鱼腥藻生长、产异味特征及巢湖南淝河河口异味时空变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合07年夏季洋河水库的氮、磷、生物量的监测数据,采用三角瓶实验对低、中、高磷浓度级别的不同氮磷比培养条件下的螺旋鱼腥藻的生长及异形胞形成进行了研究;采用10L玻璃瓶实验对螺旋鱼腥藻在富营养底泥条件下水华爆发时土嗅素(Geosmin)产生情况进行了研究,并用固相微萃取和气质联用对鱼腥藻藻细胞内和细胞外的土嗅素进行了测定;对2008年6-9月巢湖西半湖南淝河河口区域的常规水质进行检测,并利用气质联用-固相微萃取法检测水样的异味物质,考察了异味物质与叶绿素、TN、TP、DTP、CODCr、pH、DO、温度、透明度的关系。研究结果表明:
     1.三角瓶实验结果表明,在氮充足时,螺旋鱼腥藻不易形成固氮异形胞,消弱了异形胞的固氮能力;而在低氮营养条件下,螺旋鱼腥藻容易形成固氮异形胞,特别是当N=0.1mg/L和N=0.2mg/L时,异形胞出现的频率最大;且由于高氮条件容易抑制异形胞的生成,导致螺旋鱼腥藻生长减慢,最大生物量减小,螺旋鱼腥藻生长能力受到氮的抑制,且高氮条件容易抑制螺旋鱼腥藻生成土嗅素;理想实验条件下与洋河水库实际情况的结果不一致,可能与洋河水库现场采样的螺旋鱼腥藻藻体未出现异形胞有关,可能与洋河水库现场采样的螺旋鱼腥藻藻体未出现异形胞有关,反而氮充足的区域发生了螺旋鱼腥藻的繁殖爆发。
     2.富营养底泥培养条件下,随着螺旋鱼腥藻生物量增加,土嗅素产生量随之增大,其最大产生浓度可达626ng/L,远超出人体可感知浓度(10ng/L);螺旋鱼腥藻细胞分泌土嗅素与叶绿素的速率并不完全相同,嗅味物质在螺旋鱼腥藻生物量达到最大值前76h左右达到最高浓度;生长过程中,土嗅素主要分布在螺旋鱼腥藻藻细胞内,占总含量的85%-95%,远高于胞外含量;本试验培养初期底泥刚向水体中释放氮时,藻细胞更倾向利用类异戊二烯合成土嗅素,导致土嗅素与叶绿素含量比增大.随着水体中的氮含量逐渐充足,藻细胞内的土嗅素与叶绿素含量比值趋于稳定,维持在0.0015左右。因此,当野外水体的氮含量充分时,螺旋鱼腥藻土嗅素产生量的变化可通过叶绿素含量的变化得到反映。
     3.检测出2008年6-9月巢湖西半湖南淝河河口区域β-环柠檬醛为主要的异味物质,其浓度范围为1.077047-494.7695ng·L-1,且7月达到最大,7月平均浓度为114.4887ng·L-1。其中又以add3、add4这两点为最大,达到其它点位的2-400倍左右;巢湖南淝河河口区域水华暴发期在7月,可能与微囊藻的夏季爆发有关,河口add3点的藻华最为严重,这是由气候地理分布及TN、TP等营养盐的时空分布综合决定的;建议水处理厂特别应在夏季和秋季时,注意采取一定的方法处理饮用水的嗅味物质,而且控制饮用水异味物质的关键,是限制藻生物量水平。
Combined with the data of nitrogen, phosphorus, biocess of Yang-he reservoir on July, 2007, flask experiments were applied to investigate the relationship between heterocyst formation and growth of Anabaena sp. at three phosphorus solutions with different nitrogen/phosphorus ratio,10L pyrex bottle experiments were applied to investigate the geosmin production and distribution of Anabaena sp. under eutrophic condition. Algal cell and media extracts were analyzed individually by solid-phase microextraction(SPME) and capillary gas chromatography-mass spectrometry(GC-MS). Lake Chao-hu is one of the fifth fresh water lakes in china with a surface area of 800 km2 and a water content of 20 billion m3. With increasing regional development in surrounding area, Lake Chao-hu, has shown abvious eutrophication over the years. The quality of water which gathered from Lake Chao-hu was detected, and off-flavor compounds were analyzed by solid-phase microextraction(SPME) and capillary gas chromatography-mass spectrometry(GC-MS).
