流沙河流域生态恢复与土壤有机碳关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过野外调查与室内分析,利用传统统计和方差分析等研究方法,对流沙河流域不同生态恢复方式以及生态恢复程度下71个土样的土壤总有机碳、易氧化有机碳、腐殖质碳组成和水溶性有机碳的变化过程及变化特征进行了研究;分析了海拔、土壤类型、成土母质、生物量等因素对生态恢复和土壤有机碳变化的影响。研究结果分述如下:
     (1)研究区内深度、中度和浅度3种生态恢复程度以及耕地、林地和园地3种生态恢复方式下土壤有机碳含量的研究结果表明,土壤总有机碳,易氧化有机碳,腐殖质碳,胡敏酸碳,水溶性有机碳在不同的恢复程度下的均值随着恢复程度的加深而增加,且均差异极显著。其中土壤总有机碳深度恢复、中度恢复、浅度恢复和对照的平均含量分别为31.99±4.82 g kg-1、20.54±6.25 g kg-1、8.38±3.11 g kg-1和1.63±0.48 g kg-1(F=93.669**,P=0.000);易氧化有机碳平均含量分别为14.34±4.05g kg-1、8.46±3.34 g kg-1、4.15±1.74g kg-1和1.09±0.51 g kg-1 (F=44.787**, P=0.000);腐殖质碳平均含量分别为7.34±2.43 g kg-1、4.70±1.98 g kg-1、2.1±1.11 g kg-1和0.42±0.34 g kg-1(F=34.332**,P=0.000);胡敏酸碳平均含量分别为3.16±1.28 g kg-1、1.69±0.80. g kg-1、0.69±0.45 g kg-1和0.08±0.04 gkg-1(F=34.331**,P=0.000);水溶性有机碳平均含量分别为279.4±71.8 mg kg-1、191.9.4±52.7 mg kg-1、87.3±35.8 mgkg-1和18.3±6.4 mg kg-1(F=59.071**, P=0.000)。
     土壤总有机碳,易氧化有机碳,腐殖质碳,胡敏酸碳,水溶性有机碳在林地、耕地和园地3种恢复方式下的均值因恢复方式的不同而不同,且均差异极显著。其中土壤总有机碳林地、耕地、园地和对照的平均含量分别为21.88±9.73 g kg-1、19.21±11.29 g kg-1、13.32±17.67 g kg-1和1.63±0.48 g kg-1(F=6.633**,P=0.001);易氧化有机碳平均含量分别为10.44±5.18 g kg-1、9.02±4.57 g kg-1、5.16±3.03 g kg-1和1.09±0.51 g kg-1(F=9.400**,P=0.000);腐殖质碳平均含量分别为5.17±2.98 g kg-1、4.40±2.77 g kg-1、3.14±1.87 g kg-1和0.42±0.34g kg-1(F=5.141**,P=0.003);胡敏酸碳平均含量分别为1.94±1.13 g kg-1、1.76±1.40 g kg-1、1.12±0.95 g kg-1和0.08±0.04g kg-1(F=4.105**,P=0.010);水溶性有机碳平均含量分别为199.3±85.8 mg kg-1、182.6±94.9 mg kg-1、124.0±72.4 mg kg-1和18.3±6.4 mg kg-1 (F=7.229**, P=0.000)。
     (2)对研究区内土壤有机碳间的相关性研究表明,土壤总有机碳与易氧化有机碳r=0.913**(n=71,r0.01=0.325)、水溶性有机碳r=0.871**以及腐殖质碳r=0.830**、胡敏酸碳r=0.846**的相关性均达极显著水平。3种恢复程度和3种恢复方式的土壤有机碳间相关性研究表明,深度恢复区土壤总有机碳与其他有机碳间相关性均不显著。而中度恢复区、浅度恢复区和耕地、林地、园地土壤有机碳间的相关性均达极显著水平。
     (3)海拔、土壤类型、成土母质以及生物量是影响研究区生态恢复的主要原因,同时也是影响土壤有机碳含量的主要原因。土壤有机碳含量在海拔1500-1800m时达到最大值。黄棕壤和水稻土土壤有机碳含量显著高于黄壤和紫色土,但易氧化有机碳含量差异不显著(F=2.097,P=0.109),除水稻土(9.28 g kg-1,n4=16)和黄棕壤(9.09 g kg-1,n3=17)易氧化有机碳含量显著高于紫色土(5.75 g kg-1,n2=20)外,其他土壤类型间差异均不显著。成土母质与土壤有机碳含量关系复杂,但均以石灰岩和泥岩发育土壤最低。生物量的大小对土壤有机碳含量的影响与生态恢复程度有关,不同恢复程度下生物量之间存在极显著差异(F=84.365**,P=0.000),同时生物量与有机碳含量呈极显著正相关。
According to the data of field investigation and indoor analyses,using typical statistical analysis methods, the change of soil soil total organic carbon(TOC), readily oxidizable organic carbon(ROC), soil water-soluble organic carbon (WSOC), soil humus carbon (HC), soil humus acid carbon(HAC) and HAC/FAC under three different ecological restoration degrees in cultivated land、forest land and garden landorganic carbon were studied of 71 soil simples in Liusha River, Sichuan Province, China.The results are. illustrated as follows:
