电动汽车异步电机直接转矩控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对电动汽车的异步电动机直接转矩控制系统进行了研究,首先从基本原理出发,阐述了适合于电动汽车异步电机的直接转矩控制方案,进行了仿真分析,然后在此基础上,介绍了直接转矩控制的一种优化控制方案,并通过仿真研究验证了这种方法的可行性。
     近些年,由于汽车的普及,排放的有害物质直接威胁着人类的健康和赖以生存的环境,70年代三次石油危机又唤起人类对有限石油资源的关注,因此无污染、噪声低的电动汽车又重新受到重视。电动汽车对电驱动系统提出较高的要求,由于直接转矩控制具有控制手段直接、结构简单以及转矩动态响应快等特点,所以将直接转矩控制用于电动汽车驱动系统是可行的。
     本文对直接转矩控制的基本原理以及存在的问题作了比较深入的分析。直接转矩控制就是在定子磁场定向的基础上,通过转矩和磁链的闭环控制,实际上就是控制转子磁链和定子磁链的夹角,以获取转矩的高动态响应。本文从基本原理出发,首先给出了一种基于MATLAB/SIMULINK环境下的异步电动机直接转矩控制系统仿真模型。应用该仿真程序,对直接转矩控制系统进行了详细的仿真研究,并分析了传统的直接转矩控制系统的仿真结果。
     针对直接转矩控制系统在低速时存在的磁链畸变和转矩脉动等共有的缺点,介绍了优化的控制方案——边带预测优化控制方案,这种控制方案在低速时可以改善定子磁链的波形,可以加快直接转矩控制的动态性能,同时具有计算较为简单,受电机参数影响较小的优点。为了验证这种控制方案的可行性,用MATLAB的SIMULINK进行了仿真研究,通过编写自定义的S-FUNCTION实现复杂的控制算法,仿真结果表明这种方法是可行的,更适合作为电动汽车异步电机驱动系统的控制方案。
A systematic and comprehensive research on the Direct Torque Control System of asynchronous motor for Electric Vehicle is introduced in this thesis. The basic mathematical formula of DTC is deduced based on space vector. On the basis of the analysis, an optimization control strategy is introduced and the simulation results show the method is feasible.
    In recent years, because of environment problem and energy crisis, low pollution and high efficiency vehicles have put more and more eyes on. Electric Vehicles are propelled by electric motors with advantages of no emission, low noise and good efficiency, which have been focused on and stepped into markets. A high efficiency and fast response electric drive system is demanded for EV, and the DTC appears a good future with rapid development of control technology.
    This thesis describes the construct and the basic working principle of traditional DTC and presents a simulation method for asynchronous motor control system based on MATLAB/SIMULINK. Its simulation program is simple, visual and accurate. Using this program, the performance effect of the Direct Torque Control System is studied in detail. DTC has some drawbacks, e.g. the large torque ripple and flux aberrations are generated, in particular, in a low speed range because of the stator resistance voltage drop of an asynchronous motor.
    A method, named band width optimization, is introduced to improve the magnetic flux circle when the motor runs at low speed, at the same time, the method can improve the start characteristic of DTC control. The method is simple to be implemented and robust to the variation of the motor parameter. To demonstrate the validity of the method, some experiments with SIMULINK of MATLAB are given, and complex control methods are realized by user-defined S-FUNCTION. The results of computer simulations reveal that the introduced
    method is feasible and more suitable for EV drive system.
引文
[1]李夙.异步电动机直接转矩控制.机械工业出版社,1999
    [2]黄济荣.电力牵引交流传动与控制.机械工业出版社,1999
    [3]陈坚.交流电机数学模型及调速系统.国防工业出版社,1998
    [4]陈伯时.电力拖动自动控制系统.机械工业出版社,1991
    [5]沈本荫.现代交流传动及其控制系统.中国铁道出版社,1997
    [6]王颖,王婧.电动汽车电子驱动系统综述.电工技术杂志.1998,4
    [7]赵伟峰,朱承高.直接转矩控制的发展现状及前景.电气传动.1999,3
    [8]夏雷,周国兴,吴启迪.直接转矩控制的ISR方法.电力电子技术.1998,11
    [9]孙笑辉,韩曾晋.减小感应电动机直接转矩控制系统转矩脉动的方法.电气传动,2001,1
    [10]杨竞衡.电动汽车的电气传动系统.电气传动,1999.4
    [11]吴峻,潘孟春,李圣怡.直接转矩控制系统低速性能的分析与控制.电气传动,2001.5
    [12]李永东,曹江涛,邵剑文.异步电机直接转矩控制系统低速转矩特性研究及其全数字化控制.电气传动,1996.6
    [13]李永东.交流电机数字控制系统.机械工业出版社,2002-12-25
    [14]沈本荫.现代交流传动及其控制系统.中国铁道出版社,1997
    [15]庞国仲.自动控制原理.中国科学技术大学出版社,1998
    [16]黄济荣.直接自控制——现代机车交流传动闭环控制策略.机车电传动,1994.5
    [17]谢宝昌,任永德.异步电动机直接转矩控制新方法.微特电机,2001.3
    [18]吴钦木,谢宗安.负120°电压矢量参与调节的直接转矩控制系统.贵州工业大学学报(自然科学版),2000.3
    [19]唐中琦,谢运祥.直接转矩控制发展综述.微电机,1998.1
    [20]杨耕,陈伯时.交流感应电动机无速度传感器的高动态性能控制方法综述.电气传动,2001.3
    [21]杨竞衡.电动汽车的电气传动系统.电气传动,1999.4
    [22]刘国海,戴先中.交流电机转速和转子磁链自适应辨识的一种新方法.电气传动,2001.5
    [23]张春梅,尔桂花.自适应模糊控制器在模糊直接转矩中的应用.中小型电
    