     The results showed that:
     1. The flask experiments proved that Anabaena sp., under the sufficient nitrogen environment, was not likely to format heterocyst which can fix nitrogen, while low nitrogen condition can make Anabaena sp. format heterocyst easily and lead to the bloom of Anabaena sp., especially in N=0.1mg/L and N=0.2mg/L conditions. The result of flask experiments was not consist with that of reservoir Yang-he, this possibility because Anabaena sp. of Yang-he in 2007 had no heterocyst, so the highest TN content easily led to high concentration of algae.
     2. The result proved that geosmin produced by Anabaena sp. increases with the increasing Anabaena sp. cells numbers and the highest concentration recorded was 626ng/L, which was significantly above the perceptive concentration of human which is about lOng/L. Geosmin production was not synchronous with cells growth, and the highest concentration of geosmin was observed 76 hours earlier before the biomass of Anabaena sp. cells reached the highest point. Geosmin was found to be enriched in cell matrix rather than in medium that about 85~95% of total geosmin was concentrated in cell. The mechanism of such phenomena was also studied. The mud began to release nitrogen since the beginning of culturing and lower nitrogen concentration would induce the synthesis of geosmin using the isoprenoid precursors rather than the demand of chlorophyll accumulation. When the nitrogen concentration was sufficient in medium, the geosmin concentration can be calculated by monitoring the chlorophyll concentration since the geosmin/chlorophyll ratio would reach a stable value at-0.0015.
     3. The result proved thatβ-Cyclocitral was the principal off-flavor compounds, and its concentration range started from 1.077047-494.7695ng·L-1. Most of theβ-Cyclocitral was detected in July, the average concentration of which is 114.4887 ng·L-1, especially site add3 and add4, the concentration of which was 2-400 times than other sites. July was the period of algae bloom in Lake Chao-hu, especially in site add3. This is determined by climate-geography distribution and time-space distribution of nutrition such as nitrogen and phosphorous. It is suggested that water plant should take some method to treat off-flavor compounds of drinking water in summer and autumn, and the key of controling off-flavor compounds of drinking water is to limit biocess of algae or to separate algae and origin water.
引文
[1]金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001.
    [2]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(3):589~595.
    [3]秦伯强,胡维平,陈伟民.太湖水环境演化过程与机理[M].北京:科学出版社,2004.汤宏波,刘国祥,胡征宇.三峡库区高岚河甲藻水华的初步研究[J].水生生物学报,2006,30:47~51.
    [4]王海珍,刘永定,沈银武等.云南漫湾水库甲藻水华生态初步研究水生生物学报[J],2004,28:213~215.
    [5]金相灿.中国湖泊环境[M].北京:海洋出版社,1995.
    [6]Oliver R L and Ganf G G Freshwater Blooms [A].In:Whitten B A and Potts.(Eds.),The Ecology of Cyanobacteria [C].Netherlands:Kluwer Acdemic Publishers,2000,149-194
    [7]Reynolds C S and Walsby AE. water-blooms[J].Biol. Rev.,1975,50:437-481
    [8]Mcqueen D J and Lean DRS.Influence of water temperature and nitrogen to phosphorus rations on the dominance of blue-green algae in lake St. George,Ontario[J].Can.J.Fish. Aquatic.Sci.1987,44:598~604
    [9]Robarts R D and Zohary T. Temperature effects on phytosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria[J].N.Z.Jmarine and freshwater res,1987,21:379~390
    [10]Sommer U. Comparison between steady state and nonsteady state competition: experiments with natural phytoplankton[J].Limnol Oceanogr,1985,30:335~346
    [11]Hyenstrand P, Burkert U, Pettersson A and Blomqvist P. Competition between the green alga Scenedesmus and the cyanobacterium Synechococcus under different modes of inorganic nitrogen supply[J]. Hydrobiologia,2000,435 (1-3):91~98
    [12]Tapia M I, Ochoa de Alda JAG, Llama M J and Serra JL. Change in intracellular amino acids and organic acids induced by nitrogen starvation and nitrate or ammonium resupply in the cyanobacterium Phormidium laminosum[J]. Planta 1996,198:526~531
    [13]Turpin D H. Effect of inorganic N availability on algal photosynthesis and carbon metabolism[J]. J Phycol.,1991,27:14~20;
    [14]Garcia-Gonzalez M, Sivak M N, Preiss J and Lara C. Depression of carbon flow o the glycogen pool induced by nitrogen assimilation in intact cells of anacystis nidulans[J]. Physiol. Plant,1992,86:360~364
    [15]Smith V H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton[J]. Science.1983,221:669~671
    [16]Downing A J,Watson S B, McCauley E. Predicting Cyanobacteria dominance in lakes[J].Canadian Journal of Fisheries and Aquatic Sciences,2001,58:1905~1908
    [17]Pick FR and Lean DRS. The role of macronutrients(C,N,P) in cotrolling cyanobacteria dominance in temperate lakes[J]. N. Z. J. Mar Freshwater Res 1987,21:425~434
    [18]Xie L Q, Xie P, Li S X, Tang H J. Liu.The low TN:TP ratio, a cause or a result of Microcystis blooms? [J].Water Research,2003a,37:2073~2080
    [19]徐盈.东湖富营养水体中藻菌异味性次生代谢产物的研究.生态学报,1999,19(2):212-216.
