱和聚酯树脂包裹聚磷酸铵对阻燃聚丙烯性能的影响。塑料助剂,2008,6:43-47.
    [59]Wu K, Wang ZZ, et al. Microencapsulation of ammonium polyphosphate:Preparation, characterization, and its flame retardance in polypropylene. Polymer Composites,2008,29(8): 854-860.
    [60]Liu MF, Liu Y, Wang Q. Flame-retarded poly(propylene) with melamine phosphate and pentaerythritol/polyurethane composite charring agent. Macromolecular Materials and Engineering,2007,292:206-213.
    [61]Calvert P. Materials science-Rough guide to the nanoworld. Nature,1996,383 (6598): 300-301.
    [62]Hu Y, Tang Y, et al. Poly (propylene)/clay nanocomposites and their application in flame retardancy. Polymers for Advanced Technologies,2006,17(4):235-245.
    [63]Kashiwagi T, Grulke E, et al. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer,2004,45:4227-4239.
    [64]Fang ZP, Song PA, et al. Thermal degradation and flame retardancy of polypropylene/C-60 nanocomposites. Thermochimica Acta,2008,473:106-108.
    [65]Mingshu Y, Huaili Q, et al. Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. Polymer,2005,46(19):8386-95.
    [66]Nour HA and Hassanien M M.Effect of copper chelate of pyridineanilide modified montmorillonite an the flammability and thermal stability of polypropylene. Polimery,2005, 50(5):371-373.
    [67]Ristolainen N, Hippi U, et al. Properties of polypropylene/aluminum trihydroxide composites containing nanosized organoclay. Polymer Engineering and Science,2005, 45(12):1568-1575.
    [68]Si MY, Zaitsev V, et al. Self-extinguishing polymer/organoclay nanocomposites. Polymer Degradation and Stability,2007,92(1):86-93.
    [69]Song P, Zhu Y, et al. C-60 reduces the flammability of polypropylene nanocomposites by in situ forming a gelled-ball network. Nanotechnology,2008,19(22):225707-225717.
    [70]Song PA, Tong LF, et al. Polypropylene/clay nanocomposites prepared by in situ grafting-melt intercalation with a novel cointercalating monomer. Journal of Applied Polymer Science 2008,110(1):616-623.
    [71]Lee SG, Won JC, et al. Flame retardancy of polypropylene/montmorillonite nanocomposites. Polymer-Korea,2005,29(3):248-252.
    [72]Kashiwagi T, Grulke E, et al. Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromolecular Rapid Communications,2002, 23(13):761-765.
    [73]Chen XS, Yu ZZ, et al. Synergistic effect of decabromodiphenyl ethane and montmorillonite on flame retardancy of polypropylene. Polymer Degradation and Stability,2009,94(9): 1520-1525.
    [74]Song PA, Xu LH, et al. Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene." Journal of Materials Chemistry,2008,18(42):5083-5091.
    [75]Tang Y, Hu Y, et al. Polypropylene/montmorillonite nanocomposites and intumescent, flame-retardant montmorillonite synergism in polypropylene nanocomposites. Journal of Polymer Science Part A-Polymer Chemistry,2004,42 (23):6163-6173.
    [76]Kong QH, Hu Y, Song L, et al. Synergistic flammability and thermal stability of polypropylene/aluminum trihydroxide/Fe-montmorillonite nanocomposites.Polymers For Advanced Technologies,2009,20 (4):404-409.
    [77]瞿英俊,许向彬,赵博,王旭。IFR/蒙脱土协同作用对聚丙烯性能的影响。 工程塑料应用,2009,2:28-31.
    [78]Bagheri R, Liauw CM, et al. Factors effecting the performance of montmorillonite /magnesium hydroxide/poly(propylene) ternary composites,1-Flame retardation and thermal stability. Macromolecular Materials and Engineering,2008,293(2):114-122.
