不同供肥模式下磷肥在肥迹微域的迁移与转化特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷肥施入土壤后在肥料颗粒周围的肥际微域中会形成养分浓度梯度,肥料中的养分会随土壤溶液向土体迁移并发生转化。在肥际微域里高浓度的磷酸根离子对土壤矿物具有强烈的破坏作用,因此肥际反应可能对磷肥的有效性有着至关重要的作用。本文选择了几种不同的供肥模式,采用室内土培和土柱培养方式,研究了不同土壤、不同温度和淹水还原条件下,磷在土壤肥际微域中的迁移与转化特征。主要结果如下:
     磷肥施入土壤后在较短的培养周期内向O-P和Calo-P转化的量极少,大部分以W-P和Ca2-P形态存在,也有相当一部分向Ca8-P、Fe-P和A1-P等有效性相对较差的磷形态转化。在不同的土壤中磷的形态组成有所不同,水稻土中主要以Ca2-P和Ca8-P为主,Fe-P和A1-P含量所占比率也较大;在典型的钙质土壤中主要以Ca2-P和Ca8-P为主,其他形态的磷含量比较少。同种土壤不同温度条件下,土壤磷的形态组成亦不相同,5℃土壤W-P,Ca2-P含量较25℃多,Ca8-P、Fe-P和A1-P含量较25℃时少。在不同温度和土壤条件下,施入有机酸和牛粪均可增加土壤W-P、Ca2-P含量。有机酸和牛粪可不同程度的提高磷的有效性,这种能力大小依次为:牛粪>草酸>柠檬酸。
     磷在不同土壤中的迁移距离不同,在本实验条件下,施入的肥料磷在水稻土和潮土中的迁移距离分别为57.5mm和42.5mm,随着距施肥点距离的增加,土壤水溶性磷、有效磷和酸溶性磷含量迅速降低。磷在这两种土壤中迅速被固定,潮土比水稻土更容易固定磷,生物有效性更低。配施草酸处理减少了土壤对磷的固定增加磷肥的迁移量,提高了磷在土壤中的生物有效性,且在典型石灰性土壤中的效果更好。但是配施草酸并不能明显的增加磷在土壤中的迁移距离。包膜MAP在土壤中的释放速率远远低于水溶液,培养120d后也仅有20%左右的肥料被释放,包膜MAP处理P在土壤中的迁移距离很短,并且包膜MAP缓慢释放磷肥可能会增强土壤对磷的固定作用。
     磷在土壤中迁移与转化均受温度的影响,在实验条件下,当培养温度为5℃、20℃和35℃时,施入的肥料磷在土壤中的迁移距离分别为57.5mm、57.5mm和42.5mm,在35℃条件下磷在土壤中的迁移距离明显变短,磷的生物有效性低。配施草酸处理在个温度条件下并不能明显的增加磷在土壤中的迁移距离。土壤水溶性磷和有效磷在土壤中的含量随着温度的升高而降低。在各温度条件下配施草酸处理在可减少土壤对磷的固定增加磷肥的迁移量,在低温条件下作用更为明显。包膜MAP处理由于其释放量少迁移距离很短。包膜MAP在土壤中的释放速量随着温度的升高逐渐增加,但其释放量很低在培养120d后也仅有较少的肥料被释放。在35℃培养条件下,施用包膜MAP可增加土壤水溶性磷和有效磷所占比率,减少土壤对磷的固定。
     土壤淹水还原会明显影响磷在土壤中的迁移与转化。实验条件下,施入的肥料磷在未淹水条件和淹水还原条件下磷的迁移距离分别为57.5mm和65mm,在淹水还原条件下磷的迁移距离大于未淹水条件,淹水可增加磷的迁移距离。在淹水还原条件下土壤有效磷和水溶性磷含量低于未淹水条件下,淹水还原会降低磷的生物有效性。配施草酸处理在两种培养条件下均不能明显的增加磷在土壤中的迁移距离。未淹水条件相爱,配施草酸可提高磷的活性,而在淹水还原条件下反而使磷的有效性降低。在两种培养条件下包膜MAP在培养120d后仅有20%左右的肥料被释放,在两种培养条件下来磷在土壤中的迁移距离差异不大。
A nutrient concentration gradient was formed in fertilizer microsites around fertilizer particles by adding phosphorus into soil. The fertilizer nutrient moved into soil in the effect of soil solution and transformed to different formations. High concentration of phosphate in fertilizer microsites strongly destroyed the soil minerals which played a main role in phosphorus availablility. In this thesis, effects of four fertilization on phosphorus transformation and movement in fertilizer microsites in soils under three temperatures were studied by an incubation experiment using soil column. The main conclusions were as follows.