    [20]李学艳,陈忠林,沈吉敏,马军.固相萃取—气质联机测定水中嗅味物质2-甲基异莰醇和土臭素.中国环境监测,2006,22(2):18-21
    [21]李林,宋立荣,甘南琴,陈伟.顶空固相微萃取-气相色谱-质谱测定水中异味化合物.分析化学,2005,33(8):1058-1062.
    [22]于建伟,郭召海,杨敏,等.嗅味层次分析法(FPA)用于饮用水中嗅味识别的初探.中国给水排水,2007,23(6):79-83.
    [23]马军,李学艳,陈忠林,齐飞.臭氧氧化分解饮用水中嗅味物质2-甲基异莰醇.环境科学,2006,27(12):2483-2487.
    [24]Cunzhen Liang, Dongsheng Wang, Min Yang,et al. Removal of earthy-musty odorants in drinking water by powdered activated carbon.J.Environ. Sci. Health,Part A,2005,40(4):767-778.
    [25]Bowmer K H, Padovan A,Oliver R L, Korth W, Ganf GG. Physiology of geosmin pr oduction by anabaena circinalis isolated from the murrumbidgee river, australla.
    [26]Holtan H. The lake Mjosa story. Arch.Hydrobiol. Beih. Ergebn.Linol.1979,13:242-258.
    [27]Ismall M.K.Saadoun et al. Environmental and nutritional factors affecting geosmin synthesis by anabaena sp.Wat.Res.,2001,35(5):1209-1218.
    [28]Jianwei Yu, Min Yang, ea al. Effects of surface characteristics of activated carbon on the adsorption of 2-Methylisoborneol (MIB) and geosmin from natural water. Separation Purification Technology,2007.
    [29]Kevin K.Schrader et al.Cyanobacteria and earthy/musty compounds found in commercial catfish (Ictalurus punctatus) ponds in the Mississippi Delta and Mississippi-Alabama Blackland Prairie. Wat. Res,2005,39(13):2807-2814.
    [30]LIANG Cun-zhen, WANG Dong-sheng, GE Xiao-peng, et al.Comparative study on the removal technologies of 2-methylioborneol. Journal of Environmental Sciences, 2006,18(1):47-51.
    [31]Montiel.A et al. Study of the origin of musty taste in the drinking water supply. Wat. Sci.Tech.,1999,40(6):171-177.
    [32]Nakanishi.M et al. Relationship between the maximum standing crop of musty-odor producing algae and nutrient concentrations in the southern basin water of Lake Biwa. Wat. Sci. Tech,1999,40(6):179-184.
    [33]Slater G. P. Volatile compounds of cyanophyceae.Wat.Sci.Tech.,1983,16(6/7):181-190.
    [34]Suffet I. H., et al. In Advance in Taste-and-Odor Treatmnet and Control. AWWA Research Foundation and Lyonnaise Des Eaux Cooperative Rearch Reoport, American Water Works Associ,Denver, Colo,USA.1995.