    [79]Chen DH, Zheng QK, et al. Effects of Magnesium Hydroxide Containing Copper Compound on the Properties of Polypropylene Composites. Polymer-Plastics Technology and Engineering,2009,48(4):432-439.
    [80]Lu HD, Hu Y, et al. Magnesium hydroxide sulfate hydrate whisker flame retardant polyethylene/montmorillonite nanocomposites. Journal of Materials Science,2006,41(2): 363-367.
    [81]Zhang M, Ding P, et al. Flammable, Thermal, and Mechanical Properties of Intumescent Flame Retardant PP/LDH Nanocomposites With Different Divalent Cations. Polymer Composites,2009,30(7):1000-1006.
    [1]Vandersall HL. Intumescent Coating Systems, Their Development and Chemistry[J]. Journal of Fire and Flammability,1971,2:97-140.
    [2]Camino G, Costa L, Trossarelli L. Study of the mechanism of intumescence in fire retardant polymers:part VI mechanism of ester formation in ammonium polyphosphate-pentaerythritol mixtures[J]. Polym. Degrad.Stab,1985,12(03):213-218.
    [3]Chiu SH, Wang Wk. Dynamic. Flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives [J]. Polymer,1998,39(10):1951-1955.
    [4]Bourbigot S, Le Bras M. Carbonization mechanisms resulting from intumescence-part Ⅱ. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system[J]. Carbon,1995,33(3):283-294.
    [5]Le Bras M, Bourbigot S, Christelle D. New Intumescent formulations of fire-retardant polypropylene-discussion of the free radical mechanism of the formation of carbonaceous protective material during the thermo-oxidative treatment of the additives[J]. Fire Mater,1996,20(4):191-203.
    [6]Almeras X, Le Bras M, Hornsby P, Bourbigot S. Effect of fillers on the fire retardancy of intumescent polypropylene compounds[J]. Polym Degrad Stab,2003,82(2):325-331.
    [7]Bourbigot S, Le Bras M, et al. Synergistic effect of zeolite in an intumescence process:Study of the interactions between the polymer and the additive. J.Chem.Soc., Faraday Trans, 1996,92(18):3435-3444.
    [8]Bourbigot S, Le Bras M, et al.4A zeolite synergistic agent in new flame retardant intumescent formulations of polyethylenic polymers-study of the effect of the constituent monomers[J]. Polym Degrad Stab,1996,54(2):275-287.
    [9]Bourbigot S, Le Bras M., Siat C. In recent advances in flame retardancy of polymeric materials, Vol.8; Lewin, M.Ed.; BCC:Norwalk,1997,146-150.
    [10]Demir H, Arkis E, BalkOse D, OlkU S. Synergistic effect of natural zeolites on flame retardant additives[J]. Polym Degrad Stab,2005,89(3):478-483.
    [11]Lewin M, Endo M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds[J]. Ploym. Adv. Technol.,2003,14(1):3-11.
    [12]Guillou N, Gao Q, Nogues M, RE. Morris, Hervieu M, Ferey G. Zeolitic and magnetic properties of a 24-membered ring porous nickel(11) phosphate, VSB-1.C. R. Acad. Sci. Paris 2,1999,387-392.
    [13]Tang Y, Yuan H, Song L, Zong RW, et al. Preparation and thermal stability of polypropylene /montmorillonite nanocomposites[J]. Polym Degrad Stab,2003,82(1):127-131.
    [14]Wang XL,Gao QM,Wu CD,Hu Juan,Ruan ML. Preparation, channel surface hydroxyl characterization and photoluminescence properties of nanoporous nickel phosphate VSB-1[J]. Micro Meso Mater,2005,85(3):355-364.
    [15]Yong T, Yuan Hu. Polypropylene/montmorillonite nanocomposites and intumescent, flame-retardant montmorillonite synergism in polypropylene nanocomposites[J]. J. Polym Sci:Part A:Polym Chem,2004,42:6163-6173.
