三峡库区典型小流域坡地土壤营养物含量时空分布特征及潜在流失风险分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中氮磷营养物含量超标是引起水体富营养化的关键因素之一,而农业面源污染已成为库区水体营养物的重要来源。农业面源污染物质氮、磷流失是与土壤营养物含量之间存在较强的联系,土壤营养物的累积可增大流失风险。因此,测定土壤营养物含量可为氮、磷流失风险及其对水环境的影响提供依据。
     论文对三峡库区重庆市忠县石宝镇新政村小流域农业种植区域5种不同土地利用类型的20个点位的土壤本底值进行了一年的原位监测,探讨库区典型小流域坡耕地不同土地利用类型土壤营养物含量年内变化趋势和空间分布规律,为研究农业面源污染物质的迁移过程及转化行为奠定基础;进一步分析了土壤样品易溶性营养物,调查了小流域农田排水沟渠径流营养物流失特征,以评估研究区域土壤营养物潜在的流失风险。论文得到以下主要结论:
     ①研究范围内,小流域土壤有机质含量呈小幅先升高后降低的趋势,季节性差异不明显,土壤全氮、全磷含量随时间均呈小幅增加趋势,因季节不同存在一定差异。
     ②研究区域小流域土壤有机质含量均值为(14.44±3.57)g/kg,土壤全氮均值为(1.03±0.26)g/kg,土壤全磷均值为(0.54±0.18)g/kg。不同土地利用类型土壤有机质、土壤全氮、土壤全磷含量存在显著差异。与不同地区小流域土壤营养物含量相比较,研究区域内土壤氮、磷平均含量均处于较低水平。
     ③小流域从坡上果林地到坡下水稻田的顺坡采样带上,不同坡位处土壤营养物含量之间有较大的差异。土壤有机质、土壤全氮含量呈先逐渐增大再降低的趋势;土壤全磷含量呈先降低后增加的趋势。
     ④小流域土壤矿质氮含量平均值为(15.99±13.64) mg/kg,最高值为最低值的12.6倍,各土地利用类型土壤矿质氮含量均值依次果林地>水田>库岸草地>旱田>消落带;小流域土壤有效磷含量均值为(32.14±32.63)mg/kg,土壤水溶磷含量均值为(2.46±2.21)mg/kg,不同土地利用类型土壤有效磷和水溶磷含量由高到低依次是果林地>旱地>水稻田>库岸草地>消落带。
     ⑤小流域农田排水沟渠经流TN监测平均值达到《地表水环境质量标准》中的Ⅲ类限值的12倍,TP多次监测平均值达到地表水环境质量标准中的Ⅲ类限值的近2倍;径流中溶解态氮占TN的54.7%,溶解态磷占TP的63.3%,农田土壤营养物主要以溶解态流失为主。
     ⑥研究范围内果林地、水田和库岸草地为铵态氮流失的高风险区域,旱地、消落带和果林地是硝态氮流失的高风险区域;研究范围内土壤磷素流失发生所对应的有效磷、水溶磷临界值分别为60.79mg/kg、3.04 mg/kg,果林地土壤样品50%超过临界值,流失风险最高,旱田仅少量样品超过临界值,总体上流失风险较小,而水稻田流失风险最小。
The exceeding of nitrogen and phosphorus is one of the key factors that cause the eutrophication. Agricultural non-point source pollution has become the most important source of nutrient for the reservoir and has brought huge damage to the water environment. Studies have shown that the soil nutrient loss has strong connection with its content, and the accumulation of soil nutrient can increase the loss potential. Therefore, the determination of soil nutrient content can be used to assess the loss risk and environmental impact degree.
     Soil nutrient background value of 20 sampling points of five different types of land use were monitored in situ in 2009, and the changing trends by time and spatial distribution of soil organic matter, soil nitrogen and soil phosphorus were studied to lay the foundation for understanding the agricultural non-point pollutant migration process and the transformation behavior. The form of soil nitrogen and phosphorus were analyzed of soil samples of different season. Rainfall runoff samples were collected in August from agricultural drainage ditches in the watershed, and the characteristic of the runoff nutrient loss were analyzed. Appropriate methods were adopted to evaluate the potential of soil nutrient loss in research area and help to understand how the loss of agricultural non-point source pollution of nitrogen, phosphorus influence the receiving water body. The thesis draws following conclusions:
     The content of soil organic matter of the whole watershed has no obvious difference among seasons and the changing of content of forest land, rice paddies, dry land with time are small. The soil nitrogen, phosphorus content slightly increase over time and there is some difference in different seasons.
