灰色系统理论在中国北方岩溶泉研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球25%人口的生活用水、农业用水和工业用水基本都依赖岩溶地下水。中国是喀斯特发育最好的国家之一,全球大约1/4的岩溶面积分布在中国,若按碳酸盐岩的分布面积统计,包含地下埋藏,约占中国国土面积1/3,岩溶地下水资源储量占我国地下水资源总量的23%。
     中国北方地区工农业生产及居民生活的主要供水水源取自岩溶地下水。特别在我国华北地区,岩溶含水层面积广大,地下水存储量大且流量稳定,对该地区的国民经济建设,有着十分重要的作用。近些年来,人们对岩溶含水层的研究不断增加。由于岩溶含水层对其所处的环境变化的响应十分敏感,因此作为主要的信息载体,岩溶泉的变化也间接地反映出气候变化和人类活动的作用程度。
     最近几十年来,我国北方地区许多岩溶泉流量呈现出逐年下降的趋势。然而,该地区居民赖以生存的生产生活用水主要来源于岩溶地下水。岩溶地下水资源的日益衰减,直接导致该地区水资源紧张,甚至对该地区的经济发展产生影响。因此,分析引起我国北方地区岩溶泉流量下降的主要原因,将影响泉水流量变化的两个因素,气候变化和人类活动对岩溶泉的作用过程分别模拟出来,分析岩溶泉流量对这两个因素的分别响应过程,更能为岩溶地下水的可持续开发利用以及区域地下水规划保护提供科学,有针对性地依据。
     本文选择的研究对象是中国北方地区最大的岩溶大泉—娘子关泉。通过资料分析,在1957-1978年这段时期内,娘子关泉流量基本上处于无人为因素干扰的自然状态。因此,我们利用1978年以前的娘子关泉流量数据,建立气候变化条件下泉水流量的灰色系统GM(1,1)分解模型,将该模型外推,模拟出1979-2006年气候变化条件下的泉水流量数据,与同期实测流量数据相比较,得到了人类活动对泉水流量衰减的贡献。结果表明,在1979-2006年这段时间内,气候的变化引起泉水流量衰减量为2.30m~3/s,人类活动影响引起泉水流量衰减量为2.07-3.05 m~3/s。在娘子关泉域,人类活动造成的泉水流量衰减量大于气候因素作用于泉水流量引起的衰减量。因此,相对于气候因素,人类活动对娘子关泉域的水文状况的影响是不容忽视的。在人类活动对泉水流量的影响中,地下水开采量仅占到其中的10%-50%;其他因素包括泉域修建水利设施、周边地区地下水开采、采矿伴随的矿坑排水、森林植被的破坏等等,这些因素对泉水流量衰减的贡献占到50%-90%。因此可以看出,传统的单纯以地下水开采量作为人类活动对泉水的影响是不合理的。本文将灰色系统理论应用于地下水研究中,成功地将气候变化和人类活动对泉水流量的影响过程分别模拟出来,揭示了泉水流量对气候变化及人类活动的分别响应过程,为岩溶地下水的可持续开发利用以及区域地下水规划保护提供科学,针对性地依据。
It is estimated that 25% of the global population is supplied largely or entirely by ground water from karst aquifers. China is one of the countries with the largest karst terrains. One-quarter of the world's total of terrestrial carbonate rock occurred in China. Carbonate rock outcrop widely at the surface or exit at shallow depths below the surface, covering 1.3 million km~2 or one-seventh of the country's territory in China. If covered and buried karsts are included, in addition to surface karst, up to one-third of the country is involved.
     Karst groundwater is the main water supply of both agriculture and industry and life of the residents in north china because of its characteristics of vast reserves and high quality. According to statistics, karst groundwater accounts for 60-80% of water supply in many large and mid-sized cities such as Jinan, Taiyuan, Xuzhou, Yangquan, Zibo, Linfen, and Zaozhuang etc. However, in recent years, karst groundwater in north China are experiencing a remarkably change, tending to decrease. These problems are not only connection with climatic change but also closely with anthropogenic activities. With the acceleration of both economic development and population growth, water consumption and requirement have increased greatly since the 1980s.