    [16]Price D, Liu Y, Hull TR, Milnes GJ, Kandola BK, Horrocks AR. Flame retardance of poly(methyl methacrylate) modified with phosphorus-containing compounds. Polym Degrad Stab,2002,77:227-233.
    [17]Babrauskas V. SFPE Technology Report Society of Fire Protection Engineers, Boston, 1984:84-10.
    [18]Hirschler MM. Heat release from plastic materials in heat release in fires. In:Babrauskas V, Grayson S, editors. Heat release in fires. London:Elsevier,1992,375.
    [19]Bourbigot S, Le Bras M, et al. Recent advances for intumescent polymers[J]. Macromol. Mater Eng,2004,289(6):499-511.
    [20]Xie RC, Qu BJ, Hu KL, Dynamic FTIR studies of thermo-oxidation of expandable graphite-based halogen-free flame retardant LLDPE blends [J]. Polym Degrad Stab,2001,72: 313-321.
    [21]Le bras M, Bugajny M, Lefebvre JM, Bourbigot S. Use of polyurethanes as char-forming agents in polypropylene intumescent formulations[J]. Polym Int,2000,49:1115-1124.
    [22]Camino G, Costal L, Trossarelli L, Costanzi L, Landoni G. Study of the mechanism of intumescence in fire retardant polymers:Part IV—Evidence of ester formation in ammonium polyphosphate-pentaerythritol mixtures[J]. Polym Degrad Stab,1984,8(1):13-22.
    [23]Levchik SV,Camino G, et al. Mechanism of action of phosphorus-based flame retardants in nylon 6.1. Ammonium polyphosphate[J]. Fire Mater,1995,19:1-10.
    [24]Bugajny M, Bourbigot S, et al. The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750[J]. Polym Int,1999,48(4):264-270.
    [25]Levchik S V, Balabanovich AL,et al. Effect of melamine and its salts on combustion and thermal decomposition of polyamide 6. Fire Mater,1997,21:75-83.
    [1]Guillou N, Gao Q, Nogues M, RE. Morris, Hervieu M., Ferey G. Zeolitic and magnetic properties of a 24-membered ring porous nickel(11) phosphate, VSB-1.C. R. Acad. Sci. Paris 2 1999:387-392.
    [2]Nie SB, Hu Y, et al. Study on A Novel and Efficient Flame Retardant Synergist-Nanoporous Nickel Phosphates VSB-1 with intumescent flame retardants in Polypropylene[J]. Polym. Adv. Technol.,2008,19:489-495.
    [3]Kellogg CB, Irikura KK. Gas Phase Thermochemistry of Iron Oxides and Hydroxides: Portrait of a Super-Efficient Flame Suppressant[J]. J. Phys. Chem.,1999,103:1150-1159.
    [4]Morrison ME, Scheller K. The effect of burning velocity inhibitors on the ignition of hydrocarbon-oxygen-nitrogen mixtures[J]. Combustion and Flame,1972:18,3-12.
    [5]Hastie JW. J. of Research of the Natl. Bureau of Standards-A. Physics and Chemistry, 1973,77:733-754
    [6]Lewin M, Endo M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds[J]. Ploym. Adv. Technol.,2003; 14(1):3-11
    [7]Wu ZP, Shu WY, Hu YC. Synergist flame retarding effect of ultrafine zinc borate on LDPE/IFR system[J]. J. App. Poly Sci.,2007,103:3667-3674.
    [8]Jhung SH, Chang J, Hwang YK, et al. Synthesis of Transition-Metal-Incorporated Nickel Phosphate Molecular Sieves TMI-VSB-1[J]. Chem. Mater.,2004,16:5552-5555.
    [9]Camino G, Costa, Trossarelli L. Study of the mechanism of intumescence in fire retardant polymers:Part VI—Mechanism of ester formation in ammonium polyphosphate-pentaerythritol mixtures[J]. Polym. Degrad. Stab.,1985,12:213-218.