     In a short period after adding phosphorus into soil, phosphorus mainly existed as W-P and Ca2-P while some of the others transformed into Ca8-P, Fe-P an Al-P. Less of them transformed into O-P and Ca10-P. However, the percentage of transformation differed in soils. In paddy soil, phosphorus mainly existed as Ca2-P and Cag-P while Fe-P and Al-P made secondary contribution. In calcareous soil, Ca2-P and Ca8-P were the main formations. Temperature also effected the transformation even in one soil. By increasing the soil temperature from 5 degree centigrade to 20 degree centigrade, percentages of W-P and Ca2-P decreased while Ca8-P, Fe-P and Al-P had positive increasement. By adding organic acid and manure into soil, percentages of W-P and Ca2-P increased which indicated higher phosphorus availablility. This changing energy depended on the additives. They had a decreasement which followed as manure>oxalic acid>citric acid.
     The movement of phosphorus also differed in soils.In this paper, phosphorus migrated to 57.5 mm in paddy soil while the distance was 42.5 mm in calcareous soil. Concentration of water-extractable phosphorus, available phosphorus and acid-extractable phosphorus quickly decreased with the distance to fertilization site increased. Most phosphorus were quickly fixed in these two soils and the fixation was more efficient in paddy soil which indicated lower availablility. By adding oxalic acid into the fertilizer, fixation of soil was decreased and the amount of phosphorus that was migrated increased. However the additive didn't effect the movement distance. Coated fertilizer that was studied in this paper had extremly low release rate in soil that only about 20% nutrient was released in 120 days which caused a short movement distance. Furthermore, the slow releasement of phosphorus would strengthen the fixation by soil.
     The transformation and movement were effected by the temperature. In this paper, three temperatures were studied. The nutrient moved to about 57.5 mm under 5 degree centigrade,57.5 mm under 20 degree centigrade and 42.5 mm under 35 degree centigrade. Adding oxalic acid obviously didn't change the movement distance under these three temperatures. With the increase of temperature, concentration of water-extractable phosphorus and available phosphorus in soil decreased. Adding oxalic acid in all temperature treatments weakened the fixation by soil and increased the migrate amount especially in low temperature. Coated fertilizer released faster in high temperature but did not release more even after 120 days. Under 35 degree centigrade, the coated fertilizer treatment had high percent of water-extractable phosphorus and available phosphorus and had low fixation by soil.
     Submerging the soil obviously effected the transformation and movement of phosphorus in soil. In this study, comparing two water contant situation(60% soil water contant and fully submerge), the movement distance had obvious difference which was 57.5 mm in 60% soil water contant and was 65 mm in fully submerge situation. When soil was fully submerged in water, phosphorus moved further than in 60% soil water contant situation while the soil available phosphorus and water-extractable phosphorus were lower than in 60% soil water contant situation which indicated decreasing bioavailablility of soil phosphorus. Adding oxalic acid into the two experiments did not obvious increase the movement distance but increased the phosphorus availablility in 60% soil water contant situation while the negative result was observed in fully submerged situation. In these two experiments, coated fertilizer also released only about 20% after 120 days and had the same movement distance.