     Karst aquifers are generally considered to be particularly vulnerable to climatic change and anthropogenic impacts. Karst groundwater has become an important indicator to assess climatic change and anthropogenic effects on hydrological processes.
     In North China, the largest karst spring, the Niangziguan Springs complex, has been declining since 1950s. This work studies the response of Niangziguan Springs to climatic change and anthropogenic influence respectively by discerning effects of human activities from climate change. In Niangziguan Springs Basin, the development of karst groundwater began in 1979. Accordingly, the spring discharge data were divided into two phases: pre-1979 and post-1979. In the first phase (i.e. 1957-1979) the spring discharge could believe to be affected under sole climate change, and in the second phase (i.e. 1979-2006) the spring discharge was influenced by both climate change and human activities. By using the spring flow data in the first phase, GM (1,1) decomposition model was set up, which described the spring flow processes under sole climate change. Extrapolating the model, we obtained the spring discharge under sole impact of climate in the second phase. Then through the water balance calculation, we discern the respective effects of climate change and human activities on depletion of spring discharges in the second phase. The results show that the contribution of climate change to depletion of Niangziguan Springs is 2.30m~3/s. The contribution of climate change only accounts for 75% of contribution of human activities. Therefore comparing with the climate change, anthropogenic activities are primary in affecting spring discharge at the Niangziguan Spring decline while climate change is secondary. Regarding to the contribution of human activities to spring discharge decline, groundwater abstraction only occupies about 10%-50% of the declines; 50%-90% of the declines are likely to be caused by other human activities, such as dewatering from coal mining, construction of hydraulic engineering, and deforestation.
引文
[1].Jaquet O.,P.Siegel,G.Klubertanz,et al.Stochastic discrete model of karstic networks.Advances in Water Resources,2004,27:751-760.
    [2].袁道先.中国岩溶学.北京,地质出版社,1994.
    [3].Sweeting,M.M..Karst in China:Its Geomorphology and Environment.Berlin,Springer-Verlag Berlin Heidelberg,1995.
    [4].郝永红,王玮,王国卿等.气候变化及人类活动对中国北方岩溶泉的影响-以山西柳林泉为例.地质学报,2009,83(1):138-144.
    [5].韩行瑞,鲁荣安,李庆松等.岩溶水系统-山西岩溶大泉研究.北京,地质出版社.1993.
    [6].何宇彬,韩宝平,徐超等.中国喀斯特水研究.上海,同济大学出版社,1997.
    [7].White,W.B.Geomorphology and hydrology of karst terrains.New York,Oxford University Press,1988.
    [8].Alley,W.M.Ground water and climate.Ground Water,2001,39(2):161.
    [9].White,W.B.Karst hydrology:recent developments and open questions.Engineering geology.,2002,65:85-105.
    [10].郭清海,王焰新,马腾等.山西岩溶大泉近50年的流量变化过程及其对全球气候变化的指示意义.中国科学(D辑),2005,35(2):167-175.
    [11].李砚阁,杨昌兵,耿雷华.北方岩溶大泉流量动态模拟及其管理.水科学进展,1998,9(3):275-281.
    [12].Hao Y.H.,Yeh T.J.,Gao Z.Q.,et al.A gray system model for studying the response to climatic change:the Liulin karst springs,China.Journal of Hydrology,2006,328:668-676.
    [13].孟宪刚,朱大岗,邵兆刚等.山西宁武地区全新世以来气候与上不境变化.地质学报,2007,81(3):316-323.
    [14].郭纯青,李文兴.岩溶多重介质环境与岩溶地下水系统.北京,化学工业出版社,2006.
    [15].夏日元,郭纯占.岩溶地下水系统单元网络数学模拟办法研究.中国岩溶,1992,11(4):267-277
    [16].陈梦熊,马凤山.中国地下水资源与环境.北京,地震出版社,2002.
    [17].王玉和,张志祥.延河泉域泉流量衰减原因分析.科技情报开发与经济,2005, 15(10):149-150.
    [18].孙志鸿.娘子关泉群流量衰减原因分析及保护措施.山西水利,2006,(1):16-21.