    [10]Zhu SW, Shi WF. Thermal degradation of a new flame retardant phosphate methacrylate polymer[J]. Polym. Degrad. Stab.,2003,80:217-222.
    [11]Nakayama Y, Soeda F, Ishitani A. Temperature and pressure dependence of molecular adsorption on single wall carbon nanotubes and the existence of an "adsorption/desorption pressure gap[J]. Carbon,1990,28:21-26.
    [12]Gonzalez-Elipe AR, Martinez-Alonso A, Tascon JMD. XPS characterization of coal surfaces: Study of aerial oxidation of brown coals[J]. Surf. Interface.Anal.,1988,12:565-571.
    [13]Bourbigot S, Le Bras M, Delobel R, Gengembre L, XPS study of an intumescent coating:Ⅱ. Application to the ammonium polyphosphate/pentaerythritol/ethylenic terpolymer fire retardant system with and without synergistic agent[J]. Appl. Surf. Sci.,1997,120:15-29.
    [14]Wu K, Hu Y, Song L, Lu HD, Wang ZZ, Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Starch-Based Biodegradable Composites [J]. Ind. Eng. Chem. Res.2009,48:3150-3157.
    [15]Alexander J, Goggin PL, Cooke M A. A fourier-transform infrared spectrometric study of the pyrosynthesis of nickel tetracarbonyl and iron pentacarbonyl by combustion of tobacco[J]. Anal. Chim. Acta,1983,151:1-12.
    [1]Zhang M, Ding P, Du LC, et al.Structural characterization and related properties of EVA/ZnAl-LDH nanocomposites prepared by melt and solution intercalation[J]. Materials Chemistry and Physics,2008,109:206-211.
    [2]Ye L, Qu BJ. Flammability characteristics and flame retardant mechanism of phosphate-intercalated hydrotalcite in halogen-free flame retardant EVA blends [J]. Polymer Degradation and Stablity,2008,93:918-924.
    [3]Kuila T, Srivastava SK, Bhowmick AK. Ethylene Vinyl Acetate/Ethylene Propylene Diene Terpolymer-Blend-Layered Double Hydroxide Nanocomposites[J]. Polymer Engineering and Science,2009,49:585-591.
    [4]Zubitur M, Gomez MA, Cortazar M. Structural characterization and thermal decomposition of layered double hydroxide/poly(p-dioxanone) nanocomposites Polymer Degradation and Stablity,2009,94:804-809.
    [5]Zanetti M, Camino G, Canavese D, et al. Fire retardant halogen-antimony-clay synergism in polypropylene layered silicate nanocomposites [J]. Chem. Mater.,2002,14(1):189-193.
    [6]Ye L, Ding P, Zhang M, et al. Synergistic effects of exfoliated LDH with some halogen-free flame retardants in LDPE/EVA/HFMH/LDH nanocomposites[J]. Journal of Applied Polymer Science,2008,107:3694-3701.
    [7]Zhang M, Ding P, Qu BJ. A new method to prepare flame retardant polymer Composites[J]. journal of materials processing technology,2008,208:342-34,.
    [8]Leroux F, Besse JP. Polymer interleaved layered double hydroxide:a new emerging class of nanocomposites[J]. Chem. Mater,2001:13 (10),3507-3515.
    [9]Aisawa S, Kudo H, Hoshi T, Takahashi S, et al. Intercalation behavior of amino acids into Zn-Al-layered double hydroxide by calcinations-rehydration reaction[J]. J Solid State Chem, 2004,177:3987-3994.
    [10]Kloprogge JT, Frost RL. Fourier Transform Infrared and Raman Spectroscopic Study of the Local Structure of Mg-, Ni-, and Co-Hydrotalcites[J]. Journal of Solid State Chemistry, 1999,146(2):506-515.
    [11]Xie RC, Qu BJ, Hu KL. Dynamic FTIR studies of thermo-oxidation of expandable graphite-based halogen-free flame retardant LLDPE blends[J]. Ploym Degrad Stab, 2001,72;313.
