去细胞光氧化交联处理的牛颈静脉RGD光化学法表面修饰及再内皮化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章基质材料的制备及表面RGD修饰的研究
     目的:探讨RGD光化学偶联法修饰去细胞光氧化牛颈静脉基质的方法,以及修饰的RGD肽在体内存留情况。
     方法:1.制备去细胞、光氧化交联的牛颈静脉基质材料,裁减成1×1cm~2大小的48个血管片,随机分入12个组中;将RGD-FITC和光偶合剂SANPAH分别配制成0.12mM、0.6mM、1.2mM和6mM四种浓度的溶液,按照1:0、1:1和1:10的三个反应摩尔比在避光下反应2小时,制成12组反应液。每组100μl反应液滴加在血管片上,365nm的紫外线照射5分钟,引发光化学偶联,将RGD共价结合到牛颈静脉血管片上,震荡漂洗6小时,样品制成快速冰冻切片,荧光显微镜下观察。通过观察基质材料表面不同浓度、不同摩尔比反应接枝后的荧光差别,从而初步推断出合适的反应和结合浓度。
     2.以浓度为0.6mM、反应摩尔比为1:1的FITC-RGD和SANPAH,同法制备表面修饰后的牛颈静脉血管片(实验组),物理吸附RGD的血管片作为对照组,8只SD大鼠随机平均分入上述两组中,将血管片分别植入两组大鼠下腔静脉,于术后5天、10天、15天、20天取出标本,进行快速冰冻切片,观察并照相留底,以了解荧光标记的RGD是否能经受体内血流的冲击和细胞的吞噬而仍然存在。
     结果:应用光偶联剂后,血管内膜面有一层较强的荧光,随着RGD和SANPAH的浓度的升高,荧光整体上是越来越强,但是二者的浓度高于0.6mM时,荧光差别不明显;相同浓度下当二者的反应摩尔比为1:1时,荧光最强。经过光化学偶联后的FITC-RGD肽在体内20天仍然存在,只是荧光略有衰减,单纯涂覆的RGD组绿色荧光5天即完全消失。
     结论:光偶联剂SANPAH能够实现RGD与去细胞光氧化牛颈静脉的化学偶联,RGD和SANPAH较为合适的接枝反应浓度是0.6mM,反应摩尔比是1:1,光化学交联方法接枝的RGD在体内保留时间至少超过20天,体内存留效果良好。
     第二章RGD表面修饰BJV后体外、体内的再内皮化研究
     目的:探讨RGD表面修饰后的牛颈静脉体内和体外促进再内皮化的情况。
     方法:1.体外细胞黏附生长:牛颈静脉经过去细胞和光氧化交联后,裁成与24孔培养板孔径相同大小的、直径1.6cm的血管片,用光偶联剂SANPAH采用第一章的方法将RGD接枝到牛颈静脉血管片上,以未接枝RGD的作为空白对照。在其上面种植人脐静脉内皮细胞株细胞(CRL-2480)5×10~5/ml,静态培养5天,取1,3,5天标本消化血管片表面细胞并记数,标本切片HE染色,对比RGD接枝后和空白对照组血管片表面细胞黏附数目和HE的染色结果,以探讨接枝RGD体外能否促进细胞黏附和生长。
     2.再内皮化的体内实验:8只SD大鼠平均分入处理组和对照组,将RGD表面修饰和未修饰的血管片植入下腔静脉,采用连续缝合的方式进行补片,术后两组均给予10mg/kg/天剂量的阿托伐他汀喂养,分别于术后5天、10天、15天、20天取出血管片,标本进行石蜡包埋、HE染色、扫描电镜和Ⅷ因子免疫组织化学检测,取普通显微镜40倍下的HE染色的血管片留底照片,在Image Pro Plus图像测量软件上测量内膜厚度,计算平均值,两组间进行比较。
     结果:1.体外培养:(1)细胞记数:细胞培养第1、3、5天,RGD组细胞数目均多于对照组(p<0.05),(2)标本石蜡包埋后切片HE染色结果:第1天各组血管片表面细胞排列密集,紊乱,未完全铺开;第3天,对照组血管表面细胞数量减少明显,有断裂出现;RGD组细胞连接成片,呈单层排布;第5天这种现象更明显。
     2.体内实验:(1)组织大体观结果:血管片隆起于下腔静脉表面,质软,周围粘连较轻,颜色变白,亚甲兰的蓝色已完全消失。剖开下腔静脉后见补片表面光滑,无血栓,缝线清晰可见,其上附着一薄层增厚组织,薄而透明,为新生内膜组织。
     (2) HE染色结果:经过光氧化交联的BJV植入体内,细胞浸润受到抑制,浸润全层首先在血管片吻合区域发生,20天两组中间区域均未能浸润全层,只是在小部分个别区域全层BJV有细胞相连;RGD组在新生内膜中有更多的细胞,而对照组则主要还是纤维素等不定型成分。新生内膜在吻合区域薄,中间较厚,剔除新生内膜后的HE切片显示:术后5天,RGD组BJV表面有细胞黏附,对照组几乎没有细胞;RGD组5天即能在内膜面看到内皮样细胞覆盖,10天完整覆盖补片,对照组则需要20天才能看到内膜面较多的细胞覆盖。
     (3)Ⅷ因子染色结果:RGD表面修饰后的血管片植入大鼠体内5天Ⅷ因子染色即呈阳性,而且新生内膜中已经形成新生微血管,10天阳性更强;对照组5~15天内膜面只有很少的细胞,Ⅷ因子染色是阴性,20天虽然内膜面虽有较多的细胞,但是Ⅷ因子染色仍是阴性。
     (4)扫描电镜结果:RGD组术后5天内膜面可见较多的上皮样细胞顺血流方向排列,但是细胞之间有间距,术后10天内膜面附着一层排列致密、整齐的内皮细胞,细胞间可见形成的牢固连接;对照组术后10天内膜面仍是增厚的纤维素样物质,下面似有细胞突起,可能为平滑肌或成纤维细胞,表面无内皮样细胞覆盖,只是黏附一些大分子物质和散在的一些小细胞。
     (5)内膜厚度的比较:术后第5天,RGD组新生内膜较对照组厚,但是没有统计学意义(P>0.5),随后的10天、15天、20天RGD组新生内膜均较对照组薄,而且有统计学意义(P≤0.01)。两组新生内膜总体上说随着时间的延长,厚度越来越大,术后15天时达到高峰,20天即开始下降,RGD组术后10天新生内膜厚度有波折,其在20天时下降到术后5天的水平,而对照组厚度值仍然较大。
     结论:RGD表面修饰的牛颈静脉,体外能促进内皮细胞的黏附与生长,体内能快速达到内皮化的效果,虽然仍然伴有内膜的增生,但是新生内膜的厚度显著薄于未经RGD修饰的牛颈静脉。
PartⅠFabrication of decellularized and photooxidated bovine jugular vein matrix & RGD surface modification
     Objective:
     To investigate the mode of photocrosslinking RGD peptide onto the decellularized and photooxidated bovine jugular vein matrix surface and the persistence of RGD in vivo.
     Methods:
     1. Bovine jugular vein was decellularized and photooxidated, then cut into 48 pieces of 1×1cm~2 and divided into 12 groups randomly. The solutions of RGD covalent labelled with FITC and photochemical crosslinker SANPAH were prepared, their concentrations were 0.12mM, 0.6mM, 1.2mM and 6mM. The reaction between them were performed with 3 different mole ratios in 2 hours away from light, which were 1∶0, 1∶1 and 1∶10. 100μl reacted solution of them were dropped onto the prepared BJV pieces, then irradiated under 365nm ultraviolet ray for 5 minutes. The pieces were rinsed in a shaking machine for 6 hours. The fast frozen sections of the specimens were observed under the fluorescent microscope. The grafting effect was viewed by different fluorescent brightness, so the suitable reactive concentration and ratio were educed. This reactive concentration and ratio were selected for further experiment in vivo as below.
     2. Four RGD modified BJV patches were prepared which were treated with RGD-FITC and SANPAH of 0.6mM and 1∶1 mole ratio by the same method as above mentioned(SANPAH group). Another four patches were only coated with RGD-FITC directly(control group). Eight Sprague-Dawley rats (SD rats) were divided into this two groups equally. All the patches were transplanted into murine inferior vena cava wall and harvested at the 5th, 10th, 15th, 20th day postoperatively. Their fast frozen sections were observed and pictured under fluorescent microscope as above procedure.
     Results: The brighter fluorescence on the side of endangium was viewed on the SANPAH photocrosslinking group. The higher the concentrations of RGD and SANPAH were, the brighter the fluorescence was. But when the concentration of them was higher than 0.6mM, the difference of fluorescent brightness was not so clear. In the same concentration, the fluorescence was brightest if the reactive mole ratio between them was 1∶1. In vivo fluorescence still existed after 20 days postoperatively in SANPAH group even though attenuating slightly. At 5th day postoperatively, the fluorescence disapeared in RGD group.
     Conclusion: RGD peptide could be covalent grained onto the BJVC surface by photochemical cross-linker SANPAH. The optimal concentration of RGD and SANPAH and reactive mole ratio between them were 0.6mM and 1∶1. The persistence time of RGD treated with photochemical cross-linker was over 20 days at least in vivo. 10~5/ml density and cultured for 5 days. The cells were departed with enzyme from the surface of these pieces at 1st, 3th, 5th, their numbers were counted. The slices of BJV implanted with cells were HE stained and pictured. The difference between two groups was compared to verify whether BJV modified with RGD could promote the cell adhesion and proliferation.
