脱氢枞酸热力学性质测定及其分子几何结构的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脱氢枞酸是歧化松香的主要化学成分,是一种重要的精细化工原料,在医药、农药、表面活性剂和在精细有机合成中间体等众多领域存在广泛应用。虽然脱氢枞酸用途广泛,但脱氢枞酸是以混合物的形式存在于歧化松香中,并且难以分离出高纯度脱氢枞酸,因此脱氢枞酸的热力学性质数据十分匮乏。因此,研究脱氢枞酸的基础热力学数据及其分子几何结构可为进一步开发与利用松香可再生资源提供理论基础。本文包含如下内容:
     采用逐级酸化沉淀法制备出高纯度的脱氢枞酸,用红外光谱IR以及紫外光谱对脱氢枞酸进行结构鉴定,证实所得产品为脱氢枞酸;由气相色谱GC进行定量分析,测出脱氢枞酸含量为99.99%;脱氢枞酸溶解于无水乙醇中的溶液的紫外光谱的吸收波长λ_(max)分别为268nm,276nm,与文献值相符。
     采用WRS-1B数字熔点仪测定脱氢枞酸的熔点为171.6℃;由PerkinElmer公司的Pyris DSC-7差示扫描量热分析仪测定脱氢枞酸的熔点以及熔化焓分别为171.4℃和△_mH=-19.74kJ/mol;采用氧弹燃烧量热仪测定脱氢枞酸的标准摩尔燃烧焓△_cH~0_m=11234.85kJ/mol,通过计算得到脱氢枞酸的标准摩尔生成焓△_fH~0_m_=-636.38kJ/mol。
     采用Pyris Diamond TG/DTA综合热分析仪器测定了脱氢枞酸在静态空气气氛下不同升温速率的热重(TG)曲线,研究了脱氢枞酸的在静态空气气氛的热分解反应,获得了脱氢枞酸在静态空气气氛下热分解反应动力学三参数:活化能E=106.92kJ/mol,指前因子A=7.60×10~8/s,机理函数G(α)=3(1-α)~(2/3)。
     采用MINDO/3、MNDO、PM3三种半经验分子轨道方法对枞酸分子结构进行优化计算,并通过与枞酸分子结构的文献值进行比较发现,PM3方法比MINDO/3、MNDO较适宜,是研究枞酸类分子比较好的半经验分子轨道方法。此基础上,采用PM3方法对脱氢枞酸结构进行研究,计算优化了脱氢枞酸的结构。优化结果表明,脱氢枞酸分子中A环为椅式结构,B环为半椅式结构,C环为平面结构;构成脱氢枞酸苯环的C8,C9,C11,C12,C13,C14基本处于同一平面,在这个苯环上的相关原子C7,C10,C15与苯环也是同处于一个平面;C5上的H与C10上的甲基CH_3处于反式连接状态。
Dehyroabietic acid is a very important fine chemical raw materials and it has a prosperous future in the field of medicine,pesticide,surfactant and fine organic synthesis and so on.Dehyroabietic acid have wide range application in many area,but it is hard to separate from disproportionated rosin.Therefore,the study of basal technical data and the geometry of the dehyroabietic acid is very insistent and necessity.On the basis of a lot of experiments, many basal technical data for dehyroabietic acid is obtain by experiment.The geometry of the dehyroabietic acid is study by the quantum chemistry methods.This paper covers the contents as follows:
     High purity dehydroabietic acid was prepared from disproportionated rosin by means of fractional acidification.Quantitative and qualitative analyses of the product by the IR and UV,the purity of the dehydroabietic acid is 99.99%determinated by means of GC.
     To get the chemical thermodynamic data,firstly,the melting point of the dehyroabietic acid were determinated to be 171.6℃,171.39℃by the digital melting point instructor and DSC.The melting enthalpy of dehyroabietic acid was determinated to be△_mH=-19.74kJ/mol by the DSC techniques.Second,the standard combustion enthalpy was measured to be△_cH~0_m=-11234.85kJ/mol by means of Oxygen Bomb Calorimeter.The standard formation enthalpy was calculated to be△_fH~0_m=-636.38kJ/mol.