    [12]Liang YR, Wang YQ, Wu YP, et al. Preparation and properties of isobutylene-isoprene rubber (IIR)/clay nanocomposites [J]. Polymer Testing,2005,24(1):12-17.
    [13]Shi L, Li DQ, Li SF, Wang JR, Evans DG, Duan X. Structure, flame retarding and smoke suppressing properties of Zn-Mg-Al-C03 layered double hydroxides[J]. Chin Sci Bull,2005,50:1101.
    [14]Bergaya F, Theng BKG, Lagaly G, editors. Handbook of clay science. Development in clay science, vol.1. UK:Elsevier Ltd; 2006.
    [15]Lewin M, Endo M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds[J]. Ploym. Adv. Technol.,2003,14(1):3-11.
    [1]Kiselev NA, Sloan J, Zakharov DN, et al. Carbon nanotubes from polyethylene precursors: structure and structural changes caused by thermal and chemical treatment revealed by HREM[J]. Carbon,1998,36:57-1149.
    [2]Maksimova NI, Krivoruchko OP, Mestl G, et al. Catalytic synthesis of carbon nanostructures from polymer precursors [J]. J Mol Catal,2000,158:7-301.
    [3]Nishino H, Nishida R, Matsui T, Kawase N, Mochida I. Growth of amorphous carbon nanotube from poly(tetrafluoroethylene) and ferrous chloride[J]. Carbon,2003,41:23-2819.
    [4]Song RJ, Jiang ZW, et al. The Combined Catalytic Action of Solid Acids with Nickel for the Transformation of Polypropylene into Carbon Nanotubes by Pyrolysis[J]. Chem. Eur. J, 2007,13:3234-3240.
    [5]Song RJ, Li B, et al. Transferring Polypropylene into Carbon Nanotubes via Combustion of PP/Zeolites (H-ZSM-5 or H-Beta)/Ni2O3[J]. Journal of Applied Polymer Science,2009,112: 3423-3428.
    [6]Jiang ZW, Song RJ, et al. Polypropylene as a carbon source for the synthesis of multi-walled carbon nanotubes via catalytic combustion [J]. Carbon,2007,45:449-458.
    [7]Antonov A, Yablokova M, et al. The effect of nanometals on the flammability and thermooxidative degradation of polymer materials[J]. Mol. Cryst. Liq. Cryst.,2000,353: 203-210.
    [8]Tang T, Chen XC, Chen H, et al. Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene[J]. Angew. Chem. Int. Edit.,44 (10),2005,15:17-1520.
    [9]潘洋,张泰昌,齐飞。同步辐射单光子电离技术在燃烧和其它研究中的应用。2006年安徽博士科技论坛论义集,2006,533-537。
    [10]Li J, Cai JH. A thermal decomposition study of polymers by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2009,23:1269-1274.
    [11]Zhang TC, Zhang LD, Hong X. An experimental and theoretical study of toluene pyrolysis with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry [J]. Combustion and Flame,2009,156:2071-2083.
    [12]Jiang ZW, Song RJ, et al. Polypropylene as a carbon source for the synthesis of multi-walled carbon nanotubes via catalytic combustion[J]. Carbon,2007,45:449-458.
    [13]Dai HJ, Andrew GR, et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide[J]. Chemical Physics Letters,1996,260:471-475.
    [14]Jeffrey WG, Catheryn LJ, et al. Flammability Properties of Polymer-Layered-Silicate Nanocomposites Polypropylene and Polystyrene Nanocomposites[J]. Chem. Mater.,2000, 12:1866.
    [15]Tang Y, Hu Y, Song L, Zong RW, et al. Preparation and thermal stability of polypropylene/montmorillonite nanocomposites[J]. Polym Degrad Stab,2003,82(1): 127-131.
    [16]Rao AM, Richter E, Bandow S, et al. Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes[J]. Science,1997,275:187-191.