     2. In vivo: Eight SD rats were divided into RGD modified group and control group equally. BJV patches were implanted in their IVC wall. Continuous suture technique was performed. The rats were fed with atorvastatin of 10mg/kg/d. The patches were harvested at 5th, 10th, 15th, 20th day postoperatively. Gross view was achieved. The samples were HE stained and scanned under scanning electron microscope and tested ofⅧfactor dyeing with immunohistochemistry method. The thickness of neointima were measured and compared between two groups by using Image Pro Plus software.
     Results:
     1. In vitro: (1) Cells counting: The cells number in RGD group was more than control group at 1st, 3rd, 5th day (p<0.05). (2) At 1st day, the cells arrayed intensively and not spreaded completely in each group's surface. At 3rd day, the cells on BJV surface decreased apparently and disrupt among themselves in control group, while the RGD group gained a cell-layer well. At 5th day, this phenomenon was more obvious.
     2.In vivo: (1) Gross view: The patches were harvested from IVC of the rats. Adherence with surrounding tissue was slight. The color of methylthioninium chloride disappeared and the patches turned white and were still soft. The inner side of all patches was smooth. No thrombus was found in both two groups. The suture line was seen clearly. A thickening lamella was viewed on all patches.
     (2)HE(hematoxylin - eosin) stain: BJV treated with photooxidation could inhibit cell infiltration. The infiltration occurred firstly in anastomotic area and was not through the whole midpiece wall after 20 days in both two groups except in a very small area. Inside the neointima there were more cells in RGD group than control group. As soon as the neointima was shucked, cells were seen on BJV surface in RGD group while few cells in control group at 5th day postoperatively by HE stain. Endothelioid cells were viewed in RGD group at 5th day and it completely covered neointima at 10th day. While this phenomenon occurred at 20th day in control group.
     (3)Ⅷfactor staining: Positive staining was viewed at 5th day in RGD group, stronger positive at 10th day postoperatively, and there was neocapillary in neointima at 5th day postoperatively. There were fewer cells on the neointimal surface at 15th in control group. Negative staining still existed at 20th in control group postoperatively, though lots of cells were seen on the neointimal surface at this time.
     (4) Scanning electron microscope: Lots of endothelioid cells along with the direction of blood flow were observed but there was still distance between the cells in RGD group at 5th day. A layer of endothelial cells were compacted and well-arrayed, the cell junction was tight at 10th day in RGD group. There was only cellulose and macromolecule substance on the neointima in control group at these times. Though it was seems that there were cells under the surface but the endothelial cell covering was not observed.
     (5) Thickness of neointima: The neointima was thicker in RGD group than in control group at 5th day postoperatively, but it was not significant(P>0.5). It was thinner in RGD group than in control at 10th, 15th, 20th day postoperatively(P≤0.01). In general, the neointima turned thicker when time went on, which got to the peak at 15th day and then went down in both group. The thickness of neointima at 20th day decreased to the level of that at 5th day postoperatively in RGD group, while the thickness of neointima was still large at 20th day in control group.
     Conclusions:
     RGD surface modification could promote the cell adhesion and prolification on BJV in vivo. Fast reendothelialization was achieved on the BJV patches modified with RGD in vivo. Even still accompanying with intima hyperplasia, but the thickness of neointima was slighter than that untreated with RGD.
引文
[1].方佩斐,贾维敏.组织工程中天然支架材料的研究现状.医学文选,2006,25(4):901-903
    [2]. Zund G, Hoerstrup SP, Schoeberlein A, et al. Tissue engineering: a new approach in cardiovascular surgery: Seeding of human fibroblasts followed by human endothelial cells on resorbable mesh. Eur J Cardiothorac Surg, 1998, 13: 160-4
    [3]. Kim BS, Nikolovski J, Bonadio J, et al. Engineered smooth muscle tissues: regulating cell phenotype with the scaffold. Exp Cell Res, 1999, 251: 318-28
    [4]. Hoerstrup SP, Zund G, Sodian R, et al. Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg 2001; 20: 164-9
    [5]. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science, 1999, 284: 489-93
    [6]. Shum-Tim D, Stock U, Hrkach J, et al. Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg, 1999; 68: 2298-305
    [7]. Stephen F. Badylak, Regenerative Medicine and Developmental Biology: The Role of the Extracellular Matrix. Anat Rec, 2005, 287 (B): 36-41,.
    [8]. Li F, Li W, Johnson S, Ingram D, et al, Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells. 2004, 11: 199-206.
    [9]. Dave HH, Kadner A, Berger F, et al. Early results of the bovine jugular vein graft used for reconstruction of the right ventricular outflow tract[J]. Ann Thorac Surg, 2005, 79 (2): 618-624.
    [10]. Boethig D, Thies WR, Hecker H, et al. Mid term course after pediatric right ventricular outflow tract reconstruction: a comparison of homografts, porcine xenografts and Contegras[J]. Eur J Cardio thorac Surg, 2005, 27 (1): 58-66.
    [11]. Brown JW, Ruzmetov M, Rodefeld MD, et al. Valved bovine jugular vein conduits for right ventricuiar outflow tract reconstruction in children: an attractive alternative to pulmonary homograft. Ann Thorac Surg. 2006, 82(3): 909-916
    [12].吴忠仕,胡建国,杨一峰,等.带瓣牛颈静脉在治疗复杂先天性心脏病中的应用.中南大学学报(医学版).2005,30(4):471-473