     The average content of soil organic matter in research area is (14.44±3.57) g/kg, the average content of soil nitrogen in research area is (1.03±0.26) g/kg, and the average content of soil nitrogen in research area is (0.54±0.18) g/kg. The content has significant differences among different types of land use. Compared with small watershed of other different regions, soil nitrogen and soil phosphorus content of research area is much lower.
     Along the top of the slope to base of the slope in the watershed, the soil nutrients show different disciplines. Soil organic matter totally increased with a relatively slower decrease after the increase. Soil nitrogen is showing a trend of gradual increase, whereas soil phosphorus is totally decreasing following with a relatively slower increase.
     The average content of soil mineral nitrogen is (15.99±13.64) mg/kg, the ranking of the content of different land use from high to low is forest land, paddy field, grass land, dry land and riparian land. The average content of Olsen-P and water soluble phosphate is (32.14±32.63) mg/kg and (2.46±2.21) mg/kg, and the ranking of these content of different land use from high to low is forest land, dry land ,paddy field, grass land and riparian land.
     The total nitrogen (TN) in runoff from agricultural drainage ditches is 12 times of the third limit for surface water environment quality standards, and the dissolved nitrogen in runoff accounts for 54.7% of TN. The total phosphorus (TP) in runoff from agricultural drainage ditches is 2 times of the third limit for surface water environment quality standards, and the dissolved phosphorus in runoff accounts for 63.3%% of TP. Soil nutrient are lost mainly in the form of dissolved shape .
     The soil of forest land, paddy field, and grassland will have high potential of loss with runoff erosion. The forest land, dry land and riparian land has much higher content of nitrate nitrogen where the potential of loss with runoff erosion will be higher. The critical loss content of soil Olsen-P is 60.79mg/kg and the according critical loss content of water soluble phosphate is 3.04 mg/kg. The ranking of the phosphorus loss risk content of different land use from high to low is forest land, dry land and paddy field.
引文
[1] M. A. Imteaz. Modeling of lake eutrophication including artificial mixing and effects of bubbling operations on algal bloom[J].Ph.D. Thesis, Saitama University, Japan, 1997, 1-12.
    [2]张代钧,许丹宇,任宏洋,等.长江三峡水库水污染控制若干问题[J].长江流域资源与环境,2005,14(5):605-610.
    [3]孟春红,赵冰.三峡水库蓄水后的富营养化趋势分析[J].农业环境科学学报, 2007,26:863-867.
    [4]邓春光,龚玲.三峡库区富营养化发展趋势研究[J].农业环境科学学报, 2007, 26(增刊): 279-282.
    [5]曹彦龙.三峡重庆库区面源污染分析及数字模拟研究[硕士论文].重庆大学,2006.
    [6] Smith.The nitrogen and phosphorus dependence of algal biomass in lakes: An empirical and theoretical analysis[J].Limnol. Ocean ogr. 1982, 27:1101-1112.
    [7] USEPA. Technical support document for water quality-based toxics control (EPA/505/2- 90-001 PB91-127415)[R].Washington D C:US EPA: 1991:73-74.
    [8]富国.湖库富营养化敏感分级水动力概率参数研究[J].环境科学研究,2008,18:80-85.
    [9] Boca RatonFL. Jorgensen. Application of ecology in environmental management[M]. USA:CRC Press,1983:45-52.
    [10] Wetzel R G.Limnology.2001.Lakes and river ecosystems[M]. CA Academic Press: 204-238.
    [11]崔键,马友华,赵艳萍,等.农业面源污染的特性及防治对策[J].中国农学通报, 2006,22(1):335-340.
    [12]闰伍玖,鲍祥.巢湖流域农业活动与面源污染的初步研究[J].水土保持学报,2001,15(3):129-13.
    [13]刘润堂,许建中,冯绍元,等.农业面源污染对湖泊水质影响的初步分析[J].中国水利,2002,(6):542-546.
    [14]黄真理,李玉梁,陈永灿,等.三峡水库水质预测和环境容量计算[M].中国水利水电出版社,2006.