引文
[1]Afif E, Matar A, Torrent J. Availability of phosphate applied to calcareous soils of West Asia and North Africa[J]. Soil Sci. Soc. Am. J.,1993,57:756-760
    [2]Bartlett R J, James B R. System for categorizing redox status by chemical field testing[J]. Geoderma,1995,68(3):211-218
    [3]Bertrand, Holloway R E, Armstrongr D, et al. Chemical characteristics of phosphorus in alkaline soils from southern Australia [J]. Australian Journal of Soil Research,2003,41:61-76
    [4]Bhadoria P B, Kaselowsky J, Claassen N et al., Soil phosphate diffusion coefficients:their dependence on phosphorus concentration and buffer power[J]. Soil Sci. Soc. Am. J.,1991, 55:56-60
    [5]Blanchar R W, Caldwell A C. Phosphate-ammonium-moisture relationships in soils:Ⅰ.Ion concentrations in leached fertilizer zones and effects on plants[J]. Soil Sci. Soc. Am. Proc., 1966a.30:39-43
    [6]Borggaard O K, Jorgensen S S, Moberg J P, Raben-Lange B. Influence of organic matter on phosphate adsorption by aluminium and iron oxides in sandy soils[J]. Soil Science,1990, 41:443-449
    [7]Borling K, Barberis E, Otabbong E. Impact of long-term inorganic phosphorus fertilization on accumulation,sorption and release of phosphirus in five Swedish soil profiles[J]. Nutr. Cycl. Agroecosys.,2004,69:11-21
    [8]Bray R H, Kurtz L T. Determination of total,organic and available forms of P in soils[J]. Soil Sci.,1945,59:39-45
    [9]ChangS C, Jackson M L. Fraction of soil phosphorus[J]. Soil Sci.1957,84:133-143
    [10]Delgado A, Madrid A, Kassem S, Andreu L, Campillo M C. Phosphorus fertilizer recovery from calcareous soils amended with humic and fulvic acids. Plant Soil.,2002,245:277-286
    [11]Demolon A. Diffusion of phosphoric acid from granulated superphosphate[J]. Com. Fertilizer, 1951,82:53-55
    [12]Diez J. A. Cartagena M.C. Vallejo A., Controlling P fixation in calcareous soil by using coated diammonium phosphate[J]. Fertilizer Research.1992,31:269-274
    [13]Dinkerleaker B, Romheld V, Marschner H. Citric acid exertions precipitation of calcium citrate in the rhizosphere of White lupin[J]. Plant, Cell and Environment,1989,12:285-292
    [14]Earl K D, Syers J K, M claughlin J R. Origin of the effects of citrate and acetate on phosphate sorption by soils and synthetic gels[J]. Soil Science Society of America Journal,1978, 43:674-678
    [15]Eghball B, Binford G, Baltensperger D. Phosphorus movement and adsorption in a soil receiving long-term manure and fertilizer application[J]. Envrion. Qual.,1996,25:1339-1343
    [16]Eghball B, Sander D H, Distance and distribution effects of phosphorus fertilizer on corn[J]. Soil Sci. Soc. Am.J.,1989,53:282-287
    [17]Eze O C, Loganathan P. Effeet of pH on phosphate sorption of Paleudults of southern Nigeria[J]. Soil Sci,1990,150:613-621
    [18]Gahoonia T S, Asmar F, Giese H, Nielsen N E. Root-release organic acids and phosphorus uptake of two barley cultivars in laboratory and field experiments [J]. Eur. J. Agron.,2000, 12:281-289
    [19]Garg S, Bahl GS. Phosphorus availability to maize as influenced by organic manures and feitilizer P associated phosphatase activity in soils[J]. Bioresour. Technol.,2008,99:5773-5777
    [20]Gerke J., Meyer U., Romer W. Phosphate, Fe and Mn uptake of N2-fixing red clover and ryegrass from an oxisol as affected by P and model humic substances application[J]. Z. Pflanzenernahr. Bodenk,1995,158:261-268
    [21]Gerke J., Phosphate, aluminum and iron in the soil solution of three different soils in relation to varying concentrations of citric acid[J]. Z. Pflanzenernahr. Bodenk,1992,155:339-343.