     The non-isothermal decomposition kinetics of dehydroabietic acid in Ar was investigated by TG-DTG techniques with various heating rates of 5℃/min,15℃/min and 20℃/min.The non-isothermal kinetics parameters were analyzed by means of Achar-Brindley-Sharp and Satava-Setak respectively,and the thermal decomposition mechanism of dehydroabietic acid was also studied with the Satava-Sestak method.The results show that the thermal decomposition mechanism of dehydroabietic acid was controlled by random nuclear producing and growing process,the apparent activation energy and pre-exponential factor are E=106.92kJ/mol and lnA=20.45s~(-1),respectively,the reaction order is n=2/3,and the kinetic equation can be expressed as,G(α)= 3(1-α)~(2/3).
     The optimization of geometrical structure of abietic acid was carried out by three semi-emperical molecular orbital methods of MINDO/3,MNDO,PM3.It is showned that the PM3 methods is better than the MINDO/3 and the MNDO methods for geometrical structure of rosin acids.Therefore,the geometrical structure of dehydroabietic acid is optium by PM3 methods.The optimization of geometrical structure of dehydroabietic acid as fellows:the A ring of geometrical structure of dehydroabietic acid is chair conformation;the B ring of geometrical structure of dehydroabietic acid is half-chair confomation;the C ring of geometrical structure of dehydroabietic acid is plane conformation.The benzene C8-C14 of dehyroabietic acid is in the same plane.Otherwise,the C7,C10,C15 is also in the same plane with the benzene group of dehyroabietic acid.
引文
[1]Trost B M.The Atom Economy-A Search for Synthetic Efficiency[J].Science,1991,254(5037):1471-1477
    [2]王琳琳,陈小鹏,刘幽燕,等.松香树脂酸的单离与应用[J].化工进展,2005,24(11):1301-1305
    [3]宋湛谦,梁志勤.中国脂松香歧化反应机理的研究[J].林产化学与工业,1997,17(3):13-17
    [4]贺近恪,李启基.林产化学工业全书(第二卷)[M].北京:中国林业出版社,2001.1082-1083
    [5]李齐贤.松脂加工工艺学[M].北京:中国林业出版社,1988.50-51
    [6]Halbrook N J,Lawrence R V.The isolation of dehydroabietic acid from disproportionated rosin[J].Journal of Organic Chemistry,1966,31:4246-4247
    [7]山德耳曼著.天然树脂、松节油和木浆浮油化学和工艺学[M].北京:中国林业出版社.1982.26-36
    [8]Harold H,Zeiss,Tenafly N J.Separation of Rosin Acids[P].US:2580496,1952
    [9]Yamada A,Ezaki Y,Matsuo K,et al.Supercritical fluid chromatography of free resin acids on an ODS-silica gel column[J].Journal of Chromatography A,1995,709(2):345-349
    [10]Hrobonova K,Lehotay J,Skacani I.HPLC determination and ms identification of dehydroabietic acid and abietic acid in propolis[J].Journal of Liquid Chromatography and Related Technologies,2005,11(28):1725-1735
    [11]刘雁.歧化松香的制备与脱氢枞酸的提纯研究[D].南宁:广西大学,2004
    [12]陈月圆,祝远姣,王琳琳,等.超声波强化反应结晶耦合单离脱氢枞酸研究[A].第三届全国化学工程与生物化工年会论文摘要集(上);2006,325-329
    [13]贺近恪,李启基.林产化学工业全书(第二卷)[M].北京:中国林业出版社,2001.1269-1273
    [14]程芝.天然树脂生产工艺学(第二版)[M].北京:中国林业出版,1991.250-252
    [15]马宝歧.农副产品加工手册[M].北京:化学工业出版社,1987.158-159
    [16]宋湛谦.利用松脂资源发展精细化工[J].林产化学与工业,1994,14(1):72-74
    [17]田边制药株式会社.用于防治干眼病或其引起的疾病的药物组合物方法和装置[P].CN:96123349.1996