    [15]李崇明,黄真理,张晟,等.三峡水库藻类“水华”预测.长江流域资源与环境[J].2007,16(1):1-6.
    [16]曹彦龙,李崇明,阚平.重庆三峡库区面源污染源评价与聚类分析[J].农业环境科学学报, 2007,26:857-862.
    [17]李勇,王超,汤红亮.小流域地表土层营养物质输运规律研究进展[J].河海大学学报,2004,32 (6) :627 -630.
    [18]黄云凤,张珞平,洪华生.不同土地利用对流域土壤侵蚀和氮、磷流失的影响[J].农业环境科学学报,2004,23(4):735-739.
    [19]张亚丽,李怀恩.坡度对坡面土壤矿质氮素水蚀流失负荷的影响[J].水土保持通报,2007 (27)2:14-17.
    [20]王兴样,张桃林,张斌.红壤旱坡地农田生态系统养分循环和平衡[J].生态学报,1999, (3):336-341.
    [21]孟庆华,杨林章.三峡库区不同土地利用方式的养分流失研究[J].生态学报,2000,20(6):1028-1033.
    [22]梁涛,张秀梅.西若溪流域不同土地类烈下氮元素输移过程[J].地理学报,2002,57(4):389-396.
    [23]刘世海.黄土高原南部坡耕地土壤氮素径流损失特征研究[J].泥沙研究,2006,1:71-75.
    [24]曹慧,杨浩.太湖丘陵地区典型坡面土壤侵蚀与养分流失[J].湖泊科学,2002,14(3):243-246.
    [25]胡宏祥,洪天求.土壤及泥沙颗粒组成与养分流失的研究[J].水土保持学报,2007,(21)1:26-29.
    [26] Sharpley A N, Smith S J, Jones O R, Berg W A, Coleman G A.The transport of bioavailable phosphorus in agrieultural runoff[J]. Journal of Environmental Quality,1992,21:30-35.
    [27] Benjamin L. Turner,Mary A. Kay,Dale T. Westermann,Phosphorus in surface runoff from Caleareous arable soils of the semiarid western United States[J]. Journal of Environmental Quality,2004,33:1814-1821.
    [28] Pote D. H,Daniel T. C.,Niehols D J.,etal.,Relationship between phosphorus levels in three ultisols and phosphorus concentrations in runoff .Journal of Environmental Quality, 1999,28:170-175.
    [29] Pote D H, Daniel T C, Sharpley A N, et al. Relating extractable soil phosphorus to phosphorus losses in runoff[J].Soil Sci Soc Am Jour, 1996,60(3): 855-859.
    [30]高超,朱继业,朱建国,等.极端降水事件对农业非点源污染物迁移的影响[J].地理学报,2005(60):991-997.
    [31]蒋光毅,史东梅,卢喜平,等.紫色土坡地不同种植模式下径流及养分流失研究[J].水土保持学报,2004,(18)5:54-58.
    [32] Vladimir Novotny. Investing diffuse/nonpoint pollution control and water body restoration into watershed management[J]. Journal of the American Water Resources Association, 1999,35(4): 717-722.
    [33]张丽娟,毕淑芹,袁丽金,等.不同土地利用方式土壤侵蚀与养分流失的模拟试验[J],林业科学,2007,43 (1):17-21.
    [34]陈欣,王兆赛,杨武德,等.红壤小流域坡地不同利用方式对土壤磷素流失的影响[J].生态学报,2000.20(3):374-377.
    [35]申元村.三峡库区植物篱坡地农业技术水土保持效益研究[J].土壤侵蚀与水土保持学报, 1998,4(2):61-64.
    [36]鲍士旦.土壤农化分析[M](第三版).北京,中国农业出版社, 2005.
    [37]樊军,郝明德,党廷辉.旱地长期定位施肥对土壤剖面硝态氮分布与累积的影响[J].土壤与环境,2000,9(1):23-26.
    [38]李立平,张佳宝,邢维芹,等.土壤速效氮磷钾测定进展[J].土壤通报,2003,34(5):483-488
    [39]王红萍,梁涛,张秀梅,等.非点源污染研究中土壤溶解性无机氮的提取方法选择[J].地理研究,2005,24(2):236-242.