    机,2001.2
    [24] 谢鸿鸣,陈伯时.异步电机定子磁链的间接观测方法.电气传动,1999.1
    [25] 杨卫国,金启玫.电工领域几种常用优化方法比较和选取.电工电能新技术,1999.3
    [26] 刘皓春,全书海,王玉林.电动汽车驱动控制新技术.武汉汽车工业大学学报,1999.6
    [27] 万沛霖,石晓辉等.电动微车驱动系统模糊控制技术的研究.重庆工业管理学院学报,1997.6
    [28] 周桂,蔡丽娟.电动汽车驱动控制系统直接转矩控制的DSP实现.电机电器技术,2001.3
    [29] 范影乐,杨胜天,李轶.MATLAB仿真应用详解.人们邮电出版社,2001
    [30] 张志涌.精通MATLAB5.3版.北京航空航天大学出版社,2000
    [31] 陈清泉,詹宜巨.21世界的绿色交通工具—电动车.清华大学出版社,2000
    [32] Sun Feng-chun, Cheng Xi-ming. Design and Development of the DTC Induction Motor Drive for Electric Vehicle. Journal of Beijing Institute of Technology, 2000.9
    [33] U. Baader, M. Depenbrock, G. Gierse. Direct Self Control (DSC) of Inverter-Fed Induction Machine: A Basis for Speed Control Without Speed Measurement. IEEE Trans.IA, 1992
    [34] M. D'Incecco, P. Marino, N. Visciano. An Improved Direct Torque Control for High Efficiency Electrical Induction Motor Vehicle Drive. EVS 18 Berlin, 2001
    [35] F. Bonanno, A. Consoli, A. Raciti, A. Testa. An Innovative Direct Self-Control Scheme for Induction Motor Drive. IEEE Trans. PE. 1997
    [36] J. C. Moreira, T. A. Lipo. Modeling of Saturated ac Machines including Air-Gap Flux harmonic Component. IEEE IAS. 1990
    [37] J. N. Nash. Direct Torque Control, Induction Motor Vector Control Without an Encoder. IEEE Trans. IA,1997
    [38] L. Kreindler, J. C. Moreira, T. A.Lipo. Direct Oriented Controller Using the Stator Phase voltage Third Harmonic. IEEE IAS. 1992
    [39] L. Kreindler, A. Testa, T. A.Lipo. Sensorless Synchronous reluctance motor drive using the stator phase voltage third harmonic. IEEE IAS. 1993
    [40] S. A. Mir, D. S. Zinger, M. E. Elbuluk. Fuzzy Controller for Inverter Fed
    
    Induction Machines. IEEE Trans.IA, 1994
    [41] X. Xue, X.Xu, T. G. Habetler, D. M. Divan. A Low Cost Stator Flux Orientation Voltage Source Variable Speed Drive. IEEE IAS, 1990
    [42] T. G.Habetler, F. Profumo, M. Pastorelli, L. M. Tolbert. Direct Torque Control of Induction Machines Using Space Vector Modulation. IEEE Trans. IA, 1992:1045~1053
    [43] B. K. Bose, N. R. Patel. Quasi-Fuzzy Estimation of Stator Resistance of Induction Motor. IEEE Trans. PE, 1998
    [44] U. Baader, M. Depenbrock, G. Gierse. Direct Self-Control (DSC) of Inverter-Fed Induction Machine, a Basis for Speed Control without Speed Measurement. IEEE Trans. IA. 1992
    [45] I. Takahashi, Y. Ohmori. High Performance Direct Torque Control of an Induction Motors. IEEE Trans. IA. 1989
    [46] H.Y. Zhong, H.P. Messinger, M.H. Rashad. A New Microcomputer-Based Direct Torque Control System for Three-Phase Induction Motor. IEEE Trans. IA. 1991
    [47] M.T. Wishart, R.G. Harley. Identification and Control of Induction Machines Using Artificial Neural Networks. IEEE Trans. IA. 1995
    [48] A.B. Razzouk, A. Cheriti, G. Olivier, P. Sicard. Field-Oriented Control of Induction Motors Using Neural-Network Decouplers, IEEE Trans. PE. 1997
    [49] M. Depenbrock. Direct Self-Control (DSC) of Inverter-Fed Induction Machine. IEEE Trans. PE 1988
    [50] I. Takahashi, N. Toshihiko. A New Quick-Response and High Performance Control Strategy of an Induction Motors. IEEE Trans. IA. 1986
    [51] R.J. Kerman, B.J. Seibel, T.M. Rowan, D.W. Schlegel. A New Flux and Stator Resistance Identifier for AC Drive System, IEEE Trans. IA. 1996
    [52] K. Rajashekara. History of electric vehicles in general motors. IEEE Trans. IA. 1994:897~904
    [53] Mouth N, Kaneko S. Torque controller suitable for electric vehicles. IEEE Trans. IE. 1997:55~63
    [54] L.A. Cabrera, M.K. Elbuluk, Ⅰ. Husain. Tuning the Stator Resistance of An Induction Motors Using Artificial Neural Network. IEEE Trans. PE. 1997
    [55] I. Takahashi, Y. Ohmori. High-Pergormance Direct Torque Control of an
    
    Induction Motor. IEEE Trans. IA, 1989
    [56] S. Mir, M. Elbuluk, D. Zinger. PI and Fuzzy Estimation for Tuning the Stator Resistance in Direct Torque Control of Induction Machines. IEEE PESC'94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700