     (1) The following results are about the soil organic carbon contents in intensive degree、moderate degree and light degree and cultivated land,forest land and garden land. The mean contents of soil organic carbon increased with ecological restoration degrees.and the mean contents of soil total organic carbon were 31.99±4.82 g kg-1,20.54±6.25 g kg-1,8.38±3.11 g kg-1 and 1.63±0.48 g kg-1 (F=93.669**,P=0.000); the mean contents of soil readily oxidizable organic carbon were 14.34±4.05 g kg-1,8.46±3.34 g kg-1,4.15±1.74 g kg-1 and 1.09±0.51 g kg-1 (F=44.787**,P=0.000);the mean contents of soil humus carbon were 7.34±2.43 g kg-1、4.70±1.98 g kg-1,2.10±1.11 g kg-1 and 0.42±0.34 g kg-1 (F=34.332**,P=0.000); the mean contents of soil humus acid carbon were 3.16±1.28 g kg-1,1.69±0.80 g kg-1,0.69±0.45 g kg-1 and 0.08±0.04 g kg-1 (F=34.331**,P=0.000); the mean contents of soil water-soluble organic carbon were 279.4±71.8 mg kg-1,191.9.4±52.7 mg kg-1,87.3±35.8 mg kg-1 and 18.3±6.4 mg kg-1 (F=59.071**,P=0.000)
     The mean contents of soil organic carbon in forest land, cultivated land and garden land were different too. the mean contents of soil total organic carbon were 21.88±9.73 g kg-1,19.21±11.29 g kg-1,13.32±7.67 g kg-1 and 1.63±0.48 g kg-1 (F=6.633**,P=0.001) the mean contents of soil readily oxidizable organic carbon were 10.44±5.18 g kg-1,9.02±4.57 g kg-1,5.16±3.03 g kg-1 and 1.09±0.51 g kg-1 (F=9.400**,P=0.000);the mean contents of soil humus carbon were5.17±2.98 g kg-1,4.40±2.77 g kg-1,3.14±1.87 g kg-1 and 0.42±0.34 g kg-1 (F=5.141**, P=0.003); the mean contents of soil humus acid carbon were 1.94±1.13 g kg-1,1.76±1.40 g kg-1,1.12±0.95 g kg-1 and 0.08±0.04 g kg-1 (F=4.105**,P=0.010); the mean contents of soil water-soluble organic carbon were 199.3±85.8 mg kg-1,182.6±94.9 mg kg-1,124.0±72.4 mg kg-1 and 18.3±6.4 mg kg-1 (F=7.229**, P=0.000)
     (2) The correlation between soil organic carbon were studied, and the result decleared that the correlation between soil total organic carbon and readily oxidizable organic carbon were significantly r=0.913** (n=71, r0.01=0.325), and the correlation between soil total organic carbon and soil water-soluble organic carbon were significantly too r=0.871**, and the correlation between soil total organic carbon and soil humus carbon r=0.830**, soil humus acid carbon r=0.846** were significantly too.The result about correlation between soil organic carbon in three ecological restoration degrees and three land use decleared that, the correlation between soil organic carbon and the other soil organic carbon were not significantly in intensive degree; the correlation between soil total organic carbon and the other soil organic carbon were significantly in moderate degree, light degree,forest land, cultivated land and garden land.