    [40]章明奎.砂质土壤中水溶性磷提取方法的比较[J].环境化学,2008,27(2):265-266.
    [41]雷明江,杜昌文,杨玉华,等.用三种浸提方法研究长期定位试验中土壤磷素有效性[J].水土保持学报,2007,27(2):85-88
    [42]国家环境保护总局.水和废水监测分析方法(第四版) [M].北京,中国环境科学出版社, 2002.
    [43]张丽萍,张锐波.城郊不同土地利用方式坡地土壤营养物质空间动态研究[J].水土保持通报,2007,27(1):39-42.
    [44] Corre M D, Schnabela R R, Shaffera J A. Evaluation of soil organic carbon under forests season and weranl-season grasses in the northeastern US[J].Soil Biology and Biochemistry, 1999,31(11):1531-1539.
    [45]马红亮,朱建国,谢祖彬,等.开放式空气CO2浓度升高对水稻土壤可溶性C、N和P的影响[J].土壤,2004,36(4):392-397.
    [46] Brubaker S C, Jones A J, Lewis D T, et al. Soil properties associated with landscape position[J]. Soil Sci. Soc. Am. J,1993,57: 235-239.
    [47] Ovalles FA, Collins ME. Soil-landscape relationships and soil variability in north central Florida[J]. Soil Sci. Soc. Am. J,1986,50: 401-408.
    [48] Miller PM, singerM J,Nielsen D R. Spatial variability of wheat yield and soil properties on complex hills[J]. Soil Sci. Soc. Am. J,1988,52:1133-1141.
    [49]王洪杰,李宪文,史学正.不同土地利用方式下土壤营养物质的分布及其与土壤颗粒组成关系[J].水土保持学报,2003,17(2):44-46.
    [50]赵莉敏,史学正,黄耀.太湖地区表层土壤营养物质空间变异的影响因素研究[J].土壤,2008,40(6):1008-1012.
    [51]杨刚,谢永宏,黄继山.洞庭湖区农田生态系统与自然生态系统中土壤营养物质空间分布格局的比较研究[J].农业现代化研究,2008,29(2):213-215.
    [52]李东,王子芳,郑杰炳.紫色丘陵区不同土地利用方式下土壤有机质和全量氮磷钾含量状况[J].土壤通报.2009,40(2):310-314.
    [53]高明,杨浩.滇池流域斗南不同土地利用下土壤营养物质的分布及其对环境的影响[J].安徽农业科学,2006,34(23):6255-6257,6259.
    [54]王庆仁,李继云.论合理施肥与土壤环境的可持续性发展[J].环境科学进展, 1999,7(2):116-124.
    [55] Djodjic Faruk, Lars Bergstrom. Phosphorus losses from arable fields in Sweden-Effects of Field-specific factors and long-term trends [J]. Environmental Monitoring and Assessment, 2005, 102:103-117.
    [56]姜翠玲,范晓秋,章亦兵.农田沟渠挺水植物对N、P的吸收及二次污染防治[J].中国环境科学,2004,24(6):702-704.
    [57]徐红灯,王京刚,席北斗,等.降雨径流时农田沟渠水体中氮、磷迁移转化规律研究[J].环境污染与防治,2007,29(1):18-21.
    [58]翟丽华,刘鸿亮,席北斗,等.沟渠系统氮、磷输出特征研究[J].环境科学研究, 2008,21(02):35-39.
    [59] Hargrave A P, Shaykewich C F. Rainfall induced nitrogen and phosphorus losses from Manitoba soils[J].Canada Journal of Soil Science,1997,77:59-65.
    [60]梁涛,王红萍,张秀梅,等.官厅水库周边不同土地利用方式下氮、磷非点源污染的模拟研究[J].环境科学学报,2005,25(4):483-490.
    [61] Sharpley A N, Paniel T,Sims T,et al. Agricultural phosphorus and eutrophication USDA[M]. Agricultural Research Service ARS,NO.149. Newyork:Marcel Dekker lnc,1999.
    [62] Heckrath N,Brookes P C. Development of an indicator for risk of phosphorus leaching[J]. Journal of Environmental Quality, 2000, 29: 105-110.
    [63]钟晓英,赵小蓉,鲍华军,等.我国23个土壤磷素淋失风险评估:工淋失临界值[J].生态学报,2004,24(10):2275-2280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700