    [22]Halvonson A D, Black A L. Fertilizer phosphorus recovery after seventeen years of dryland cropping[J]. Soil Sci. Soc. Am. J.,1985,49:933-937
    [23]Hao X, Cho C M, Racz G J. Chemical retardation of phosphate diffusion in an acid soil as affected by liming[J]. Nutrient Cycling in Agroecosystems,2002,64:213-224
    [24]Heslep J M, Black C A. Diffusion of feitilizer phosphorus in soils[J]. Soil Sci.,1954, 78:389-401
    [25]Hira G S, Singh N T. Observed and predicted rates of ohosphorus diffusion in soils of varying bulk density and water content[J]. Soil Sci. Soc. Am. J.,1977,41:537-540
    [26]Hua Q X, Zhou J M, Wang H Y, Du C W, Chen X Q. Effects of modified clinoptilolite on phosphorus mobilization, potassium and ammonium release in Ferrosols[J]. Aust. J. Soil Res., 2006,44(3):285-290
    [27]Hue N V. Effect of organic acid/anion on P sorption and phytoavailability in soils with different mineralogies. Soil Sci.,1991,152:463-471
    [28]Kafkafi U, Bar-Yosef B, Rosenber R, Sposito G. Phosphorus adsorption by kaolinite and montmorillonite:Ⅱ.Organic anion competition[J]. Soil Sci. Soc. Am. J.,1988,52:1585-1589
    [29]Karak N. Control release fertilizer-An efficient fertilize[J]. J. Poly. Mater.,1999, 16(4):309-320
    [30]Khalid R A, Patrick Jr W H, Delanne R D. Phosphate sorption characteristics of flooded soils[J]. Soil Sci Soc Am J,1977,41:305-310
    [31]Khasawneh F E, Sample E C, Hashimoto I. Reactions of ammonium ortho-and polyphosphate fertilizers in soil:Ⅰ.Mobility of phosphorus[J]. Soil Sci. Soc. Am. Proc.,1974,38:446-451
    [32]Khasawneh F E, Soilau J M. Soil preparation and sampling for studying ion movement[J]. Soil Science Society of America Process,1969,33:476-477
    [33]Kingery W, Wood C, Delaney D, Williams J, Mullins G. Impact of long-term land application of broiler litter on environmentally related soil properties [J]. Envrion. Qual.,1994,23:139-147
    [34]Kpomblekou AK, Tabatabai MA,Effect of organic acids on release of phosphorus from phosphate rocks[J]. Soil Sci.1994,158(6):442-453
    [35]Krairapanond A, Jugsujinda A, Patrick W.H. Phosphorus sorption characteristies in acid sulfate soil of Thailand:Effect of uncontrolled and controlled soil redox potential(Eh) and pH [J]. Plant and soil,1993,157(2):227-273
    [36]Kumaragamage D, Akenremi O O, Cao C M, Goh T B. Phosophorus diffusion from monocalcium phosphate co-applied with salts in a calcareous soil[J]. Can. J. Soil Sci.,2004, 84(4):447-458
    [37]Lajtha K, Driscoll CT, JarrellWM, et al. Soil phosphorus:Characterization and total element analysis//Robertson GP, ed. Standard SoilMethods forLong-term Ecological Research. Oxford: Oxford University Press,1999,17:115-142
    [38]Larsen S. Soil phosphorus. Adv. Agron.,1967,19:151-210
    [39]Lawton K, Vomocil J A. The dissolution and migration of phosphorus from granular superphsophate in some Michigan soils[J]. Soil Sci. Ssoc. Am. Proc.,1954,18:26-32
    [40]Linday W L. Chemical equilibria in soils [M]. A Wiley-Interscience Publication, New York, USA,1979:376-381