    [18]Gigante B,Santos C,Silva A M.Catechols from abietic acid:Synthesis and Evaluation as Bioactive Compounds[J].Bioorganic and Medicinal Chemistry,2003,11(8):1631-1638
    [19]张静夏,周永言,蔡干.右旋脱氢松香酸降解胺的合成[J].合成化学,1997,5(2):120-122
    [20]张静夏,周永言,蔡干.手性胺-铜配合物的合成及其在菊酸不对称合成中的应用[J].分子催化,1997,11(1):41-44
    [21]林东恩,蔡玉壁,蔡干.菊酸构型的转化及消旋反式菊酸的光学拆分[J].华南理工大学学报,1999,27(3):100-105
    [22]Matsushita Y,Iwakiri Y,Yoshida S,et al.Synthesis of 12-deoxyroyleanone,cryptoquinone,11,14-dihydroxy-8,11,13-abietatrien-7-one,and related derivatives from dehydroabietic acid[J].Ecotoxicology and Environmental Safety,2005,61(1):83-88
    [23]Murai H,Ohata K,Enomto H,et al.Abietamide derivatives and their production and use [P].US:4210671,1986
    [24]Fonseca T,Giganta B,Matilde M.Marques synthesis and antiviral evaluation of benzimidazoles,quinoxalines and indoles from dehydroabietic acid[J].Bioorganic and Medicinal Chemistry,2004,12(1):103-112
    [25]Nibal A,Tapia,Artha M,et al.Hydroxylation of dehydroabietic acid by fusadum species [J].Phytochemistry,1997,46(1):131-133
    [26]Santos M A,Maria.Abietic,dehydroabietic acids and retene in vitro effects on Anguilla anguilla liver microsomal erod activity[J].Fresenius Environmental Bulltion,2005,14(8):698-702
    [27]梁梦兰,叶建峰.松香衍生物的季铵盐阳离子表面活性剂的合成与性能测定[J].化学世界,2000,41(3):138-141
    [28]王延,周永红,宋湛谦.盐酸介质中脱氢松香基咪唑啉对Q235钢缓蚀性能研究[J].腐蚀与防护,1998,19(6):247-249
    [29]李春成,朱光,李贞宜,等.脱氢枞酸型聚丙烯成核剂的研究[J].高技术通讯,2001,11(12):87-90
    [30]Peter S,Piispanen U R,Mikael C,et al.Synthesis and surface measurements of surfactants derived from dehydroabietic acid[J].Journal of Surfactants and Detergents,2003,16(2):125-130
    [31]段文贵,岑波,赵树凯,等.去氢枞酸基新型甜菜碱类两性表面活性剂的合成[J].现代化工,2004,24(4):39-42
    [32]赵淑英,范玉华,许崇娟,等.去氢枞酸合成两性表面活性剂及其性质[J].林产化学与工业,1995,15(2):19-24
    [33]Esteves A M,Narender N.Synthetic derivatives of abietic acid with radical scavenging activity[J].Journal Nature Prodcuts,2001,64(3):761-763
    [34]Zaharescu T,Jipa S,Setnescu R.Synergistic effects on thermal stability of ethylene-propylene elastomers stabilized with hidered phenols and secondary amines[J].Polymer Testing,2002,21(2):149-153
    [35]Feio S S,Gigante B,Roseiro J C.Method on multi-well plates for the evaluation of the antimicrobial activity of resin acid derivatives[J].Joural of Microbiological Methods,1997,28(3):201-206
    [36]Matsumoto T,Takeda Y A.New synthesis of 3-ox-osapriparaquinone a diterpene from salvia prionitis-hance(Labiatae)[J].Chemistry Pharmacy Bulltion,1996,44(8):1583-1590
    [37]史新利,张文戈,韩玉谦,等.8-硝基脱氢松香酸的合成[J].郑州纺织工学院学报,1996,7(3):55-57
    [38]Matsumoto T,Imai S.The Conversion of(+)-Dehydroabietic acid into Steroidal Hormones[J].Bulltion of the Chemistry Society Japan,1988,61(3):723-727
    [39]邹志琛,鲁绍芬,余立新,等.光学纯去氢枞酸的制备与表征[J].化学试剂,1996,18(4):241-242
    [40]贺近恪,李启基.林产化学工业全书(第二卷)[M].北京:中国林业出版社,2001.1102-1103
    [41]大连理工大学无机化学教研室.无机化学(第五版)[M].北京:高等教育出版社,2006.154-171
    [42]南京林产工业学院.林产化学工业手册[M].北京:中国林业出版社,1980.96-97.