    [13]. Herijgers P, Ozaki S, Verbeken E, et al. Valved jugular vein segments for right ventricular outflow tract reconstruction in young sheep. J Thorac Cardiovasc Surg, 2002, 124 (4): 798—805.
    [14]. Tiete AR, Sachweh JS, Roemer U, et al. Right ventricular outflow tract reconstruction with the Contegra bovine jugular vein conduit: a word of caution. Ann Thorac Surg, 2004, 77(6): 2151—2156..
    [15]. Patel S, Tsang J, Harbers G, et al. Endothelial cell function on a poly(acrylamide-co-polyethylene acid) interpenetrating polymer network: cardiovascular applications. Conf Proc IEEE Eng Med Biol Soc. 2004, 7: 5040-3.
    [16]. Worsfold O, Voelcker NH, Nishiya T. Biosensing using lipid bilayers suspended on porous silicon. Langmuir. 2006, 22(16): 7078-83
    [17]. Ferreira LS, Gerecht S, Fuller J, et al. Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials. 2007, 28(17): 2706-2717
    [18]. Hadjizadeh A, Doillon CJ, Vermette P, et al. Bioactive polymer fibers to direct endothelial cell growth in a three-dimensional environment. Biomacromolecules. 2007 Mar; 8(3): 864-73
    [19]. Teebken OE, Haverich A. Tissue engineering of small diameter vascular grafts. Eur J V asc Endovasc Surg, 2002; 23: 474
    [20].王晖,胡建国,吴忠仕,不同交联方法处理的牛颈静脉移植后免疫学的研究,中国医师杂志,2005,7(7):928-930
    [21].冯耀光,吴忠仕,胡建国,等,光氧化反应处理牛颈静脉带瓣管道的形态学与理化性能研究。中南大学学报(医学版),2004;29:429—431
    [22]. Adams AK, Talman EA, Campbell L, et al, Crosslink formation in porcine valves stabilized by dye-mediated photooxidation, John Wiley & Sons, Inc. 2001: 582—587
    [23]. Ewa M. kozma, Gregorz Wisowski, Agnieszka, et al, The influence of physical and chemical agents on Photooxidation of Porcine pericardial collagen. Bio Medicine Material and Engineering, 2005, 15: 137-144
    [24]. Glenn M. LaMuraglia, Farzin Adili, et al, Photodynamic Therapy Inhibits Experimental Allograft Rejection, Circulation, 1995; 92: 1919-1926.
    [25]. Marcus Overhaus, Joerg Heckenkamp, Sylvie Kossodo, et al, Photodynamic Therapy Generates a Matrix Barrier to Invasive Vascular Cell Migration, Circ. Res. 2000; 86; 334-340
    [26]. Ke-Xiang Liu, Fumio Yamamoto, Satoshi Sekine, et al, Inhibitory Effect of Methylene Blue-Induced Photooxidation on Intimal Thickening of Vein Graft, Ann Thorac Surg, 1999; 68: 84-8
    [27]. WeiX N, Klee D, H.ocker H. Konzept zur bioaktiven Ausr. ustung von Metallimplantatoberf.achen. Biomaterialien. 2001; 2: 81-86.
    [28]. David Richard Schmidt, Weiyuan John Kao, The interrelated role of fibronectin and interleukin-1 in biomaterial-modulated macrophage function. Biomaterials, 28, 2007: 371-382
    [29]. Smith KH, Jozwiak AB, Kielty CM, Surface Modification of a Polyether-urethane with RGD-containing Peptides for Enhanced Cell Attachment and Signalling, European Cells and Materials, 2005 (10): 57
    [30]. Lily Y. Koo, Darrell J. Irvine, Anne M. Mayes, et al, Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus, Journal of Cell Science 2002 (115), 1423-1433
    [31]. Glogaher M , Ferrier J. A New Method for Application of Force to Cells via Ferric Oxide Beads. Pflugers Arch. 1998; 435 (2): 320
    [32]. Hadjizadeh A, Doillon CJ, Vermette P. Bioactive polymer fibers to direct endothelial cell growth in a three-dimensional environment. Biomacromolecules. 2007, 8(3): 864-73.
    [33]. Gauvreau V, Laroche G. Micropattern printing of adhesion, spreading, and migration peptides on poly(tetrafluoroethylene) films to promote endothelialization. Bioconjug Chem, 2005, 16(5): 1088-97
    [34].史嘉玮,董念国,孙宗全,等,精氨酸—甘氨酸—天冬氨酸肽固定去细胞瓣构建组织工程瓣膜的实验研究,,医学研究生学报,2006,10月(19):874-877
    [35]. Tze-Wen Chung, Ya-Fen Lu, Hsin-Ya Wang, et al, Growth of Human Endothelial Cells on Different Concentrations of Gly-Arg-Gly-Asp Grafted Chitosan Surface, Artif Organs, 2003, 27(2): 155-161
    [36]. Tze-Wen Chunga, Ya-Fen Luc, Shoei-Shen Wang, et al, Growth of human endothelial cells on photochemically grafted Gly-Arg-Gly-Asp (GRGD) chitosans, J Biomaterials, 2002, 23: 4803-
    [37].罗祥林,黄嘉,何斌等,光化学固定法——医用高分子材料表面改性的一种新方法,生物医学工程学杂志,2000:17(3):320~323
    [38]. Jhansi Kota , Per O. Ljungdahl, Specialized membrane-localized chaperones prevent aggregation of polytopic proteins in the ER, JCB, 2005, 168 (1): 79—88
    [39]. Vasupu NJ, Jewell M. Graves, et al, Efect of VitaminD Analog (1_ Hydroxy D5) Immunoconjugated to Her-2 Antibody on Breast Cancer, Int. J. Cancer, 2004, 108, 922-929
    [40]. Azmi Naqvi , Pradip Nahar. Photochemical immobilization of proteins on microwave - synthesized photoreactive polymers, Analytical Biochemistry, 2004, 327: 68-73
    [41]. Gregory T. Carroll, Denong Wang, Nicholas J. Turro, et al, Photochemical Micropatterning of Carbohydrates on a Surface, Langmuir ,2006, 22, 2899-2905
    [42]. Kantlehner M, Schaffner P, Finsinger D, et al. Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. Chem-BioChem 2000; 1: 107-14.
    [43]. Jeschke B, Meyer J, Jonczyk A, Kessler H, et al. RGD-peptides for tissue engineering of articular cartilage. Biomaterials. 2002; 23: 3455-63.
    [44]. Massia SP, Hubbell JA. An RGD spacing of 440nm is sufficient for integrin avb3-mediated fibroblast spreading and 140nm for focal contact fiber formation. J Cell Biol 1991; 114: 1089-100.
    [45]. Garland W. Fussella, Stuart L. Cooper, Synthesis and characterization of acrylic terpolymers with RGD peptides for biomedical applications, Biomaterials, 2004 (25): 2971-2978
    [46]. Garland W. Fussell, Stuart L. Cooper, Endothelial cell adhesion on RGD-containing methacrylate terpolymers, Wiley InterScience, 2004, 2: 265—272
    [47]. James Holland, Leroy Hersh, Marie Bryhan, et al, Culture of human vascular endothelial cells on an RGD-containing synthetic peptide attached to a starch-coated polystyrene surface: comparison with fibronect in-coated tissue grade polystyrene, Biomaterials, 1996,17:2147-2156
    