    [41]Linday W L, Frazier A W, Stephenson H F. Identification of reaction products from phosphate fertilizers in soils[J]. Soil Sci. Soc. Am. Pro.,1962,26:446-452
    [42]Lu D Q, Chien S H, Henao J, Sompongse D. Evaluation of short-term dfficiency of DAP versus urea plus single superphosphate on a calcareous soil[J]. Agron. J.,1987,79:896-900
    [43]Magid, Jakob, Vegetation effects on phosphorus fractions in set-aside Soils[J]. Plant and Soil, 1993,149:111-149
    [44]Mkhabela M S, Warman P R. The influence of municipal solid waste compost on yieke, soil phosphorus availability and uptake by two vegetable crops grown in a Pugwash sand loam soil in Neva Scotia[J].Agric. Ecosyst. Environ.,2005,106:57-67
    [45]Moore P A, Reddy K R. Role of Eh and pH on phosphorus geochemistry in sediments of Lake Okeechobee. Florida [J]. J Environ Qual,1994,23:955-964
    [46]Nayakekorola H, Woodard H J, Profile distribution of extractable phosphorus following a knife-applied subsurface phosphorus fertilizer band[J]. Commun. Soil Sci. Plant Anal.,1990, 21:1793-1802
    [47]Noemi C, Saul F, Ana G. Implications of iron solubilization on soil phosphorus release in seasonal flooded forests of the lower Orinini River Venezuela[J]. Soil Biology and Biochemistry,2006,38:1494-1499
    [48]Notario del., Pinoj J.S., Arteaga Padron I.J. Gonzalez Martin M.M., Response of alfalfa to a Phillipsite-based slow-release fertilizer[J]. Commun. Soil Sci. Plant Anal.1994,25:2231-2245
    [49]Oberson A., Fardeau J. C. Soil phosphorus dynamics in cropping systems managed according to conventional and biological agricultural methods[J]. Biol. Fertil. Soils,1993,16:111-117
    [50]Olsen S R, Cole C V, Watanabe F S, Dean L A. Estimation of available P in soils by extraction with sodium bicarbonate[J]. USDA circular,1954,939:1-19
    [51]Olsen S R, Watanabe F S. Diffusive supply of phosphorus in relation to soil textural variations[J]. Soil Sci.,1970,110:318-327
    [52]Patrick W H, Khalid R A. Phosphate release and sorption by soils and sediments:effect of aerobic and anaerobic conditions[J]. Science,1974,186:53-55
    [53]Peckering H W, Menzies N W, Hunter M N. Zeolite/rock phosphate-a novel slow release phosphorus fertilizer for potted plant production[J]. Scientia Horticalturae,2002,94:333-343
    [54]Richards J E, Belanger G. Movement to the sub-soil of P applied to an acidic soil cropped to timothy-grass for twenty-six years[J]. Can. J. Soil Sci.,1989,69:875-878
    [55]Saggar S, Hedley M J, White R E, et al. Development and evaluationof an improved soil test for phosphorus.2. Comparison of the Olsen and mixed cation-anion exchange resin tests for predicting the yield of ryegrass grown in pots [J]. Nutrient Cycling in Agroecosystems,1992, 33(2):135-144
    [56]Sah R N, Mikkelsen D S, Hafez A A. Phosphorus behavior in flooded—drained soils. Ⅱ. Iron transformation and phosphorus sorption[J]. Soil Sci Soc Am J,1989,53:1723-1729
    [57]Sharma P K, Kalia A K, Factors influencing diffusion of phosphate in some soils of Himalayan region[J]. Indian Soc. Soil Sci.,1985,33:378-383