    [17]Kruse TM, Won HW, and Broadbelt LJ. Mechanistic Modeling of Polymer Pyrolysis: Polypropylene. Macromolecules,2003,36:9594-9607.
    [18]Jin Zhu, Alexander B. Morgan, Frank J. Lamelas, and Charles A. Wilkie. Fire Properties of Polystyrene-Clay Nanocomposites[J]. Chem. Mater,2001,13:3774-3780.
    [19]Zhu J, Wilkie CA. Mechanisms of action of phosphorus based flame retardants in acrylic polymers[J]. Polymer International,2000,49:1158.
    [20]Tang Y, Hu Y, Wang SF, et al, Preparation and flammability of ethylene-vinyl acetate copolymer/montmorillonite nanocomposites[J]. Polymer Degradation and Stability,2002,78: 555.
    [21]Ballice L, Re(?)rt R. Classification of volatile products from the temperature-programmed pyrolysis of polypropylene (PP), atactic-polypropylene (APP) and thermogravimetrically derived kinetics of pyrolysis[J]. Chemical Engineering and Processing,2002,41:289-296.
    [22]Greenwood PF. GC-MS correlation of C3n series of naturally occurring highly branched alkanes and polypropylene oligomers[J]. Organic Geochemistry,2006,37:755-771.
    [23]Bernstein R, Thornberg SM. Radiationeoxidation mechanisms:Volatile organic degradation products from polypropylene having selective C-13 labeling studied by GC/MS[J]. Polymer Degradation and Stability,2008,93:854-870.
    [1]Matko SZ, Toldy A, Keszei S, et al. Flame retardancy of biodegradable polymers and biocomposites[J]. Polymer Degradation and Stability,2005,88:138-145.
    [2]Lu XL, Du FG, et al. Biodegradability and thermal stability of poly(propylene carbonate) /starch composites[J]. J. Biomed. Mater. Res.,2006,77:653-658.
    [3]Zhang JF, Sun XZ. Mechanical Properties of Poly(lactic acid)/Starch Composites Compatibilized by Maleic Anhydride[J]. Biomacromolecules,2004,5:1446-1451.
    [4]Kweon DK, Kawasaki N, et al. Preparation and Characterization of Starch/Polycaprolactone Blend[J]. J. Appl. Polym. Sci.,2004,92:1716-1723.
    [5]Pimentel TA, Duraes JA, et al. Preparation and characterization of blends of recycled polystyrene with cassava starch[J]. J. Mater. Sci.,2007,42:7530-7536.
    [6]Santonja-Blasco L, Contat-Rodrigo L, et al. Thermal characterization of polyethylene blends with a biodegradable master batch subjected to thermo-oxidative treatment and subsequent soil burial test[J]. J. Appl. Polym. Sci.,2007,106:2218-2230.
    [7]Chandra R, Rustagi R. Biodegradation of maleated linear lowdensity polyethylene and starch blends[J]. Polym. Degrad. Stab.,1997,56:185-202.
    [8]Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD. High performance LDPE thermoplastic starch blends:A sustainable alternative to pure polyethylene[J]. Polymer,2003,44: 1517-1526.
    [9]Wen J, Kang S. Mechanical and thermal properties of thermoplastic acetylated starch/ poly(ethylene-co-vinyl alcohol) blends[J]. Carbohydrate Polymers,2006,65:139-143.
    [10]Thakore IM, Desai S, et al. Studies on biodegradability, morphology and thermo-mechanical properties of LDPE modified starch blends[J]. Eur. Polym. J.,2001,37:151-160.
    [11]Yoo SI, Lee TY, et al. Interfacial adhesion reaction of polyethylene and starch blends using maleated polyethylene reactive compatibilizer[J]. J. Appl. Polym. Sci.,2002,83:767-776.
    [12]Bikiaris D, Prinos J, et al. LDPE/plasticized starch blends containing PE-g-MA copolymer as compatibilizer[J]. Polym. Degrad. Stab.,1998,59:287-291.