    [48]. Daniel Hal Davis, Constantina S. Giannoulis, Robert W. Johnson, et al. Immobilization of RGD to <111> silicon surfaces for enhancedcell adhesion and proliferation. Biomaterials. 2002,23:4019-4027
    
    [49]. Massia SP,Hubbell JA. Human endothelial cell interactions with surface-coupled adhesion peptides on a nonadhesive glass substrate and two polymeric biomaterials. Journal of Biomedical Materials Research. 1991, 25, (2):223-42
    
    [50]. Elisabetta Bini , Cheryl Wong Po Foo , Jia Huang , et al. RGD-Functionalized Bioengineered Spider Dragline Silk Biomaterial. Biomacromolecules. 2006, 7: 3139-3145
    
    [51]. Shan-hui Hsua, Wen-Ping Chua, Yu-Shuen Lin, et al. The effect of an RGD-containing fusion protein CBD-RGD in promoting cellular adhesion. Journal of Biotechnology. 2004,111 :143 -154
    
    [52]. Loredana De Bartolo, Sabrina Morelli, Antonella Piscioneri, et al. Novel membranes and surface modification able to activate specific cellular responses. Biomolecular Engineering . 2007,24:23-26
    
    [53]. Hong Yu, Wangde Dai, Zhe Yang, et al. Smooth muscle cells improve endothelial cell retention on polytetrafluoroethylene grafts in vivo. J Vasc Surg 2003;38:557-63
    
    [54]. Cho SW, Park HJ, Ryu JH, et al. Vascular patches tissue-engineered with autologous bone marrow-derived cells and decellularized tissue matrices. Biomaterials, 2005,26(14):1915-1924
    
    [55]. Kaushal S, Amiel GE, Guleserian KJ, et al, Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med. 2001, 7(9):996-997
    
    [56]. Hong Chen, Yang Chen, Heather Shear down, et al. Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer. Biomaterials. 2005,26 :7418-7424
    
    [57]. Bos GW, Poot AA, Beugeling T,et al. Small-diameter vascular graft prostheses: current status. Arch Physiol Biochem. 1998,106:100-115
    
    [58], IshikawaT, Eguchi M, WadaM, et al. Establishment of a functionally active collagen-binding vascular endothelial growth factor fusion protein in situ. Arterioscler Thromb Vasc Biol. 2006 ,26(9):1998-2004
    
    [59]. Dio K, Matsuda T. Enhanced vascularization in a microporous polyurethane graft impregnated with basic fibroblast growth factor and heparin. J Biomed Master Res. 1997, 34:361-370
    
    [60]. Sharon Sagnella, Eroc Anderson, Naomi Sanabria, et al. Human Endothelial Cell Interaction with Biomimetic Surfactant Polymers Containing Peptide Ligands from the Heparin Binding Domain of Fibronectin. Tissue Eng. 2005 ; 11(1-2): 226-236.
    
    [61]. Bordenave L, Remy-Zoghadri M, Fernandez PH, et al, Clinical performance of vascular graft lined with endothelial cells. Endothelium. 1999,6:267-275
    
    [62]. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science. 1999;284:489 - 93.
    
    [63]. Shinoka T, Imai Y, Ikada Y. Transplantation of a tissue engineered pulmonary artery. N Engl J Med 2001;344:532 - 3.
    
    [64]. L' Heurenx N , Paquet S , Labbe R , et al. A completely biological tissue engineered human blood vessel [J ] . FASEB , 1998 , 12 :47 - 56.
    
    [65]. L' Heurenx N , Stocld J , Francois A , et al . A human tissue engineered vascular media :a new model for pharmacological studies of contractile responses[J ] . FASEB , 2001 ,15 :515 - 524 .
    
    [66]. Kadner A, Zund G, Maurus C, et al. Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. Eur J Cardiothorac Surg. Eur J Cardiothorac Surg, 2004,25(4):635-641
    
    [67]. Yu H, Wang Y, Eton D, et al. Dual cell seeding and the use of zymogen tissue plasminogen activator to improve cell retention on polytetrafluoroethylene grafts. J Vasc Surg 2001:34:337-43.
    
    [68]. Fillinger MF, O' Connor SE, Wagner RJ, et al. The effect of endothelial cell coculture on smooth muscle cell proliferation. J Vasc Surg. 1993:17:1058-68.
    
    [69]. Powell RJ, Cronenwett JL, Fillinger MF, et al. Endothelial cell modulation of smooth muscle cell morphology and organizational growth pattern. Ann Vasc Surg. 1996:10:4-10.
    
    [70]. Hong Yu, Wangde Dai, Zhe Yang, et al. Smooth muscle cells improve endothelial cell retention on polytetrafluoroethylene grafts in vivo. J Vasc Surg. 2003:38:557-63
    
    [71]. Matsumura G, Miyagawa-Tomita, Shin' oka T,et al. First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation, 2003,108(14): 1729-1734
    
    [72]. Shin' oka T, Matsumura G, Hibino N, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg, 2005,129(6):1330-1338
    
    [73]. Kaushal S, Amiel GE, Guleserian KJ, et al, Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med. 2001, 7(9):996-997
    
    [74]. Schmidt D. Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Ann Thorac Surg, 2004, 78(6): 2094-8
    
    [75]. Mark JE, Genevieve CB, Meilin Yang, et al.Generation of cell adhesive substrates using peptide fluoralkyl surface modifiers. Biomaterials. 2005,26: 6536-6546
    
    [76]. Dong-an Wang, Jian Ji,Yong-hong Sun, et al. In Situ Immobilization of Proteins and RGD Peptide on Polyurethane Surfaces via Poly(ethylene oxide) Coupling Polymers for Human Endothelial Cell Growth. Biomacromolecules .2002, 3:1286-1295
    
    [77]. Shan-hui Hsu, Wen-Ping Chu, Yu-Shuen Lin, et al. The effect of an RGD-containing fusion protein CBD-RGD in promoting cellular adhesion. Journal of Biotechnology . 2004,111: 143-154
    