    [58]Sharpley A, Smith S, Bain W. Nitrogen and phosphorus fate from long-term poultry litter applications to Oklahoma soils[J]. Soil Sci. Soc. Am. J.,1993,57:1131-1137
    [59]Sibanda H M, S D Young. Competitive adsorption of humus acids and phosphate on goethite, gibbisite and two tropical soils[J]. J. Soil Sci.,1986,37:197-204
    [60]Sim T, Simard R, Joen B. Phosphorus loss in agricultural drainage:Historical perspective and current research[J]. Environ. Qual.,1998,27:277-293
    [61]Sing C.P, Singh Y.P, Singh Mahendra. Effect of different carbonaceous compounds on the transformation of soil nutrients Ⅱ Immobilization and mineralization of applied phosphorus [J]. Biological Agriculture and Horticulture.1987,4:301-307
    [62]Strom L, Owen A G, Godbold D L, Jones D L. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling[J]. Soil Biol. Biochem.,2005,37:2046-2054
    [63]Sutton C D. Effect of low soil temperature on phosphate nutrition of plants-a review[J]. J. Sci. Food Agric.,1969,20:1-3
    [64]Tisdale S L, Nelson W L, Beaton J D. Soil Fertility and Fertilizers[M]. New York:Macmillan Publishing Company,1993:24-26
    [65]Vadas P A, Sims J T. Phosphorus sorption in manured Atlantic coastal plain soils under flooded and drained conditions[J]. J Environ Qual,1999,28:1870-1877
    [66]Violante A, GianfredI A L. Adsorption of phosphate on variable charge minerals:competitive effect of organic ligands [C]//HUANG P M. Environmental Impact of Soil Component Interactions. [S.L.]:CRE Press,1995:29-38
    [67]Warncke D D, Barber S A. Diffusion of Zinc in soil. Ⅱ.The influence of soil bulkdensity and its interaction with soil moisture[J]. Soil Sci. Soc. Am. Proc.,1972,36:42-46
    [68]Zerkoune M A. Residual P from single and repeated bands in no-till systems as evaluated by crop response and sampling strategies. Ph. D. thesis, Unv. of Nebraska.Lincoln, NE, 1996:54-55
    [69]安志装,介晓磊,李有田,白由路,魏义长,刘世亮.不同水分和添加物料对石灰性土壤无机磷形态转化的影响[J].植物营养与肥料学报,2002,8(1):58-64
    [70]陈怀满.环境土壤学[M].北京:科学出版社,2005:67-68
    [71]陈世俭,马毅杰.潜育化作用对水稻土磷素形态与供磷能力的影响[J].土壤通报,2002,33(4):275-277
    [72]党延辉,张麦.有机肥对黑垆土养分含量、形态及转化影响的定位研究[J].干旱地区农业研究,1999,17(4):1-4
    [73]杜振宇,周建民.磷在红壤肥际微域中的迁移和转化[J].水土保持学报.2005,19(3):1-5
    [74]高超,张桃林,吴蔚东.不同利用方式下农田土壤对磷的吸持与解吸特征[J].环境科学,2001,32(4):67-71
    [75]过兴度,张俊民,徐强.砂姜黑土无机磷的形态与肥力的关系[J].土壤,1991(1):92-95
    [76]胡霭堂.植物营养学[M].北京:中国农业大学出版社,2003:141-143
    [77]胡莹莹,张民,宋付朋.控释复肥中磷素在马铃薯上的效应研究[J].植物营养与肥料学报,2003,9(2):174-177
    [78]化全县,周健民,王火焰,杜昌文.水溶性有机高分子对红壤磷吸附特征的影响.水土保持学报.2005,19(3):5-8
    [79]化全县.磷肥改性材料的应用潜力初探.博士学位论文,江苏南京:中国科学院南京土壤研究所,2006:11-12
    [80]黄昌勇.土壤学[M].北京:中国农业出版社,2000:198-199
    [81]蒋柏藩,顾益初,鲁如坤.风化对土壤粒级中磷素形态转化及有效性的影响[J],土壤学报,1984,21(2):134-143
    [82]蒋柏藩,顾益初.石灰性土壤无机磷分级体系研究[J].中国农业科学,1989,22(3):58-66
    [83]蒋柏藩.磷肥在土壤中的形态转化及其有效性.土壤学进展,1981,9(2):1-11
    [84]焦少俊,李恋卿,徐向东,邱多生,徐晓波,储秋华,赵洪祥.低施磷水平下不同施肥对太 湖地区黄泥土磷迁移性的影响潘根兴[J].环境科学,2003,24(3):91-95
    [85]金亮,周健民,王火焰,陈晓琴,杜昌文.石灰性土壤肥际磷酸二氢铵的转化与肥料磷的迁移[J].磷肥与复肥,2008,23(5):14-18
    [86]来璐,郝明德,彭令发.土壤磷素研究进展[J].水土保持研究,2003,10(1):65-67
    [87]雷宏军,朱端卫,刘鑫,等.酸性土壤在改良条件下磷的吸附-解吸特性[J].土壤学报,2004,41(4):636-640
    [88]李阿荣,顾益初,蒋柏藩.石灰性土壤适用磷肥品种的研究[J].土壤,1985(6):319-322.