     (3) The main influential factors of ecological restoration in Liusha Basin were altitude, soil types,parent material and biomass.The content of soil total organic carbon, readily oxidizable organic carbon,soil humus carbon, soil humus acid carbon,soil water-soluble organic carbon were bigest at 1500-1800m; The content of soil organic carbon of yellow brown soil and rice soil were very significantly higher than yellow soil and purple soil,but the different in contents of soil readily oxidizable organic carbon were not significantly (F=2.097, P=0.109); The relationship of the soil organic carbon with parent materials was very complex, but the contents were the lowest in the soil from the mudstone and limestone.the correlation between soil total organic carbon and biomass were significantly, the different of the biomass were significantly (F=84.365**,P =0.000).
引文
[1]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.30-34
    [2]陈同斌,陈志军.水溶性有机质对土壤中铺吸附行为的影响[J].应用生态学报,2002,13(2):183-186.
    [3]程励励,文启孝,李洪.土壤条件对新形成土壤腐殖物质的影响[J].土壤,1990,22(1).7-11.
    [4]窦森,于水强,张晋京.不同CO2浓度对玉米秸秆分解期间土壤腐殖质形成的影响[J].土壤学报,2007,44(3):458466.
    [5]傅陈君,张世熔,杨洲等.川中丘陵区村级景观土壤有机碳密度和储量分析[J].四川环境,2007,26(1):21-26.
    [6]关松,窦森,张晋京等.土壤腐殖质组成对大气二氧化碳浓度升高的响应[J].水土保持学报,2006,20(1):186-188.
    [7]郭晓明.四川干旱河谷地区生态建设的主要问题与对策建议[J].社会科学研究,2001,5:33-36.
    [8]郭胜利,马玉红,车升国等.黄土区人工与天然植被对凋落物量和土壤有机碳变化的影响[J].林业科学,2009,45(10):14-18.
    [9]郝黎仁,樊元,郝哲欧,等.SPSS实用统计分析.北京中国水利水电出版社,2003,155-182.
    [10]何蓉,张培芬,杨卫.高黎贡山自然保护区土壤腐殖质组成与微量元素含量的研究[J].西部林业科学,2006,35(2):48-52.
    [11]汉源县志编纂委员会.汉源县志[M].成都:四川科学技术出版社,1991.57-103.
    [12]华娟,赵世伟,张扬.雨雾山草原区不同植被恢复阶段土壤团聚体活性有机碳恢复特征[J].生态学报,2009,29(9):4614-4619.
    [13]姜培坤,徐秋芳,杨芳.雷竹土壤水溶性有机碳及其与重金属的关系[J].浙江林学院学报,2003,20(1):8-11.
    [14]李仁岗,余荣,王伯仁.土壤活性有机质的研究进展[J].土壤肥料,2000,(6):3-7.
    [15]李生宝,王占军,王月玲等.宁南山区不同生态恢复措施对土壤环境效应影响的研究.水土保持学报,2006,20(4):20-22.
    [16]李淑芬,俞元春,何最.南方森林土壤溶解有机碳与土壤因子的关系[J].浙江林学院学报,2003,20(2):119-123.
    [17]李裕元,邵明安,郑纪勇等.黄土高原北部草地的恢复与重建对土壤有机碳的影响.生态学报,2007,27(6):2279-2287.
    [18]李正才,傅懋毅,谢锦忠等.沐川县退耕还林生态恢复地碳截留效应的研究[J].浙江林学院学报,2004,21(4):382-387.
    [19]李月梅,王跃思,曹广民,等.开垦对高寒草甸土壤有机碳影响的初步研究[J].地理科学进展,2005,24(6):59-64.