    [35]Suffet I H, Khiari D, Bruchet A. The drinking water taste and odor wheel for the millennium:beyond geosmin and 2-methylisobomeol. Water sciences and technology. 1999,40 (6):1-13
    [36]Bartels J.H.M., Burlingame G.A., Suffet I.H.. Flavor profile analysis taste and odor: Control of the future. J. Am. Water Works Assoc,1986,78(3):50-55.
    [37]Persson P.E.Sensory properties and analysis of two muddy odour compounds,geosmin and 2-methylisoborneol, in water and fish. Water Res,1980,14(8):1113-1118.
    [38]Lloyd S.W.,Lea J.M.,Zimba P.V.,Grimm C.C.. Rapid analysis of geosmin and2-methylisoborneol in water using solid phase micro extraction procedures. WaterRes., 1998,32(7):2140-2146.
    [39]Sugiura Norio et al. Significance of attached cyanobacteria relevant to the occurrence of musty odor in lake Kasumigaura. Wat. Res.,1998,32(12):3549-3554.
    [40]Tsuchiya.Y et al. Characterization Of Oscillatoria f. granulata producing 2-methylisoborneol and geosmin. Wat. Sci.Tech.,1999,40(6):245-250.
    [41]Westerhoff Paul et al. Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs. Wat. Res.,2005,39(20):4899-4912.
    [42]Yagi M, Kajino M,Matsuo U,et al. Odor problems in lake Biwa[J] water science and technology,1983,15(6/7):311-321.
    [43]Yu Jianwei, Yang Min. Effects of surface characteristics of activated carbon on the adsorption of 2-Methylisobornel (MIB) and geosmin from natural water, Separation Purification Technology,2007.
    [44]宋立荣,李林,陈伟,甘南琴.水体异味及其藻源次生代谢产物研究进展[J].水生生物学报,2004,28:434~439.
    [45]周名江.赤潮藻毒素研究进展[J],中国海洋药物,1999,18(3):48~54.
    [46]Oliver R L, Ganf G G. Freshwater blooms. The Ecology of Cyanobacteria. The Neth erlands:Kluwer Acdemic Publishers,2000.
    [47]Imai A, Fukushima T, Matsushige K. Effects of iron limitation and acquatic humic 1999,56:1929~1937.
    [48]Shapiro J. Blue-green algae:why they become dominant[J]. Science, 1972,179:382~384.
    [49]黄玉瑶.内陆水域污染生态学一原理与应用[M].北京:科学出版.
    [50]OECD. Eutrophication of water, monitoring, assessment and control[J]. Evironment Directorate, OECD, Paris,1982:154.
    [51]Ryding S O, Rast W. The control of eutrophication of lakes and reservoirs[J]. Unesco, London,1989:37-63.
    [52]Kairesalo T, Laine S, Luokkanen E, et al. Direct and indirect mechanisms behind successful biomanipulation[J]. Hydrobiologia,1999,395:99~106.
    [53]Welch E B, Barbiero R P, Bouchard, et al. Lake trophic state change and constant algae composition following dilution dan diveresion[J]. Ecological Engineering,1992,1:173~197.
    [54]Van L L, Parma S, Gulati R D. Working group water quality research Loosdreht Lakes: its history, structure, research programme and some results[J]. Hydrobiologia,1992, 233:1-9.