    [89]李春越,党廷辉,王万忠,戚龙海,郭栋,刘文兆.中国几种典型农田土壤磷素固液相分配规律[J],农业环境科学学报,2008,27(5):2008-2012
    [90]李春越,党廷辉,王万忠,戚龙海,郭栋,刘文兆.中国几种典型农田土壤磷素固液相分配规律[J],农业环境科学学报,2008,27(5):2008-2012
    [91]李寿田.氮磷钾在土壤中的交互作用对养分迁移转化的影响[C].博士学位论文,江苏南京:中国科学院南京土壤研究所,2003:8-9
    [92]李同杰,刘晶晶,刘春生,杨力.磷在棕壤中淋溶迁移特征研究[J],水土保持学报,2006,20(4):35-40
    [93]李孝良,于群英,陈世勇,等.土壤无机磷形态生物有效性研究[J].安徽农业技术师范学院学报,2001,15(2):17-19
    [94]凌云霄.土壤中磷酸离子扩散的研究[J].土壤学进展,1980(4):1-8
    [95]刘春生,杨吉华,马玉增.抗旱保水剂在果园中的应用效应研究[J].水土保持学报,2003,17(6):134-136
    [96]刘建玲,张风华.土壤磷素化学行为及影响因素研究进展[J].河北农业大学学报.2000,23(3):36-45
    [97]刘建中.利用植物自身潜力提高土壤中磷的生物有效性[J].生态农业研究,1994,(2):16-23.
    [98]鲁如坤,时正元,赖庆旺.红壤长期施肥养分的下移特征闭[J].土壤,2000,1(1):27-29
    [99]鲁如坤,时正元.土壤积累态磷Ⅲ几种典型土壤中积累态磷的形态特种及其有效性[J].土壤,1997,29(1):57-60
    [100]鲁如坤.土壤磷素化学研究进展[J].土壤学进展,1990,(6):1-5
    [101]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:102-467
    [102]陆安样,赵云龙,马纪华等.不同图例利用类型下氮、磷在土壤剖面中的分布特征[J].生 态学报,2007,27(9):33-35
    [103]陆景陵.植物营养学[M].北京:中国农业大学出版社,2003:33-34
    [104]陆文龙,曹一平,张福锁.低分子量有机酸对土壤无机磷形态转化的影响[J].华北农学报,1999,14(2):84-89
    [105]陆文龙,张福锁,曹一平,等.低分子量有机酸对石灰性土壤磷吸附动力学的影响[J].土壤学报,1999,36(2):189-197
    [106]吕家珑,李祖荫.石灰性土壤固磷机制的探讨[J].土壤通报,1991,22(5):204-206
    [107]吕家珑,张一平,张长君,等.土壤磷运移研究[J].土壤学报,1999,36(1):75-82
    [108]莫淑勋,钱菊芳,钱承梁.猪粪与有机肥料中磷素养分循环再利用的研究[J].土壤学报,1991,28(3):309-315
    [109]庞荣丽,介晓磊,方金豹,等.有机酸对不同磷源施入石灰性潮土后无机磷形态转化的影响[J],植物营养与肥料学报,2007,13(1):39-43
    [110]庞荣丽,介晓磊,谭金芳.低分子量有机酸对不同合成磷源的释磷效应[J].河南农业科学,2006(1):64-67
    [111]邱燕,张鼎华.南方酸性土壤磷素化学研究进展[J].福建稻麦科技,2003,9(1):14-17
    [112]曲东,尉庆丰,张英莉.酸化水对娄土无机磷形态的影响.现代土壤科学研究[M],中国农业科学出版社,1994:279-281
    [113]沈乒松,张鼎华.酸性土壤无机磷研究进展[J].福建林业科技,2005,32(1):75-78
    [114]沈仁芳,蒋柏藩.黄淮海地区土壤对磷的吸附与解吸特性[J].土壤,1993,25(1):68-70