    [19].韩宝平.国外岩溶水文地质学进展.中国岩溶.1993,12(4):400-408.
    [20].韩宝平.微观喀斯特作用机理研究.北京,地质出版社,1998.
    [21].刘再华.娘子关泉群水的来源再研究.中国岩溶,1989,8(3):200-207.
    [22].郭纯青.论中国北方“岩溶地下水系统”的基本内涵及资源产生的物质基础.中国岩溶,1990,9(6):149-155.
    [23].朱远峰.中国岩溶水系统和岩溶水资源研究进展.地质部环境地质研究所主编,工程地质 水文地质 环境地质论文集.北京,地震出版社,1993:194-199.
    [24].朱学愚,朱俊杰.山东淄博裂隙岩溶水中石油污染物分布和迁移特征.中国科学:D辑地球科学,2000,30(5):479-485.
    [25].韩行瑞,梁永平.北方岩溶地区水资源科学调配.中国岩溶,1989,8(2):200-207.
    [26].郝永红,马文正.阳泉市地下水最优控制模型及其微分动态规划-二次规划算法.水利学报,1997,(6):10-18.
    [27].钱家忠,汪家权,葛晓光等.我国北方型裂隙岩溶水流及污染物运移数值模拟研究进展.水科学进展,2003,14(4):509-512.
    [28].李文兴,刘建之.岩溶水系统降水入渗的随机模拟.水文地质工程地质,1996,(6):32-35.
    [29].薛禹群,吴占春.面临21世纪的中国地下水模拟问题.水文地质工程地质,1999,(5):1-3.
    [30].Guo Q.H.,Wang Y.X.,Ma T.,et al.Variation of karst spring discharge in the recent five decades as an indicator of global climate change:A case study at Shanxi,northern China.Science in Chnia Series D-Earth Sciences,2005,48(11):2001-2010.
    [31].Ma,T.,Wang Y.,Guo Q.Response of carbonate aquifer to climate change in northern China:a case study at the Shentou springs.Journal of hydrology,2004,297:274-284.
    [32].Hao Y.H.,Jim Y.,Gao Z.Q.,et al.A gray system model for studying the response to climatic change:the Liulin karst springs,China.Journal of Hydrology,2006,328:668-676.
    [33].Hao Y.H.,Jim Y.,Hu C.H.,et al.Karst groundwater management by defining protection zones based on regional geological structures and groundwater flow fields.Environmental Geology,2006,50(3):415-422.
    [34].Hao Y.H.,Jim Y.,Wang Y.R.,et al.Analysis of karst aquifer spring flows with a gray system decomposition model.Ground Water,2007,45(1):46-52.
    [35].李砚阁,杨昌兵,耿雷华.北方岩溶大泉流量动念模拟及其管理.水科学进展,1998,9(3):275-281.
    [36].郑世宗,袁宏源,李远华等.霍泉灌区出流量预测模型.水科学进展,1999,10(4):382-387.
    [37].任增平,余国光,闫俊平.煤矿水源地开采对延河泉泉水流量影响的预报.中国煤田地质,2000,12(1):44-46.
    [38].梁永平,高洪波,张江华等.娘子关泉流量衰减原因的初步定量化分析.中国岩溶,2005,24(3):227-231.
    [39].陈喜,刘传杰,胡忠明等.泉域地下水数值模拟及泉流量动念变化预测.水文地质工程地质,2006,(2):36-40.
    [40].Dreiss,S.J.Linear kernels for karst aquifers.Water Resources Research,1982,18(4):865-876.
    [41].Long,A.J.,Derickson R.G.Linear system analysis in a karst aquifer.Journal of Hydrology,1999,219:206-217.
    [42].Simpson E.S,Duekstein L.Finite state mixing cell' models.Karst Hydrology and water Resources,1976,2:489-512.
    [43].Compana M.E.,Simpson E.S.Groundwater residence time and charge rate using a discret-state compartment model and ~(14)C data.Hydrology,1984,72:171-185.
    [44].Compana M.E.,Mahin D.A.Model-derived estimates of groundwater mean ages,Recharge rates effective porosities and storage in a limestone aquifer.Hydrology,1985,76:247-264.