    [20]李忠,孙波,林心雄.我国东部土壤有机碳的密度及转化的控制因素[J].地理科学,2001,21(4):301-307.
    [21]李忠佩,程励励,林心雄.红壤腐殖质组成变化特点及其与肥力演变的关系[J].土壤,2002(1):9-15.
    [22]刘永恩,张世熔,林晓利等.流沙河流域不同生态恢复程度下植物群落特征研究[J].四川环境,2007,26(1):14-20.
    [23]刘艳,汪思龙,王晓伟等,不同温度条件下杉木、桤木和火力楠细根分解对土壤活性有机碳的影响[J].应用生态学报,2007,18(3):481-486.
    [24]罗彩云,沈禹颖,南志标等.水土保持耕作下陇东玉米-小麦-大豆轮作系统产量、土壤易氧化有机碳动态[J].水土保持学报,2005,19(4):84-88.
    [25]米文宝,谢应忠.生态恢复与重建研究综述[J].水土保持研究,2006,13(2):49-53.
    [26]倪进治,徐建明,谢正苗.土壤水溶性有机碳的研究进展[J].生态环境,2003,12(1):71-75.
    [27]彭林,陈艳梅,孙彦霞.生态脆弱区某铁矿采选项目生态恢复措施探讨[J].水土保持研究,2007,14(5):10-12
    [28]彭文英,张科利,杨勤科.退耕还林对黄土高原地区土壤有机碳影响预测[J].地域研究与开发,2006,25(3):94-99
    [29]彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].生态学报2003,23(10):2]7-218.
    [30]庞学勇,包维楷,吴宁.森林生态系统土壤可溶性有机质(碳)影响因素研究进展[J].应用与环境生物学报2009,15(3)390-398
    [31]秦嘉海,金自学.黑河流域盐渍土资源及紫花首蓓改土培肥和生态恢复效应的研究[J].土壤通报, 2006,37(6):1106-1109.
    [32]任军,郭金瑞,边秀芝等.土壤有机碳研究进展[J].中国土壤与肥料,2009(6):1-7.
    [33]山钢,彭锦.大渡河流域退耕还林与综合治理探讨.四川林业科技,2001,22(2):36—38.
    [34]沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态意义[J].生态学杂志,1999,18(3)32-38.
    [35]四川植被协作组.四川植被[M].成都:四川人民出版社,1980.217-212.
    [36]史吉平,张夫道,林葆.长期定位施肥对土壤腐殖质含量的影响[J].土壤肥料,2002(1):15-22.
    [37]苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):220-228.
    [38]涂成龙,林昌虎,何腾兵等.黔中石漠化地区生态恢复过程中土壤养分变异特征[J].水土保持通报,2004,24(6):22-25.
    [39]万勇善.南方花岗岩区不同侵蚀土壤治理效果的研究[J].土壤学报,1992,29(4)419-425.
    [40]武天云,等.耕作对黄土高原和北美大草原三种典型土壤有机碳的影响[J].应用生态学报,2003,14(2):2213-2218.王丹,王兵,戴伟等.不同发育阶段杉木林土壤有机碳变化特征及影响因素[J].林业科学研究2009,22(5):667-671.
    [41]谢锦升,杨玉盛,陈光水,高人.亚热带侵蚀红壤植被恢复后营养元素通量的变化[J].生态学报,200525(9):2312-2319.
    [42]谢锦升,杨玉盛,解明曙.亚热带花岗岩侵蚀红壤的生态退化与恢复技术[J].水土保持研究,2004,11(3):154-156.
    [43].解宪丽,孙波,周慧珍,等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004,41(5):687-699.
    [44]徐华君.阿尔泰山区土壤有机碳氧化稳定性的初步比较分析[J].水土保持研究,2007,24(6):28-30.
    [45]徐秋芳,姜培坤.不同森林植被下土壤水溶性有机碳研究[J].水土保持学报,2004,18(6):84-87.
    [46]严昶升.土壤肥力研究方法[M].北京:农业出版社,1988:64-75.