    [43]陈小鹏,王琳琳,祝远姣,等.一种高含量脱氢枞酸的浅色歧化松香和对伞花烃同时制造的方法[P].CN:2004100783722,2004
    [44]陈月圆.反应-结晶耦合单离脱氢枞酸的研究[D].南宁:广西大学,2007
    [45]马沛生.化工数据[M].北京:中国石化出版社,2003.5-6
    [46]Noah J,Halbrook,Ray V,et al.Process for the preparation and Isolation of dehydroabietic acid[P].US:3579571,1971
    [47]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985.391-393
    [48]天津大学物理化学教研室.物理化学[M].北京:高等教育出版社,2001.78-80
    [49]陆昌伟,奚同庚.热分析质谱法[M].上海:上海科技技术文献出版社,2002.61-72
    [50]陶友田,占丹,张克立.消旋卡多曲在空气中的热分解动力学[J].化学学报,2006,64(5):435-438
    [51]李余增.热分析[M].北京:清华大学出版社,1987.94-97
    [52]天津大学物理化学教研室.物理化学[M].北京:高等教育出版社,2001.318-319
    [53]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.65-67
    [54]刘志平,黄世萍,汪文川.分子计算科学-化学工程新的生长点.化工学报,2003,54(4),464-467
    [55]段文贵,谢小光.松香型树脂酸的MNDO研究[J].化学研究与应用,2003,15(3):197-199
    [56]刘天伟,韩利平,屈凌波,等.青蒿素及其衍生物的量子化学及构效关系研究[J].计算机与应用化学,2005,22(12):1123-1126
    [57]赵亮,高金森,徐春明.分子计算理论方法及其在化工计算中的应用[J].计算机与应用化学,2004,21(5):764-772
    [58]刘世熙,粟旸,曹槐,等.核酸四碱基体的量子化学计算方法比较[J].结构化学,2001,20(4):313-318
    [59]Reynolds C H.Semiempirical MO Methods:The Middle Ground in Molecular Modeling [J].Joural Molecular Structure,1997,401:267-277
    [60]Bingham R C,Dewar M J S.Ground States of Molecules XXV.MINDO/3.An Improved Version of the MINDO Semiempirical SCF-MO Method[J].Joural American Chemistry Society,1975,97:1285-1293
    [61]Dewar M J S,Thiel W.Ground States of Molecules.The MNDO Method.Approximations and Parameters[J].Joural American Chemistry Society,1977,99:4899-4907
    [62]Stewart J J P.Optimization of parameters for semiempirical methods Ⅰ method[J].Joural Computer Chemistry,1989,10:209-220
    [63]Stewart J J P.Optimization of parameters for semiempirical methods Ⅱ applications[J].Joural Computer Chemistry,1989,10:221-264
    [64]Okada K,Takekuma S.Crystal structure and conformational analysis of 7,13-abietadien-18-oic acid[J].Bulltion oft he Chemical Society of Japan,1994,67(3):807-812

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700