    [78]. Alexandre Salsmann, Elisabeth Schaffner-Reckinger, Nelly Kieffer. RGD, the Rho' d to cell spreading. European Journal of Cell Biology. 2006, 85: 249-254
    [79]. Ulrich Hersel, Claudia Dahmen, Horst Kessler. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24 (2003) 4385-4415
    [80].李长文,郑启新,郭晓东等,RGD多肽修饰的改性PLGA仿生支架材料对骨髓间充质干细胞粘附性影响的研究,华中医学杂志,2005 29(6):439-441
    [81].赵宝红,战德松,田维明等,RGD修饰钛表面对人牙龈成纤维细胞初期黏附和铺展的影响,材料研究学报,2005,19(4):369-374
    [82]. Chiba M, Malik, SW, Specks U, Microtiter plate immunoassay for the evaluation of platelet adhesion to fibronectin. J. Immunol. Methods, 1996, 191: 55-63
    [83].易成刚.血管内皮祖细胞的研究进展及在整形外科应用前景.中华整形外科杂志,2004,20:305-307
    [84]. Urbich C, Dernbach E, Zeiher AM, et al, Double-edged role of statins in angiogenesis signaling. Circ Res, 2002, 90: 737—744
    [85]. Rosenzweig A. Circulating endothelial progenitors cells as biomarkers, N Egl J Med, 2005, 353: 1055—1057
    [86]. Cetrulo CL, Knox KR, Brown DJ, et al, Stem cells and distraction osteogenesis: endothelial progenitor cells home to the ischemic generate in activation and consolidation. Plast Reconstr Surg. 2005, 116: 1053-1067.
    [87]. Tepper OM, Capla JM, Galiano RD, et al, Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood, 2005, 105: 1068—1077
    [88].季亢挺.内皮祖细胞与他汀类药物调脂外心血管保护作用,心血管病学进展,2004,(25)5:360-362
    [89]. Kazuro L. Fujimoto, Jianjun Guan, et al. In Vivo Evaluation of a Porous Elastic Biodegradable Patch for Reconstructive Cardiac Procedures. Ann Thorac Surg. 2007, 83: 648-54
    [90]. Yuguang Wu, Felix I Simonovsky, Buddy D. Ratner, et al, The role of adsorbed fibrinogen in platelet adhesion to polyurethane surfaces: A comparison of surface hydrophobicity, protein adsorption, monoclonal antibody binding, and platelet adhesion, J Biomed Mater Res, 2005, 74: 722-738
    [91]. H.T. Spijker, R. Graaff, P.W. Boonstra, et al, On the influence of flow conditions and wettabilityon blood material interactions. Biomaterials. 2003, 24: 4717-4727
    [92]. Spijker HT, Bos R, Van Oeveren W, et al. Adhesion of platelets under flow to wettability gradient polyethylene surfaces made in a shielded gas plasma. J Adhesion Sci Technol 2002; 16: 1703-13.
    [93]. Schleef RR, Podor TJ, Dunne E, et al. The majority of type 1 plasminogen activator inhibitor associated with cultured human endothelial cells is located under the cells and is accessible to solution-phase tissue-type plasminogen activator. J Cell Biol 1990; 110: 155-63.
    [94]. Lupu F, Bergonzelli GE, Heim DA, et al. Localization and production of plasminogen activator inhibitor-1 in human healthy and atherosclerotic arteries. Arterioscler Thromb 1993; 13: 1090-100.
    [95]. Redmond EM, Cullen JP, Cahill PA,, et al. Endothelial cells inhibit flow-induced smooth muscle cell migration: role of plasminogen activator inhibitor-1. Circulation 2001; 103: 597-603.
    [96]. Proia RR, Nelson PR, Mulligan-Kehoe MJ, et al. The effect of endothelial cell overexpression of plasminogenactivator inhibitor-1 on smooth muscle cell migration. J Vasc Surg, 2002; 36: 164-71.
    [97]. Fillinger MF, O'Connor SE, Wagner RJ, et al. The effect of endothelial cell coculture on smooth muscle cell proliferation. J Vasc Surg 1993; 17: 1058-67 discussion 1067-8.
    [98]. Powell RJ, Cronenwett JL, Fillinger MF, et al. Endothelial cell modulation of smooth muscle cell morphology and organizational growth pattern. Ann Vasc Surg. 1996; 10: 4-10.
    [99]. Hong Yu, Wangde Dai, Zhe Yang, et al. Smooth muscle cells improve endothelial cell retention on polytetrafluoroethylene grafts in vivo. J Vasc Surg 2003; 38: 557-63
    [100]. Angela GV, Yan Jiang,Marc DB. Pressure alters endothelial effects upon vascular smooth muscle cells by decreasing smooth muscle cell proliferation and increasing smooth muscle cell apoptosis. The American Journal of Surgery, 2004, 190(5):780-786
    
    [101]. McDonald DA. Blood flow in arteries. London: Arnold; 1974.
    [102]. Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for arterogenesis. Proc Roy Soc London B . 1971; 177:109-59.
    
    [103]. Bassiouny HS , Song RH , Hong XF , et al. Flowregulation of 722kD collagenase IV (MMP22) after experimental arterial injury. Circulation , 1998 , 98 (2) : 1572163
    
    [104]. Schechner J S , Nath AK, Zheng L , et al. In vivo formation of complex microvessels lined by human endothelial cells in an immundeficient mouse. Proc Natl Acad Sci , 2000 ,97 :9191 - 9196.
    [105]. Matsumura G, Miyagawa-Tomita S, Shin' oka T, et al. First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation .2003, 108:1729-34.
    
    [106]. Sata M, Saiura A, Kunisato A, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 2002:8:403-9.
    
    [107]. Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002:109:337-46.
    
    [108], Kashiwakura Y, Katoh Y, Tamayose K, et al. Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM22a promoter: in vitro differentiation of putative smooth muscle progenitor cells of bone marrow. Circulation 2003;107:2078 - 81.
    [1]. Sinzobahamvya N, Wetter J, Blaschczok HC, et al. The fate of small diameter homografts in the pulmonary position. Ann Thorac Surg, 2001, 72(6): 2070~2076.
    [2]. Shaddy RE, Hawkins JA. Immunology and failure of valved allografts in children. Ann Thorac Surgg, 2002, 74(4): 1271~1275.
    [3]. Nerem RM, Seliktar D. Vascular tissue engineering. Anun. rev. Bioengineer. 2001, 3: 225-243.
    [4]. Freed LE, Vunjak-Novakovic G, Biron RJ, et al. Biodegradable polymer scaffold issue engineering, J Bio Technology, 1994, 12(7): 689-693.
    [5]. Kim BS, Mooney DJ. Development of biocompatible synthetic extra cellular matries for tissue engineering. J Trends Biotechnol, 1998, 16(5): 224-230.
    [6]. Chen GP, Takashi Ushida. Development of biodegradable porous scaffolds for tissue engineering, Materials Science and Engineering C, 2001, 17: 63.
    [7]. Eiselt P , Kim BS , Chacko B , et al. Development of teachologies aiding large - tissue engineering[J ] . Biotechnol Prog , 1998 ; 14(1) : 134 - 140 .
    