    [13]Le Bras, M, Bourbigot S, Christelle D. New Intumescent formulations of fire-retardant polypropylene-discussion of the free radical mechanism of the formation of carbonaceous protective material during the thermo-oxidative treatment of the additives[J]. Fire Mater,1996,20:191-203.
    [14]Almeras X, Le Bras M, Hornsby P, Bourbigot S. Effect of fillers on the fire retardancy of intumescent polypropylene compounds[J]. Polym Degrad Stab,2003,82:325-331.
    [15]Price D, Bullett KJ, et al. Cone calorimetry studies of polymer systems flame retarded by chemically bonded phosphorus[J]. Polym. Degrad. Stab.,2005,88:74-79.
    [16]Wu K, Hu Y, et al. Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Starch-Based Biodegradable Composites[J]. Industrial & Engineerging Chemistry Research,2009,48:3150-3157.
    [1]Wu K, Song L, et al. Microencapsulation of ammonium polyphosphate with PVA-melamine-formaldehyde resin and its flame retardance in polypropylene[J]. Polymers for Advanced Technologies,2008,19(12):1914-1921.
    [2]郝冬梅,林倬仕。EP包裹APP对阻燃PP性能的影响[J]。现代塑料加工应用,2008,20:37-40.
    [3]郝冬梅,林倬仕。不饱和聚酯树脂包裹聚磷酸铵对阻燃聚丙烯性能的影响[J]。塑料助剂,2008.6:43-47.
    [4]Mark TH. Synergistic effect of the charring agent on the thermal and flame retardant properties of polyethylene[J].Plast. Eng,1993,11(2):29-35.
    [5]Hu XP, Li YL, Wang YZ. Synergistic effect of the charring agent on the thermal and flame retardant properties of polyethylene[J]. Mater. Eng.,2004,289:208-212.
    [6]Horacek H, Grabner R. Advantages of flame retardants based on nitrogen compounds[J]. Polym. Degrad. Stab.,1996,54(3):205-215.
    [7]Li B, He J, et al. A novel intumescent flame-retardant system for flame-retarded LLDPE/EVA composites[J]. Journal of Applied Polymer Science,2009,114(6):3626-3635.
    [8]Li B and Xu MJ. Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene[J]. Polymer Degradation and Stability,2006,91(6):1380-1386.
    [9]Li B, Xu M. Synthesize a novel charring-foaming agent Chinese patent:CN200510010243.4; 2005.
    [10]Bugajny M, Bourbigot S, Le Bras M, Delobel R. The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750[J]. Polym. Int.,1999,48: 264-270.
    [11]Bourbigot S, Le Bras M, Delobel R. Carbonization mechanisms resulting from intumescence-part II. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system[J]. Carbon,1995,33(3):283-294
    [12]Kuo PL, Wang JS, Chen PC, Chen LW. Flame-retarding materials,3. Tailor-made thermal stability epoxy curing agents containing difunctional phosphoric amide groups[J]. Macromol. Chem. Phys.,2001,202:2175-2180.
    [13]Price D, Bullett KJ, et al. Cone calorimetry studies of polymer systems flame retarded by chemically bonded phosphorus[J]. Polym. Degrad. Stab.,2005,88(1):74-79.
    [14]Bourbigot S, Le Bras M, Delobel R.4 A zeolite synergistic agent in new flame retardant intumescent formulations of polyethylenic polymers—study of the effect of the constituent monomers[J]. Polym. Degrad. Stab.,1996,54:275-287.
    [15]Bourbigot S, Le Bras M, Duquesne S, Rochery M. Recentadvances for intumescent polymers[J]. Macromol. Mater. Eng.,2004,289:499-511.
    [16]Lewin M. Synergistic and catalytic effects in flame retardancy of polymeric materials—an overview[J]. J.Fire.Sci.,1999,17:3-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700