灌水及不同氮源对马铃薯品质和产量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯作为粮食、蔬菜兼用作物,随着旱地农业的发展,其已成为我国重要的食品、工业原料。我省作为马铃薯的种植大省,近年来对马铃薯的产量、品质研究成为马铃薯科研和生产部门共同关心的问题。为了探明氮素在马铃薯种植中营养规律;提高氮肥的利用率;增加农民收入;防止或减轻环境污染;保持农业可持续发展,本试验通过采用裂区设计的大田试验,对马铃薯在不同氮素形态下吸收利用情况进行研究,得出不同氮素形态对马铃薯产量及其品质的影响,从而对马铃薯种植的合理配肥提供一定的理论依据,试验结果表明:
     1.不同铵硝比及灌水条件对马铃薯不同生育期土壤全氮含量的影响
     播前土壤养分测定中,全氮含量为1.18g/g(施肥前测定),经过马铃薯在生育期生长吸收,土壤中全氮含量有所变化整体趋势表现为下降。在块茎形成期,各处理中土壤中全氮含量出现变化,整体表现为施氮后土壤氮素含量增加,在没有外源氮素的补充下,马铃薯植株生长吸收氮素,使得土壤氮素含量下降。在块茎形成期到块茎增长期,处理3中土壤全氮含量降低了0.33g/g,处理2中土壤全氮含量降低了0.25g/g,土壤质地、降水条件相似时,氮素减少原因可能是不同铵硝比处理使马铃薯吸收氮素的速率有所不同,可以认为在块茎形成期到块茎增长期,苗期补水处理对土壤全氮含量动态变化影响不大。
     2.不同铵硝比及灌水条件对马铃薯形态指标的影响
     在灌水条件下,不同梯度硝铵比的六个处理中,在处理2中马铃薯株高最高,为67.44cm,较对照(CK)增加10.2%;其中在处理3中马铃薯茎粗最粗,为14.33mm,较对照(CK)增加20.8%。
     在无灌溉不同梯度铵硝比的六个处理中,处理7中马铃薯株高最高,为65.75cm,较对照(CK)增加7.4%;在处理11中马铃薯茎粗最粗,为14.21mm,较对照(CK)增加19.8%。
     3.不同铵硝比及灌水条件对马铃薯叶绿素的影响。
     在灌水条件下不同梯度硝铵比的六个处理中叶绿素值均高于对照,其中在处理2中马铃薯叶绿素含量最高,为49.96mg/g,较对照(CK)增加9.8%。
     在无灌溉条件下不同梯度硝铵比的六个处理中马铃薯的叶绿素含量在处理9中含量最高,为48.13mg/g,较对照(CK)增加5.8%。
     4.不同铵硝比及灌水条件对马铃薯品质指标的影响
     在灌水的六个处理中,处理2中马铃薯淀粉含量、Vc含量最高,为15.15%、14.58g/100g,分别较对照(CK)增加12.6%、10.5%;处理6中马铃薯干物质含量最高,为21.14%,较对照(CK)增加9.6%。
     在无灌溉条件下不同梯度硝铵比的六个处理中,处理10中马铃薯淀粉含量、干物质含量最高,为14.87%、20.71%,分别较对照(CK)增加10.5%、7.4%;处理9的Vc含量最高达13.91g/100g,较对照增加5.4%。
     5.不同铵硝比及灌水条件对马铃薯商品薯率的影响
     从灌水条件下不同梯度铵硝比的角度看,处理1的商品薯率最高达90%,较对照提高了23个百分点,但是其单株结薯数最低,为5.44个,其次是处理2的商品薯率最高,达78%,较对照提高了5%;且处理2的单株平均结薯数最高,为9.11个。
     在无灌溉条件下不同梯度硝铵比的六个处理中,处理10的商品薯率最高达83%,较对照提高了10%,马铃薯单株结薯个数处理11单株结薯个数最高,为7.00个。
     6.不同铵硝比及灌水条件对马铃薯产量的影响
     在灌水条件下马铃薯的产量,在处理2中马铃薯产量最高,为42.71kg,较对照(CK)增加18%。
     在无灌溉的六个处理中处理8中马铃薯产量最高,为39.73,较对照(CK)增加9.8%。
     综上所述,经过对试验数据分析比对可知:处理l有1项指标最优;处理2有5项指标最优;处理3有1项指标最优;处理4有2项指标最优;处理6有1项指标最优,且产量最高的处理为处理2。因此,最佳处理为处理2。
With the development of dryland farming, Potato, as food and vegetables, has become a major food, industrial raw materials in china. Potato was cultivated in a lager scale in Shanxi provience. In recent years, the output and quality of potato had been investigated by many research and production departments. The aim of this research is to clarify nitrogen nutrition in potato cultivation; to improve nitrogen use efficiency; to increase the income of peasants; to prevent from environmental pollution; to maintain sustainable agricultural development. In Shanxi Province, Xinzhou City, Academy of Agricultural Experiment Station Wuzhai County potato base,the test on potato absorption and utilization of different nitrogen forms was conducted by a randomized complete block design field experiment. The results will provide some reasonable theoretical basis. This experimental results showed that:
     1. Effects of different kentite ratio and irrigation conditions on soil nitrogen content during development stages of potato.