    [115]沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分布及其有效性[J].土壤学报,1992,29:80-86
    [116]沈善敏.论我国磷肥的生产与应用[J].土壤通报,1985,3:97-103
    [117]沈善敏.中国土壤肥力[M].北京:中国农业出版社.1998:27-29
    [118]史瑞和.江苏省几种土壤磷素状况和磷肥肥效[J].土壤学报,1989,10:374-379
    [119]孙小燕,李卫华,丁洪.风化煤和硼在土壤中对尿素氨化和硝化作用及磷有效性的影响[J].磷肥与复肥,2005,20(1):68-69
    [120]王道涵,梁成华,孙铁珩,等.磷素在土壤中的垂直迁移潜力研究[J].农业环境科学学报,2005,24(6):1157-1160
    [121]王光火,朱祖祥,袁可能.红壤对磷吸附机理的初步研究[J].科技通报,1989,5(4):31-35
    [122]王光火,朱祖祥.石灰性土壤与磷酸盐反应及吸附态磷的同位素交换性[J].土壤学报,1993,30(4):374-379.
    [123]王新民,侯彦林.有机物料对石灰性土壤磷素形态转化及吸附特性的影响研究[J],环境科学学报,2004,24(3):440-443
    [124]王永和,蒋仁成.石灰性土壤有机无机肥配施对土壤供磷的影响[J].南京农业大学学报,1993,16(4):36-42
    [125]王曰鑫,侯宪文.腐植酸对土壤中无机磷活化效应研究[J].腐植酸,2005,(2):7-4
    [126]向万胜,黄敏,李学垣.土壤磷素的化学组分及其植物有效性[J].植物营养与肥料学报,2004,10(6):663-670
    [127]谢学俭,冉讳,沈其荣,等.田间条件下32P在淹水水稻土中的垂直运移[J].南京农业大学学报,2003,26(3):56-59
    [128]熊毅.中国土壤(第二版)[M].北京:科学出版社,1987:53-55
    [129]徐明岗,孙本华.陕西土壤磷素扩散的某些影响因素的研究,西北农业学报,1997,6(4):51-55
    [130]徐明岗,张一平,孙本华.土壤磷扩散规律及其能量特征的研究.Ⅳ.土壤磷扩散的预测[J].土壤学报,1998a.35(3):345-351
    [131]徐明岗,张一平,王锐群.土壤磷扩散规律及其能量特征的研究.Ⅰ.水分、质地、温度及其相互作用对磷扩散的影响[J].土壤学报,1996,33(2):148-157
    [132]于飞.不同种类氮肥与磷肥在土壤中的交互作用及其生物效应[C].硕士学位论文,江苏南京:中国科学院南京土壤研究所,2004:6-7
    [133]袁东海,高士祥,景丽洁,等.几种粘土矿物和粘土对溶液中磷的吸附效果[J].农村生态环境,2004,20(4):60-63
    [134]袁东海,张孟群,高士祥,等.几种粘土矿物和粘粒土壤吸附净化磷素的性能和机理[J].环境科学,2005,24(1):7-11
    [135]张道勇,王鹤平.中国实用肥料学[M].上海:上海科学技术出版社.1997,51-76.
    [136]张海涛,刘建玲,廖文华,等.磷肥和有机肥对不同磷水平土壤磷吸附.解吸的影响[J].植物营养与肥料学报,2008,14(2):284-290
    [137]章爱群,贺立源,赵会娥,等.有机酸对土壤无机磷态磷转化和速效磷的影响[J],生态学报,2009,29(8):4061-4068
    [138]章明奎,王丽平.旱耕地土壤磷垂直迁移机理的研究[J].农业环境科学学报,2007,26(1):282-285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700