    [8]. Chaouat M, Le Visage C, Autissier A, et al. The evaluation of a small-diameter polysaccharide-based arterial graft in rats. Biomaterials.2006 ,27(32): 5546-53
    
    [9], Dennes TJ, Hunt GC, Schwarzbauer JE, et al. High-yield activation of scaffold polymer surfaces to attach cell adhesion molecules. J Am Chem Soc. 2007 ,129(1): 93-7
    
    [10]. Sank AJ , Rostami K, Weaver F , et al. New evidence and new hope concerning endothelial seeding of vascular grafts [J ] . Am J Surg , 1992 , 164(3) :199 - 204.
    
    [11]. Mazzucotecli J P , Moczar M , Zede L , et al. Human vascular endothdelial cell on expanded PTFE precoated with an engineered protein adhesion factor. Int J Itrtif Org , 1994 ,17 :112 - 117.
    
    [12]. Sipehia R , Martucci G, Lipscombe J . Transplantation of human endothelial cell monolayer on artificial vascular prosthesis. The effect of growth surface chemistry , cell seeding density , ECM protein coating and growth factors . [J ] . Artif Cells Blood Substit Immobil Biotechnol , 1996 , 24 :51 - 63.
    
    [13]. Kim BS, Baez CE, Atala A . Biomaterials for tissue engineering. World J U rol, 2000; 18(1):2-9
    
    [14]. Kim SS, KaiharaS, Benvenuto M S, et al. Small intestinal submucosa as a small-caliber venous graft. J Pediatr Surg, 1999; 34: 124
    
    [15]. Zund G, Hoerstrup SP, Schoeberlein A, et al. Tissue engineering:a new approach in cardiovascular surgery, seeding of human fibroblasts followed by huendothelialial cells on resorbable mesh. Eur J Cardio-Thorac, 1998,13(2):160-164
    
    [16]. Bostman O. Current conletts review absorbable implants for the fixation of fractures. J Bone Joint Surg ,1991 , 73A :148 - 155.
    
    [17]. Jahangiri M, Zurakowski D, Mayer JE, et al. Repair of the reuncal valve and associated interrupted arch in neonate with truncus arteriosus. J Thorac Cardiovasc Surg, 2000,119(3):508-514.
    
    [18]. Sung HW , Hsu CS, Lee YS. Physical properties of a porcine internal thoracic artery fixed with an epoxy compound. Biomaterials, 1996; 17 : 23-57
    
    [19]. Boethig D, Thies WR, Hecker H, et al. Mid term course after pediatric right ventricular outflow tract reconstruction: a comparison of homografts, porcine xenografts and Contegras. Eur J Cardio thorac Surg, 2005, 27 (1) : 58-66.
    
    [20]. Sung HW , Hsu HL , Shih CC, et al. Cross-linking characteristics of bio logical tissues fixed with monofunctional or multifunctional epoxy compounds. Biomaterials, 1996; 17 : 1405
    
    [21]. Mazzuco telli JP, Bertrand P, Benhaiem-Sigaux N , et al. In vitro and in vivo evaluation of a small caliber vascular prosthesis fixed with a polyepoxy compound. A rtif O rgans, 1995; 19 : 896
    
    [22]. Jorge Herrero E, Fernandez P, Turnay J , et al. Influence of different chemical crosslinking treatments on the p roperties of bovine pericardium and co llagen. Biomaterials, 1999; 20 : 539
    
    [23]. Jayak rishnan A , Jameela SR. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials, 1996;17 : 471
    
    [24]. Sung HW, Chang Y, L iang IL , et al. Fixation of biological tissues with anaturally occurring crosslinking agent: Fixation rate and effects of PH, temperature, and initial fixative concentration. J Biomed Mater Res 2000; 52 : 77
    
    [25]. Sung HW, Huang RN , Huang LLH, et al. Feasibility study of a natural crosslinking reagent for bio logical tissue fixation. J Biomed Mater Res, 1998; 42 : 560
    
    [26]. Sung HW , Chang Y, Chiu CT, et al. Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent. Biomaterials, 1999; 20 : 1759
    
    [27]. Han B, Jaurequi J , Tang BW , et al. P roanthocyanidin: A natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res, 2003; 65A: 118
    [28]. Bagchi D, Bagchi M, Stohs SJ, et al. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxico logy, 2000; 148: 187
    [29]. Scalbert A, Deprez S, Mila I, et al. Proanthocyanidins and human health: systemic effects and local effects in the gut. Biofactors, 2000; 13: 115
    [30]. Jorge Herrero E, Fernandez P, Turnay J, et al. Influence of different chemical cross-linking treatments on the properties of bovine pericardium and collagen. Biomaterials, 1999; 20: 539
    [31]. Adams A K, Talman EA, Campbell L, et al. Crosslink formationin porcine valves stabilized by dye-mediated photooxidation. J Biomed Mater Res, 2001; 57: 582
    [32]. Kozma EM, Wisowski G, Jura-Poltorak A. The influence of physical and chemical agents on photooxidation of porcine pericardial collagen. Biomed Mater Eng. 2005; 15(3): 137-44
    [33]. Moore MA, Adams AK. Calcification resistance, biostability, and low immunogenity potential of porcine heart valves modified by dye-mediated photooxidation. J Biomed Mater Res, 2001; 56: 24
    [34].王晖,胡建国,吴忠仕,不同交联方法处理的牛颈静脉移植后免疫学的研究,中国医师杂志,2005,7(7):928-930
    [35]. Carnagey J, Hern-Anderson D, Ranieri J, et al. Rapid endothelialization of photofix natural biomaterial vascular grafts. J Biomed Mater Res, 2003; 65B: 171
    [36]. Stephen F. Badylak. Regenerative Medicine and Developmental Biology: The Role of the Extracellular Matrix, Anat Rec, 2005, 287 (B): 36-41
    [37]. Li F, Li W, Johnson S, Ingram D, et al, Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells. 2004, 11: 199-206.
    [38]. Birchall IE, Field PL, Ketharanathan V. Adherence of human saphenous vein endothelial cell monolayers to tissue-engineered biomatrix vascular conduits. J Biomed Mater Res, 2001, 56(3):437-443
    
    [39]. Schnell Am, Hoerstrup SP, Zund G, et al. Optimal cell source for cardiovascular tissue engineering: venous vs. aortic human myofibroblasts. Thorac Cardiovasc Surg.2001, 49(4):221-225
    
    [40]. Kadner A, Zund G, Maurus C, et al. Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. Eur J Cardiothorac Surg. Eur J Cardiothorac Surg,2004, 25(4):635-641
    
    [41]. Yu H, Wang Y, Eton D, Rowe VL, Terramani TT, Cramer DV, et al. Dual cell seeding and the use of zymogen tissue plasminogen activator to improve cell retention on polytetrafluoroethylene grafts. J Vasc Surg 2001:34:337-43.
    
    [42]. Fillinger MF, O' Connor SE, Wagner RJ, Cronenwett JL. The effect of endothelial cell coculture on smooth muscle cell proliferation. J Vasc Surg 1993:17:1058-67 discussion 1067-8.
    