    [45].Dreiss,S.J.Linear kernels for karst aquifer.Water Resources Research,1982,18(4):856-876.
    [46].Fabian C.The karst phenomena study from the Theory of systems point of view.Theoretical and Applied Karstology,1984,1:29-34.
    [47].White W.B.Geomorphology and hydrology of karst terrains.New York,Oxford University Press,1988.
    [48].Dreybrot W.Processes in karst system:physics,chemistry,and geology.Berlin,Spring-Verlag,1988.
    [49].韩宝平.国外岩溶水文地质学进展.中国岩溶,1993,12(4):400-407.
    [50].Halihan T.,Wicks C.M.Modeling of storm responses in conduit flow aquifers with reservoirs.Journal of hydrology,1998,208:82-91.
    [51].Labat D.,Ababou R.,Mangin A.Linear and nonlinear input/output models for karstic spring flow and flood prediction at different time scales.Stochastic Environmental Research and Risk Assessment,1999,13:337-364.
    [52].Padilla A.,Pulido-Bosch A.,Margin A.Relative importance of baseflow and quickflow from hydrographs of karst spring.Ground Water,1994,32(2):267-277.
    [53].Martin J.B.,Dean RW.Exchange of water between conduits and matrix in the Floridan aquifer.Chemistry Geololgy,2001,179:145-165.
    [54].Scanlon,B.R.,Mace R.E.,Barrett M.E.,et al.Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study Barton Springs Edwards aquifer,USA.Journal of Hydrology.,2003,276:137-158.
    [55].Zhang Y.K.,Bai E.W.,Libra R.,et al.Simulation of spring discharge from a limestone aquifer in Iowa.Hydrogeology Journal,1996,4:41-54.
    [56].刘思峰,党耀国,方志耕等.灰色系统理论及其应用.北京,科学出版社,2007.
    [57].Quinlan JF,Davies GJ,Jones SW,et al.The application of numerical models to adequately characterized ground-water flow in karstic and other trip-porosity aquifers.In:Ritchy J D,Rumbaugh J O,Eds.Subsurface Fluid-flow(Ground-Water and Vadose Zone) Modeling,ASTM STP 1288.American Society for Testing and Materials,1996,114-133.
    [58].钱孝星.岩溶地下水运动与计算的若干问题讨论.水利水电科技进展,1998,18(8):18-22.
    [59].刘建立,朱学遇,钱孝星.中国北方裂隙岩溶水资源开发和保护中若干问题的研究.地质学报,2000,74(4):344-352.
    [60].Hao Y.H.,Yeh T.J.,Xian J.W.,et al.Hydraulic tomography for detecting fracture zone connectivity.Ground Water,2008,46(2):183-192.
    [61].Dassargues A.Application of groundwater models in karstic aquifers.IASH Publication,1998,247:7-14.
    [62].王学盟,聂宏声,李晋陵.灰色系统模型在农村经济中的应用.武汉,华中理工大学出版社,1989.
    [63].夏军.灰色系统水文学.武汉,华中理工大学出版社,2000.
    [64].郝永红,王学盟.娘子关泉灰色系统模型研究.系统工程学报,2001,16(1):39-44.
    [65].郝永红,黄登宇,高红波.娘子关泉水流量的GM(1,2)时滞预测模型.中国岩溶,2004,23(1):43-47.
    [66].王学萌等.灰色系统分析及实用计算程序.武汉,华中理工大学出版社,2001,50-55.
    [67].李智才.近50年阳泉气温时空变化特征.山西气象,2001,(4):24-27.
    [68].王桃良.娘子关泉域岩溶水环境问题及其保护对策.科技情报丌发与经济,2004,14(11):103.
    [69].宁维亮,高红波,张江华.娘子关泉域岩溶水资源开发利用与保护.2002,(4):18-20.
    [70].陈爱光,李慈君,曹剑锋.地下水资源管理.北京,地质出版社,1991.
    [71].杨光中,郭志峰.娘子关岩溶地下水开发与保护的探索.地下水,1997,19(2):65-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700