     Determination of soil samples before sowing points, the total nitrogen content of test soil is 1.18g/kg (measured before fertilization). Total nitrogen in test soil decreased after absorption of potato growing during the potato growth period. In the tuber formation stage, total nitrogen of test soil changed in different treatments. Nitrogen content increased after nitrogen fertilization.Due to nitrogen absorption of potato, nitrogen content decreased without additional nitrogen.During the tuber formation and growth stages, nitrogen decreased 0.33 g/kg in the treatment 3 and 0.25 g/kg in the treatment 2.Under the similar soil texture and rainfall conditions, reduced nitrogen content may result from effects of different kentite ratio on nitrogen absorption of potato.While,effect of seedling irrigation on the dynamic changes of total nitrogen in test soil is insignificant.
     2. Effects of different kentite ratio and irrigation conditions on morphological index of potato.
     Under the different irrigation conditions, the potato plant height is the hightest in treatment 2(67.44cm) and increase 10.2% compared with the control (CK). The potato stem diameter is thickest in treatment 3(14.33cm) and increase 20.8% compared with the control (CK).
     Different gradient kentite ratio in the absence of irrigation, potato plant height is the highestin treatment 7(65.75cm) and increase 7.4% compared with the control (CK). The potato stem diameter is thickest in treatment 11(14.21cm) and increase 19.8% compared with the control (CK).
     3. Effects of different kentite ratio and irrigation conditions on potato chlorophyll.
     Under the different irrigation conditions, chlorophyll content of potato in all treatments are higher than control. The chlorophyll content of potato in treatment 2 is the highest(49.96) and increase 9.8% compared with the control (CK).
     Different gradient kentite ratio in the absence of irrigation, The chlorophyll content of potato in treatment 9 is the highest(48.13) and increase 5.8% compared with the control (CK).
     4. Effects of different kentite ratio and irrigation conditions on the quality Index of potato.
     Under the different irrigation conditions, the potato starch content and Vc content are highest(15.15% and 14.58g/100g respectively) in treatment 2 and increase 12.6% and 10.5% respectively compared with the control (CK). The dry matter content of potato is highest in treatment 6(21.14%) and increase 9.6% compared with the control (CK).
     Different gradient kentite ratio in the absence of irrigation, the potato starch content and dry matter content of potatov are highest(14.87% and 20.71% respectively) in treatment 10 and increase 10.5% and 7.4% respectively compared with the control (CK). The Vc content of potato is highest in treatment 9(13.91g/100g) and increase 5.4% compared with the control (CK).
     5. Effects of different kentite ratio and irrigation conditions on the rate of the potato product.
     Under the different irrigation conditions, the rate of the potato product is the highest(90%) in treatment 1 and increase 23% compared with the control (CK),while, the number of tubers per plant is lowest (5.44)。the rate of the potato product is the higher(78%) in treatment 2 than others and the number of tubers per plant is highest (9.11).
     Different gradient kentite ratio in the absence of irrigation, the rate of the potato product is the highest(83%) in treatment 10 and increase 10% compared with the control (CK). The number of tubers per plant is highest in treatment 11 (7.00).
     6. Effects of different kentite ratio and irrigation conditions on yield of potato.
     Under the different irrigation conditions,the potato output is highest in treatment 2(42.71kg) and imcrease 18% compared with the control (CK).
     Different gradient kentite ratio in the absence of irrigation, the potato output is highest in treatment 8(39.73kg) and imcrease 9.8% compared with the control (CK).
     In summary,the experimental data indicated that treatment 1 has 1 optimal index, treatment 2 has 5 optimal indexes, treatment 3 has 1 optimal index, treatment 4 has 2 optimal indexes and treatment 6 has 1 optimal index.The treatment 2 can be considered as the best one because of the highest yield of potato in treatment 2.