    [43]. Powell RJ, Cronenwett JL, Fillinger MF, Wagner RJ, Sampson LN. Endothelial cell modulation of smooth muscle cell morphology and organizational growth pattern. Ann Vasc Surg 1996:10:4-10.
    
    [44]. Hong Yu, Wangde Dai, Zhe Yang, et al. Smooth muscle cells improve endothelial cell retention on polytetrafluoroethylene grafts in vivo. J Vasc Surg 2003:38:557-63
    
    [45]. Shen G, Tsung HC, Wu CF, et al. Tissue engineering of blood vessels with endothelial cells differentiated from mouse embryonic stem cells Cell Res, 2003,13(5):335-341
    
    [46]. Hirai J , Kanda K, Oka T, et al. Highly oriented ,tubular hybrid vascular tissue for a low pressure circulatory systerm[J] . ASAIO J , 1994 ,40 :383 - 388.
    
    [47]. Schnell AM , Hoerstrup SP , Zund G, et al. Optimal cell source for cardiovascular tissue engineering venous vs. aortic human myofibroblast [J ] . Thorac Cardiov Surg ,2001 ,49 :221-225.
    [48]. Matsumura G, Miyagawa-Tomita, Shin' oka T, et al. First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation, 2003,108(14):1729-1734
    
    [49]. Shin' oka T, Matsumura G, Hibino N, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg, 2005,129(6):1330-1338
    
    [50]. Cho SW, Park HJ, Ryu JH, et al. Vascular patches tissue-engineered with autologous bone marrow-derived cells and decellularized tissue matrices. Biomaterials, 2005, 26(14):1915-1924
    
    [51]. Humpert PM, Eichler H, Lammert A, et al. Adult vascular progenitor cells and tissue regeneration in metabolic syndrome. Vasa, 2005, 34:73
    
    [52]. Kaushal S, Amiel GE, Guleserian KJ, et al, Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med. 2001, 7(9):996-997
    
    [53]. Schmidt D, et al, Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Ann Thorac Surg, 2004, 78(6): 2094-8
    
    [54]. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science 1986;231:397-400.
    
    [55]. Hoerstrup SP, Zund G, Sodian R, et al. Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg , 2001, 20 (1) : 164
    
    [56]. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science 1999:284:489-93.
    
    [57]. ShinokaT, Imai Y, Ikada Y. Transplantation of a tissue engineered pulmonary artery. N Engl J Med 2001:344:532-3.
    
    [58]. L' Heurenx N , Paquet S , Labbe R , et al. A completely biological tissue engineered human blood vessel [J] . FASEB , 1998 , 12 :47 - 56.
    
    [59]. L' Heurenx N , Stocld J , Francois A , et al . A human tissue engineered vascular media :a new model for pharmacological studies of contractile responses[J ] . FASEB , 2001 ,15 :515 - 524 .
    [60]. J.M. Taboas, R. D. Maddox, P.H. Krebsbach, S. J. Hollister, Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds, Biomaterials. 2003, 24 : 181 -194.
    
    [61]. S. J. Hollister, R. D. Maddox, J.M. Taboas, Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints, Biomaterials 2002, 23: 4095- 4103.
    
    [62]. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science 1999;284:489 - 93.
    
    [63]. Akira Ito, Kousuke Ino, Takeshi Kobayashi, The effect of RGD peptide-conjugated magnetite cationic liposomes on cell growth and cell sheet harvesting. Biomaterials, 2005,26 :6185 - 6193
    
    [64]. Valerie Liu Tsang, Sangeeta N. Bhatia, Three-dimensional tissue fabrication, Advanced Drug Delivery Reviews 2004, 56:1635- 1647
    [1] Ma Z, Kotaki M, Yong T, et al. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials. 2005; 26(15): 2527-36.
    [2] Sigler M, Paul T, Grabitz RG. Biocompatibility screening in cardiovascular implants. Z Kardiol. 2005 Jun; 94(6): 383-91.
    [3] Gabriel M, Amerongen GP, Van Hinsbergh VW, et al.. Direct grafting of RGD-motif-containing peptide on the surface of polycaprolactone films. J Biomater Sci Polym Ed. 2006; 17(5): 567-77.
    [4] Li JM, Menconi MJ, Wheeler HB, Rohrer MJ, Klassen VA, Ansell JE, Appel MC. Precoating expanded polytetrafluoroethylene grafts alters production of endothelial cell-derived thrombomodulators. J VascSurg 1992; 15: 1010
    [5] Miyata T, Conte MS, Trudell LA, Mason D, Whittemore AD, Birinyi LK. Delayed exposure to pulsatile shear stress improves retention of human saphenous vein endothelial cells on seeded ePTFE grafts. J Surg Res 1991; 50: 485—93.
    [6] Vohra R, Thomson GJ, Carr HM, Sharma H, Walker MG. Comparison of different vascular prostheses and matrices in relation to endothelial seeding. Br J Surg 1991; 78: 417—20.
    [7] Thomson GJ, Vohra RK, Carr MH, Walker MG. Adult human endothelial cell seeding using expanded polytetrafluoroethylene vascular grafts: a comparison of four substrates. Surgery 1991; 109: 20—7.
    [8] Kaehler J, Zilla P, Fasol R, Deutsch M, Kadletz M. Precoating substrate and surface configuration determine adherence and spreading of seeded endothelial cells on polytetrafluoroethylene grafts. J VascSurg 1989; 9: 535—41.
    [9] Sentissi JM, Ramberg K, O' Donnell Jr TF, Connolly RJ, Callow AD. The effect of flow on vascular endothelial cells grown in tissue culture on polytetrafluoroethylene grafts. Surgery 1986; 99: 337—43.
    [10] Seeger JM, Klingman N. Improved endothelial cell seeding with cultured cells and fibronectin-coated grafts. J Surg Res 1985; 38: 641—7.
    [11] WeiX N, Klee D, H.ocker H. Konzept zur bioaktiven Ausr. ustung von Metallimplantatoberf. achen. Biomaterialien 2001; 2: 81—6.
    [12] David Richard Schmidt, Weiyuan John Kao, The interrelated role of fibronectin and interleukin-1 in biomaterial-modulated macrophage function, Biomaterials, 28, 2007: 371-382
    [13] Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 1984; 309: 30—3.
    [14] Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials ,2003 ,24 :4385-4415.
    [15] Clark EA. Brugge JS. Integrins and signal transduction pathways: the road taken. Science, 1995, 268: 233. 239.
    
    [16] Giancotti FG . Complexity and specificity of integrin sign ailing. Nat Cell Biol, 1999, 2: 13.
    
    [17] Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM,Cheresh DA. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 2001;155:459 - 70.
    
    [18] Grano M, Zigrino P, Colucci S, Zambonin G, Trusolino L, Serra M, Baldini N, Teti A, Marchisio PC, Zallone AZ. Adhesion properties and integrin expression of cultured human osteoclastlike cells. Exp Cell Res 1994:212:209-18.
    
    [19] Noiri E, Gailit J, Sheth D, Magazine H, Gurrath M, Muller G, Kessler H, Goligorsky MS. Cyclic RGD peptides ameliorate ischemic acute renal failure in rats. Kidney Int 1994:46:1050-8.
    