    [47]杨芳,吴家森,姜培坤等.不同施肥雷竹林土壤水溶性有机碳动态变化[J].浙江林业科技,2006.26(3):34-37.
    [48]杨继松,于君宝,刘景双等.三江平原典型湿地土壤腐殖质的剖面分布及其组成特征[J].土壤通报,2006,37(5):865-868.
    [49]杨玉盛,何宗明,林光耀等.退化红壤不同治理模式对土壤肥力的影响[J].土壤学报,1998,35(2):276-282.
    [50]杨玉盛,何宗明,邱仁辉等.红壤严重退化生态系统不同恢复和重建措施的植物多样性和地力恢复的研究[J].生态学报,1999,19(4):490-494.
    [51]于淑芳,杨立,张玉兰等.长期施肥对土壤腐殖质组成的影响[J].土壤通报,2002,33(3):165-167.
    [52]于水强,窦森,张晋京等.氧气浓度对腐殖质形成分解的影响[J].吉林农业大学学报,2005,27(5):525-532.
    [53]余万太,马强,赵鑫等.不同土地利用类型下土壤活性有机碳库的变化[J].生态学杂志,2007,26(12):2013-2016.
    [54]袁可能.土壤有机矿质复合体中腐殖质氧化稳定性的初步研究[J].土壤通报,1963,11(3):286-292.
    [55]曾从盛,钟春棋,柳铮铮等.土地利用变化对闽江河口湿地表层土壤有机碳含量及其活性的影响[J].水土保持学报,2008,22(5):125-129.
    [56]张春霞,郝明德,魏孝荣等.黑垆土长期轮作培肥土壤有机质氧化稳定性的研究[J].土壤肥料,2004,(3):10-12.
    [57]张晋京,张大军,窦森等.田间定位施肥对土壤腐殖质组分数量与特性的影响[J].土壤通报,2006,37(6):1243-1246.
    [58]张晋斤,窦森,李翠兰等.土壤腐殖质分组研究[J].土壤通报,2004,35(6):706-709.
    [59]张金波,宋长春.杨文燕.土地利用方式对土壤水溶性有机碳的影响.中国环境科学2005,25(3):343-347.
    [60]张素珍,田建文,李贵宝.白洋淀湿地而临的生态问题及生态恢复措施[J].水土保持通报,2007,27(3):146-150
    [61]张文彤,闫洁.SPSS统计分析基础教程.北京:高等教育出版社,2004,258-263.
    [62]赵劲松,张旭东,袁星等.土壤溶解性有机质的特性与环境意义[J]应用生态学报,2003,14(1):126-130.
    [63]郑立臣,解宏图,张威.秸秆不同还旧方式对土壤中溶解性有机碳的影响[J].生态环境,2006,15(1):80-83
    [64]周程爱,张于光.肖烨.土地利用变化对川西米亚罗林土壤活性碳库的影响[J]生态学报,2009,29(8):4542-4547
    [65]朱德华,蒋德明.朱丽辉.恢复生态学及其发展历程[J].辽宁林业科技,2005,5:48-50
    [66]朱连奇,朱小立,李秀霞.土壤有机碳研究进展[J].河南大学学报,2006,36(3):72-75.
    [67]Amy E M Waltz, Peter Z Fule, W Wallace Covington, et al. Diversity in Ponderosa Pine Forest Structure Following Ecological Restoration Treatments. Forest Science,2003,49(6):885.
    [68]Anna E. Richards, Ram C. Dalal, Susanne Schmidt. Soil carbon turnover and sequestration in native subtropical tree planta-tionns. Soil Biology & Biochemistry,2007,39:2078-2090.
    [69]Barriuso E., U.Baer and R. Calvet. Dissolved organic matter and adsorption-desorption of dimefuron, atrazine, and carbetamide by soil J. Environ. Qual.1992,21:359-367.
    [70]Giai C. and R.E.J. Boerner. Effects of ecological restoration on microbial activity, microbial functional diversity, and soil organic matter in mixed-oak forests of southern Ohio, USA[J]. Applied Soil Ecology, 2007,35(2):281-290.