引文
[1]信乃诠,张燕卿,王立祥等.中国北方旱区农业研究[M].中国农业出版社,2002.1-7.
    [2]Foster G R and Meyer L D.Methematical simulation of upland erosion by fundamental erosionmechanics.In:present and Prospective Technology for Prodicting Sediment Yields and Sources.USDAreport no.Arss 40.1975,190-207.
    [4]李生秀.中国旱地农业[M].中国农业出版社,2004.13-17.
    [5]信乃诠.中国北方旱农区域治理与发展[M],北京,中国农业科技出版社,1997.25-31.
    [6]康志文.山西省旱作农业发展战略探讨[D],西北农林科技大学,2006.
    [7]汪德水.旱地农田肥水协同效应与耦合模式[M],北京:气象出版社,1999.
    [8]王笳,王树楼,丁玉川等.旱地玉米免耕整秸秆覆盖土壤养分、结构和生物研究[J],山西农业科学,1994,22(3):17-19
    [9]张志田,高绪科,蔡典雄等.旱地麦田保护性耕作对土壤水分状况影响研究[J],土壤通报,1995,26(5):200-203
    [10]孙振.马铃薯的营养价值及开发利用[M].太原,山西省经济出版社,2003.
    [11]关明阳.世界马铃薯的生产与展望[M].哈尔滨,哈尔滨工程大学出版社,2003.
    [12]宋伯符.充满朝阳的马铃薯产业[A].中国马铃薯研究与产业开发[M].哈尔滨,哈尔滨工程大学出版社,2003,185-188.
    [13]陈伊里,屈冬玉.中国马铃薯研究与产业开发[M].哈尔滨,哈尔滨工程大学出版社,2003.
    [14]李冬虎,霍宗全.简述美国马铃薯产业的发展[A].中国马铃薯研究与产业开发[M].哈尔滨,哈尔滨工程大学出版社,2003,296-298.
    [15]屈冬玉,谢开云,金黎平.中国马铃薯产业入世后面临的挑战与对策[A].中国马铃薯研究与产业开发[M].哈尔滨,哈尔滨工程大学出版社,2003,173-184.
    [16]马爱平,史志良,崔欢虎,等.山西南部二季作区马铃薯早熟高产栽培技术[J].中国马铃薯,2002,16(2):103-104.
    [17]康志河,杨国红.加入WTO对我国马铃薯产业的影响分析[J].中国马铃薯,2002,16(1):52-53.
    [18]程天庆.马铃薯栽培技术[M].北京,金盾出版社,1996.
    [19]汤方德.马铃薯大全[M].北京,海洋出版社,1992.
    [20]罗龙,姚永久.山西高产优质高效种植模式图集[M].北京:中国经济出版社, 1996,270-272
    [21]杜珍,白小东,齐海英等.山西省马铃薯的品种区划[A].中国马铃薯研究与产业开发[M].哈尔滨,哈尔滨工程大学出版社,2003,355-373.
    [22]郭裕怀.山西农书[M].太原,山西省经济出版社,1992.
    [23]王永生.马铃薯规模化种植,标准化生产,产业化经营[J].甘肃农业,2004,(5):13-14.
    [24]杜珍.建国五十年山西马铃薯科技成就回顾[J].中国马铃薯,2000,14(1):23-26.
    [25]马莺.马铃薯加工业的现状和发展前景[J].中国马铃薯,2001,15(2):119-120.
    [26]张软斌.山西马铃薯产业可持续发展研究[D].西北农林科技大学,2006.
    [27]张永成,纳添仓,阮建平等.马铃薯高产施肥与措施研究[J].中国马铃薯,2001,15(5):256-278.
    [28]姬青云,张爱莲.山西省马铃薯增产的途径探讨[J].山西农业科学,2003,(4):23-30.
    [29]王凤义,石英,卢翠华.我国马铃薯新型栽培种资源的研究和利用[J].作物杂志,1999,(2)14-18.
    [30]梁秀芝,孙振,杜珍等.山西省马铃薯产业可持续发展探讨[A].中国马铃薯研究与产业开[M].哈尔滨,哈尔滨工程大学出版社,2003,213-216.
    [31]王春珍,李荫藩.21世纪我国马铃薯产业化开发面临的问题和对策[A].中国马铃薯研究与产开发[M].哈尔滨,哈尔滨工程大学出版社,2003,189-192.