    [55]谢平.论蓝藻水华的发生机制——从生物进化、生物地球化学和生态学视点.北京:科学出版社
    [56]Prosperi C H. A cyanophyte capablr of fixing nitrogrn under high levels of oxgen. J. Phyol.1994.30:322-324
    [57]Graham L E and Wilcox L W. Algae. Prentice-Hall, Inc. London, UK.2000
    [58]Reynolds C S. The ecology of freshwater phytoplankton. Cambridge University Press.1984
    [59]Oliver R L and Ganf G G. Freshwater blooms. In:Whitton and Potts. The ecology of cyanobacteria, their diversity in time and space. Netherlands:Kluwer academic publishers,2000,149-194
    [60]周云龙.异形胞与蓝藻的固氮[J].生物学通报,1994,29:5-17
    [61]Dugdale R C, Dugdale V A, Neess J C and Goering J J. Nitrogen fixation in lakes. Science[J].1959,130:859-860
    [62]孙军,宁修仁.海洋浮游植物群落的比生长率.地球科学进展[J],2005.20(9)939-945
    [63]OlliK, Anderson D M, High encystment success of the dinoflagellate Scrippsiella cf. lachrymosa in culture exp eriments[J]. Journal ofPhycology,2002.38:145-15
    [64]水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002:243-257
    [65]Reynolds C S. Growth, gas vacuolation and buoyancy in a nature population of a planktonic blue green alga[J]. Freshwat. Biol.1972,2:87-106
    [66]Home A J and Goldman C R. Nitrogen fixation in Clear Lake, California. I. Seasonal variation and the role of heterocysts[J]. Limnol. Oceanogr.1972.17: 678-692
    [67]Fogg G E. The physiology of an algal nuisance.Proc.RSoc.London Ser.B, 1969,173:175-189
    [68]Ketchum B H and Redfield A C. Some physicaland chemical characteristics of algae growth in mass cultures. J. Cell. Comp. Physiol[J].1949,13:373-381
    [69]Paerl H W, Fulton R S Ⅲ, Moisander P H and Dyble J.2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J[J].2001,1:76-113
    [70]Persson P-E. Muddy odour:a problem associated with extreme eutorophication. Hydrobiologia[J],1982,86:161-164.
    [71]Weete JD, Huang WY, Laseter JL. Streptomyces sp.:a souce of pdours substances in potable water. Water Air soil Pollut[J].1979,11:217-223.
    [72]Rashash DMC, Dietrich AM, Hoehn RC, Parker BC. The influence of groeth conditions on odor-compound production by two chrysophytes and two cyanobacteria. Wat Sci Tech[J].1995,31(11):165-172.
    [73]Ismall M.K. Saadoun et al. Environmental and nutritional factors affecting geosmin synthesis by Anabaena sp. Wat.Res.,2001,35(5):1209-1218.
    [74]Gerber,Lechevaliar. Geosmin, an earthy-smelling substance isolated from actinomycetes. Appl Microbiol[J].1965,13:935-938.
    [75]Kikuchi T, Minura T, Harimaya K, Yano H. Arimoto T, Masada Y, Inoue T. Odorous metabolite of blue-green algae:Schizothrix muelleri bageli collected in the southern basin of Lake Biwa. Identification of geosmuin. Chem Pharm Bull.1973, 21:2342-2343.
    [76]Medsker LL, Jenkins D, Thomas JF. Odorous compounds in nayural waters. Environ Sci Technol[J].1968,2:461-464
    [77]Rosen A A, Mashini CI, Safferman RS. Recent developments in the chemisty of odour in water:the cause of earthy/musty odour. Wat Treast Exam[J].1970, 19:443-339.
    [78]Bowmer K H, Padovan A, Oliver R L, Korth W, Ganf GG. Physiology of geosmin pr oduction by anabaena circinalis isolated from the murrumbidgee river, australla.
    [79]Bentley R, Meganathan R. Geosmin and methylisoberneol biosynthesis in Streptomyces. FEBS Lett[J] 125:220-222.
    [80]Naes H, Aarnes H, Utkilen HC, Nilsen S, Skulberg OM. Effect of photon fluence rate and specific growth rate on geosmin production of the cyanobacterium Oscillatoria brevis(Kutz) Gom. Appl Environ Microbiol[J].1985,49:1538-1540.
    [81]Naes H, Utkilen HC, Post AF. Geosmin production in the cyanobacterium Oscillatoria brevis.Arch Microbiol[J].1989,151:407-410.
    [82]董云仙.洱海蓝藻水华研究[J].云南环境科学,1999
    [83]周量进.山仔水库富营养化影响因素分析[J].能源与环境,2008
    [84]Shapiro J. Current beliefs regarding dominance of blue-greens:the case for the importance of CO2 and pH[J]. Verh Int Ver Limnol,1990,24:38-54.
    [85]梁存珍,王东升,桑义敏,等.饮用水中土霉味物质测定方法的优化[J].中国给水排水,2007,23(10):76-78
    [86]U.S. Environmental Protection Agency. In Vitro Determination of Chlorophylls a1, b1, c1+c2 and Pheopigments in Marine And Freshwater Algae by Visible Spectrophotometry [R]. EPA Method 446.0,600/R-97-072, Ohio:1997,1-26.