    [71]Chan K Y, Bowman A, Oates A. Oxidizible organic carbon fractions and soil quality changes in an Oxic Paleustalf under Different pasture leys[J].Soil Science,2001,166(1):61-67.
    [72]Chapman P J, Williams,B L,HawkinsA..Influence of temperature and vegetaiton cover on soluble inorganic and organic nirtogen in a spodosol. Soil Biol.Biochem.,2001,33(7-8):1113-1121.
    [73]Chen T B, Chen Z J.Dissolved organic soils[J].Plant Nutrit Ferti Sci,1998,4:201-210. [58] Dalal R C, Hendersonp A, Guasby J M. Organic matter and microbial biomass in a Vertisol after 20 years of zero-tillage [J]. Soil Biology and Biochemistry,1991,23:435-441.
    [74]Collins H P, Rasmussen P E, Douglas Jr C L. Crop rotation and residue management effects on soil carbon and microbial dynamics[J]. Soil Science Society of America Journal,1992,56:783-788.
    [75]Dale Bosworth, Hutch Brown, Jonh A Helms, et al. Investing in the Future:Ecological Restoration and the USDA Forest Service[J]. Journal of Forestry,2007,105(4):208-212.
    [76]Daniel Sarr,Klaus Puettmann,Rob Pabst,et al. Restoration Ecology:New perspectives and opportunities for forestry [J].Journal of Forestry.2004,102(5):20-24.
    [77]Delprat L, Chassin P, Li neres M, Jambert C. Characterization of dissolved organic carbon in cleared forest soils converted to maize cultivation. European Jounral of Agronomy.1997,7 (1-3):201-210.
    [78]Dobson A P. Hopes for the future:Restoration Ecology and Conservation Biology[J].Science,1997,277:515-522.
    [79]Girisha K Ganjegunte,George F Vance,Garoline M Preston.Soil organic carbon composition in a northern mixed-grass Prairie:effects of grazing[J].Soil Science Society of America Journal,2005,69(6):1746-1756.
    [80]Asbjornsen,H L Brudvig A, C M Mabry, et al.Defining reference information for Ecological Restoration rare tallgrass Oke Savannas in the midwestern United States[J].Journal of Forestry,2005,103(7):345-350.
    [81]Haynes R J, Swift R S, Stephen R C. Influence of mixed cropping rotations(pasture-arable) on organic matter content, water stable aggregation and clod porosity in a gorup of soil. Soil tillage Research,1991,19:77-87.
    [82]Hirotsugu Arai, Naoko Tokuchi, Keisuke Koba. Possible Mechanisms Leading to a Delay in Carbon Stock Recovery after Land Use Change. Soil Science Society of America Journal,2007,71(5):1636-1638.
    [83]HutchBrown.Ecological restoration in montana's western larch[J].Fire Management Today,2005,65 (4):28-35.
    [84]Jobbagy E G,Jackson R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Ecological Applications,2000,10:423-436.
    [85]John A E Gibson.Dry Valley ecology[J].Bioscience,2000,50(1):81-82.
    [86]Kaiser K., W. Zech. Competitive sorption of dissolved organic matter fractions to soil and related mineral phases. Soil Science Society of America Journal,1997,61:64-69.
    [87]Kang H, Freeman C, W. Ashendon T. Effects of elevated CO2 on fen peat biogeochemistry. The Science of the Total En vironment.2001,279(1-3):45-50.
    [88]Lin B, Tao S, Cao J, et al. Content and sorption coefficients of soluble organic compounds in soil and sediments from Yichun River catchment[J].Ahina Environ Sc,1996,16:307-310.
    [89]Louise M D, Gwyn S G, John H, et al. Management influences on soil microbial communities and their function in botanically diverse haymeadows of northern England and Wales[J].Soil Biol.Boch-em,2000,(32):253-256.
    [90]Madhun Y.A., J.L. Young, V.H. Freed. Binding of herbicides by water-soluble organic materials from soil.J. Environ. Qual.1986,15:64-68.