    [32]安忠民,白淑霞,冯学咱等.试论我国马铃薯产业的发展道路[J].中国马铃薯.2000,14(1)48-53.
    [33]WestermanD.T.andG.E.KleinkoPete.NitrogenfertilizereffieieneiesonPotato[J].Amerie anPOtatoJournal,1988,65:332-358
    [34]赵明,郭志乾,陈学君.我国马铃薯产业化必须重点解决的几个问题[J].中国马铃薯,2001,15(5):311-313.
    [35]山西省统计年鉴编委会.山西统计年鉴.太原,山西省统计出版社,2003.
    [36]FAO生产年鉴.北京,中国农业科学院[M],2003.
    [37]姜兴亚,曹晨光.发挥地域优势大力发展马铃薯支柱产业[J].中国马铃薯,2001,15(3):121-123.
    [38]赵春明.山西省马铃薯竞争力分析[J]中国马铃薯,2006,18(6).
    [39]王凤义.发展马铃薯大有可为[J]现代农业,2006.
    [40]王忠.植物生理学[M].北京,中国农业出版社,2000
    [41]周娜娜,秦亚斌.马铃薯氮素营养诊断及追肥推荐模型的研究[J].宁夏农业科技,2004(2):l-2
    [42]MitsuruOsaki.Effectsofammoniumandnitrateassimilationonthegrowthandtuberswellin gofPotatoPlants[J].5011Sei.PlantNutr.1985,41(4):709-719
    [43]李宝珍,辛伟杰,徐国华.氮饥饿水稻利用不同形态氮素的差异及生理机制[J].土壤学报,2007,44(2)
    [44]李生秀.我国土壤植物营养研究的进展现状及展望[M].土壤植物营养研究文集.西安,陕西科学技术出版社.1999,1-36
    [45]曹翠玲.氮素及形态对作物的生理效应[D].西北农林科技大学,2002
    [46]董海荣,李存东,李金才.不同形态氮素比例对棉花苗期生长及物质积累的影响[J].河南农业大学学报.2003,1:45-49
    [47]李生秀,王和平.旱地土壤的合理施肥。IX:不同用量的铵、硝态氮对玉米的影响[J]干旱地区农业研究,1993,11(增刊):45-49
    [48]池田英男.培养液中硝态氮和铵态氮浓度与比率对蔬菜生长、叶片中氮成分及培养液pH的影响[J]园艺学会杂志,1983,52(2):159-166.
    [49]Hageman.R.H.氮素形态对植物生长的影响[M].植物营养生理进展,蒋福龙译,1985,53-63
    [50]宋海星,中斯乐,阎一石,马淑英.硝态氮与氨态氮对大豆幼苗生长及氮素积累的影响[J].大豆科学,1997,2:178-180。
    [51]张春兰,高祖明,张耀栋,唐为民.氮素形态和铵硝配比对菠菜生长和品质的影响[J]南京农农业大学学报,1990,3(3):70-74
    [52]Hageman.R.H.氮素形态对植物生长的影响[M].植物营养生理进展,蒋福龙译,1985,53-63
    [53]Westerman,D.T.andG..E.KleinkoPf,ete.NitrogenfertilizereffieieneiesonPotato[J]. AmerieanPOtatoJournal,1988,65:377-386
    [54]Dyson,P.W.andD.J..AnanalysisoftheeffectsofnutrientsuPPlyonthegrowthofPotatoeroPs [J].AnnalsofBotany,1971,69:47-63
    [55]ZhangH.L.,D.Smeal,R.N.Arnold,etc.PotatonitrogenmanagementbymonitoringPetiolele vel[J]. JournalofPlantNutriton,1996,19:1405-1412
    [56]Opark.K.J., H.V.Davies, D.A.M.prior.Theinflueneeofappliednitrogeninexportand Partitioningofeuentassimilatebyfield-grownPotatoPlants[J].AnnalsofBotany,1987,59:311-3 23
    [57]王培伦,徐坤,董道峰.豆类、薯芋类蔬菜保护地栽培技术[M].济南,山东科学技术出版社,2003
    [58]王军.马铃薯的矿质营养[J].马铃薯杂志,1984,4:5-6
    [59]高炳德.马铃薯产量形成与环境条件及营养条件的关系[J].马铃薯杂志,1984,53-59
    [60]王季春.不同施氮量对马铃薯的影响[J].马铃薯杂志,1994,8(2):76-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700