    [87]水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002:243-257
    [88]Wu Jiunn, Juttner F. Differential partitiong of geosmin and 2-methylisoborneol between cellular constituents in Oscillatoria tenuis. Arch[J].1988,150:580-583.
    [89]Lalezary S., Pirbazari M., McGuire M.J. Oxidation of five earth-musty taste and odorcompounds[J]. Am. Water Works Assoc,1986,78(3):62-69.
    [90]Helga Nase, Anton F Poet. Transient states of geosmin, pigments, carbohydrates and proteins in continuous cultures of Oscillatoria brevis induced by changes in nitrogen supply. ArchMicrobiod[J].1988,150:333-337.
    [91]雷腊梅,宋立荣,刘永定.铜绿微囊藻两种表型的生长生理特性及毒素组成比较 分析.水生生物学报,2001,25(3),205-209
    [92]徐盈,黎雯,吴文忠,等.东湖富营养水体中藻菌异味性次生代谢产物的研究.[Q]生态学报,1999,19(2),212-216
    [93]张银华,徐盈,黎雯,等Y湖泊水体中土霉味化合物%K甲基异茨醇的合成与测定[Q]分析测试技术与仪器,1997,3(2),86-92
    [94]Nakanishi.M et al Relationship between the maximum standing crop of musty-odor producing algae and nutrient concentrations in the southern basin water of Lake Biwa. Wat. Sci. Tech.,1999,40(6):179-184.
    [95]Slater G. P. Volatile compounds of cyanophyceae. Wat. Sci. Tech.,1983,16(6/7): 181-190.
    [96]Suffet I. H., et al. In Advance in Taste-and-Odor Treatmnet and Control. AWWA Research Foundation and Lyonnaise Des Eaux Cooperative Rearch Reoport, American Water Works Associ., Denver, Colo., USA.1995.
    [97]王成贵,曹勇,汪海波.巢湖西半湖水体富营养化污染状况及防治对策[J].安徽农业科学,2005,33(8):1475~1476.
    [98]纪岚,杨立武,李菁.南淝河水污染现状与可持续发展对策研究[J].安徽大学学报(自然科学版),2006,30(4):91~94.
    [99]梁存珍,王东升,桑义敏,等.饮用水中土霉味物质测定方法的优化[J].中国给水排水,2007
    [100]国家环境保护总局,水和废水检测分析方法编委会[M].水和废水检测分析方法.北京:中国环境科学出版社,2002.
    [101]U.S. Environmental Protection Agency. In Vitro Determination of Chlorophylls a1, b1, c1+c2 and Pheopigments in Marine And Freshwater Algae by Visible Spectrophotometry [R]. EPA Method 446.0,600/R-97-072, Ohio:1997,1-26.
    [102]S. H. HARPER and J. F. OUGHTON. Chem. Ind.574 (1950).
    [103]S. AKIYOSHaln d K. MENO. J. Chem. Soc. Jap. Pure Chem. Sect.73,126 (1952).
    [104]Cotsaris, E., Bruchet, A, Mallevialle, J. and Bursill, D.B. (1995). The identification of odorous metabolites produced from algal monocultures. Wat. Sci. Tech.,31(11),251-258.
    [105]Young, C, Suffet, I.H., Crozes, G. and Bruchet, A. (1999). Identification of a woody/hay odor-causing compound in a drinking water supply. Wat. Sci. Tech.,40(6), 279-285.
    [106]Watson, SB., Brownlee, B. and Stachwill, T. (2000). Quantitative analysis of trace levels of geosmin and MIB in source and drinking water using headspace SPME. Wat. Res.,34(10),2818-2828.
    [107]Persson, P.E. (1983). Off-flavours in aquatic ecosystems-an introduction. Wat. Sci. Tech.,15(6/7),1-11.
    [108]L. Li, N. Wan, N.Q. Gan, B.D. Xia and L.R. Song. Annual dynamics and origins of the odorous compounds in the pilot experimental area of Lake Dianchi, China[J]. Water Science & Technology,55(5) 43-50
    [109]Lalezary S., Pirbazari M., McGuire M.J. Oxidation of five earth-musty taste and odorcompounds[J]. Am. Water Works Assoc,1986,78(3):62-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700