    [91]McGill W.B.,H.W.Hunt,R.G.Woodmanses et al. A model of the dynamics of carbon and nitrogen in grassland soils. In F.E. Clark and T. Rosswall(ed.). Terrestrial nitrogen cycles. Ecol.Bull.(Stockholm),1981,33:49-115.
    [92]McGill W.B.,K.R.Cannon, J.A. Robertson et al. Dynamics of soil microbial biomass and water-soluble organic C in Berton L after 50 years of cropping to two rotation. Can.J. Soil Science,1986,66:1-19.
    [93]Melody B Burkins, Ross A Virginia, C Page Chamberlain.Origin and distribution of soil organic matter in Taylor Valley, Antarctica[J].Ecology,2000,81(9):2377-2391.
    [94]Nora Szombothova,Silvia Labudova,Roman Labuda et al.The influence of different vegetation on soil chemical properties in Arboretum Mlynany[J].Folia Oecologica,2006,33(1):41-47.
    [95]Ohno T, B.S. Crannell. Green and animal manure-derived dissolved organic matter effects on phosphorus sorption. J. Environ. Qual.1996,25:1137-1143.
    [96]Ohno T,Erich M S.Inhibitory effects of crop residue-derived organic ligands on phosphate adsorption kinetics[J].J Environ Qual,1997,26:889-895.
    [97]Ohno T, M.S. Erich, Inhibitory effects of crop residue-derived organic ligands on phosphate adsorption kinetics. J. Environ. Qual.1997,26:889-895.
    [98]Per Schjonning, Lars J. Munkholm, Susanne Elmholt. Organic matter and soil tilth in arable farming:Ma-nagement makes a difference within 5-6 years[J]. Agriculture, Ecosystems and Environment,2007,122.
    [99]James Barbour R., Ryan Singleton, Douglas A. Maguire. Evaluating forest product potential as part of planning ecological restoration treatments on forested landscapes[J]. Landscape and Urban Planning,2007,80(3):237-248.
    [100]Sandra Spielvogel, Jorg Prietzel, Ingrid Kogel-Knabner. Soil Organic Matter Changes in a Spruce Ecosystem 25 Years after Disturbance. Soil Science Society of America Journal,2006,70(6):2130-2145.
    [101]Shibu Jose.Restoration of Boreal and Temperate Forests[J].Forest Science,2006,52(3):333.
    [102]Smolander A, Kitunen V. Soil micorbial activities and characteristics of dissolved organic C and N in relation to rtee species.Soil Biol.Biochem.,2002,34(5)651-660.
    [103]Stephen C Hart, Paul C Selmants, Sarah I Boyle, et al. Carbon and Nitrogen Cycling in Southwestern Ponderosa Pine Forests. Forest Science,2006,52(6):683-693.
    [104]Strobel B W, Hansen H C B, Borggaard O K, Andersen M K,et al. Cadmium and copper release kinetics in relation to aforestation of cultivated soil. Geovhimica et Cosmochimica Acta 2001,65(8):1233-1242.
    [105]Wang S P, Zhou G S, Gao S H, et al. Distribution of soil labile carbon along the Northeast China Transect and its respons to climatic change. Acta Phytoecologica Sinica,2003,27(6):780-785.
    [106]Watanabe A, Sarno, Rumbanraja J, et al. Humus compsoition of soils under forest, cofee and arable cultivation in hilly areas of south Sumatra,Indonesia[J].European Jounral of soil science,2001,52(12):599-606.
    [107]Wu J G, Zhang X Q, Xu D Y. Changes in soil labile carbon under different land use in the Liupan Mountain forese zone. Acta Phytoecologica Sinica,2004,28(5):657-664.
    [108]YANG Yu-sheng,GUO Jian-fen,LIU Yan-li et al. Composition and properties of soil humus in a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum[J].Journal of Forestry Rsearch,2002,13(1):33-36.
    [109]Zhu B, A.K.Alva. Trace metal and cation transport in a sandy soil with various amendments. Soil Science Society of America Journal,1993,57:723-727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700