    [20] Stromblad S, Becker JC, Yebra M, Brooks PC, Cheresh DA. Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin α 5β3 during angiogenesis. J Clin Invest .1996:98:426-33.
    [21] Cheng S, Craig WS, Mullen D, Tschopp JF, Dixon D, Pierschbacher MD. Design and synthesis of novel cyclic RGDcontaining peptides as highly potent and selective integrin α II b β3 antagonists. J Med Chem 1994:37:1-8.
    
    [22] Haubner R, Gratias R, Diefenbach B, Goodman SL, Jonczyk A, Kessler H. Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin α 5 β 3 antagonists. J Am Chem Socl996;118: 7461-72.
    
    [23] Buckley CD, Pilling D, Henriquez NV, Parsonage G, Threlfall K, Scheel-Toellner D, Simmons DL, Albar AN, Lord JM, Salmon M. RGD peptides induce apoptosis by direct caspase-3 activation. Nature. 1999:397:534-9.
    [24] Hynes RO. A reevaluation of integrins as regulators of angiogenesis. Nat Med 2002:8:918-21.
    
    [25] Brooks PC. Role of integrins in angiogenesis. Eur J Cancer. 1996; 32A:2423-2429
    
    [26] Ingrid Dijkgraaf, John A. W. Kruijtzer, Shuang Liu, Improved targeting of the α v β 3 integrin by multimerisation of RGD peptides. Eur J Nucl Med Mol Imaging. 2006,10:1007-1014
    
    [27] Won Jong Kim, James W. Yockman, Ji Hoon Jeong, Anti-angiogenic inhibition of tumor growth by systemic delivery of PEI-g-PEG-RGD/pCMV-sFlt-1 complexes in tumor-bearing mice, Journal of Controlled Release, 2006, 5:8-16
    
    [28] A Borgne-Sanchez, S Dupont, A Langonne, et al, Targeted Vpr-derived peptides reach mitochondria to induce apoptosis of aVb3-expressing endothelial cells. Cell Death and Differentiation ,2006, 1-14
    
    [29] Penke B, Hajnal R, Lonovics J, et al. Synthesis of potent heptapeptide analogues of cholecystokinin. J. Med. Chem. 1984, 27, 845 - 849
    
    [30] Torday L, Balogh GE, Pataricza J, et al. Vasorelaxant properties and mechanism of action of some RGD (Arg-Gly-Asp-containing) -peptides. J. Mol. Cell. Cardiol. 1994,26 : 339.
    
    [31] Hsu SH, Chu WP, Lin YS, et al. The effect of an RGD-containing fusion protein CBD-RGD in promoting cellular adhesion. J Biotechnol. 2004 Jul 15;111(2):143-54
    
    [32] Ertel SI , Ratner BD , Horbett TA. Radio2frequency plasma deposition of oxygen2containing films on polystyrene and poly (ethylene terephthalate) substrates improves endothelial cell growth. Journal of Biomedical Materials Research , 1990,24 (12) : 1637-1659
    
    [33] Glogaher M , Ferrier J. A N ew Method fo r Application of Force to Cells via Ferric Oxide Beads. Pflugers Arch. , 1998;435 (2) : 320
    
    [34] Walluscheck KP, SteinhoffG, KelmS, Haverich A. Improved endothelial cell attachment on ePTFE vascular grafts pretreated with syntheticRGD-containing peptides. Eur J VascEndovasc , 1996;12:321 - 30.
    
    [35] Varani J, Inman DR, Fligiel SE, Hillegas WJ. Use of recombinant and synthetic peptides as attachment factors for cells on microcarriers. Cytotechnology 1993:13:89-98.
    
    [36] Quirk RA, Chan WC, Davies MC, Tendler SJB, Shakesheff KM. Poly(1-lysine)-GRGDS as a biomimeticsurfac e modifier for poly(lactic acid). Biomaterials 2001:22:865-72.
    
    [37] Yang XB, Roach HI, Clarke NM, Howdle SM, Quirk R, Shakesheff KM, Oreffo RO. Human osteoprogenitor growth and differentiation on syntheticbiodegrada ble structures after surface modification. Bone 2001:29:523-31.
    
    [38] Hirano Y, Okuno M, Hayashi T, Goto K, Nakajima A. Cellattachment activities of surface immobilized oligopeptides RGD, RGDS, RGDV, RGDT, and YIGSR toward five cell lines. J Biomater Sci Polym Ed 1993:4:235-43.
    
    [39] Ito Y, Kajihara M, Imanishi Y. Materials for enhancing cell adhesion by immobilization of cell-adhesive peptide. J Biomed Mater Res 1991:25:1325-37.
    
    [40] Anderheiden D, Brenner O, Klee D, Kaufmann R, Richter HA, Mittermayer C, Hocker H. Development and characterization of a biocompatible OH-modified copolymer based on polyurethane. Angew Makromol Chem 1991:185:109-27.
    
    [41] Moghaddam MJ, Matsuda T. Molecular design of 3-dimensional artificial extracellular matrix: photosensitive polymers containing cell adhesive peptide. J Polym Sci Pol Chem, 1993:31:1589-97.
    
    [42] Brandley BK, Schnaar RL. Covalent attachment of an Arg - Gly-Asp sequence peptide to derivatizable polyacrylamide surfaces:support of fibroblast adhesion and long-term growth. Anal Biochem 1988:172:270-8.
    
    [43] Schnaar RL, Langer BG, Brandley BK. Reversible covalent immobilization of ligands and proteins on polyacrylamide gels. Anal Biochem 1985:151:268-81.
    
    [44] Cook AD, Hrkach JS, Gao NN, Johnson IM, Pajvani UB, Cannizzaro SM, Langer R. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J Biomed Mater Res 1997;35:513 - 23.
    
    [45] Barrera DA, Zylstra E, Lansbury PT, Langer R. Synthesis and RGD peptide modification of a new biodegradable copolymer - poly(lactic acid-co-lysine). J Am Chem Soc 1993:115:11010-1.
    
    [46] Barrera DA, Zylstra E, Lansbury PT, Langer R. Copolymerization and degradation of poly(lactic acid co-lysine). Macromolecules 1995;28:425-32.
    
    [37] Bearinger JP, Castner DG, Healy KE. Biomolecular modification of p(AAm-co-EG/AA) IPNs supports osteoblast adhesion and phenotypicexprssion. J Biomater Sci Polym Ed 1998:9:629-52.
    [48] Breuers W, Klee D, Hocker H, Mittermayer C. Immobilization of a fibronectin fragment at the surface of a polyetherurethane film. J Mater Sci: Mater Med 1991 ;2:106-9.
    
    [49] KugoK, OkunoM, MasudaK, Nishino J, MasudaH, Iwatsuki M. Fibroblast attachment to Arg - Gly Asp peptide-immobilized poly(g-methyl 1-glutamate). J Biomater Sci Polym Ed 1994:5:325-37.
    [50] Tong YW, Shoichet MS. Peptide surface modification of poly(tetrafluoroethylene-co- hexafluoropropylene) enhances its interaction with central nervous system neurons. J Biomed Mater Res 1998:42:85-95.
    
    [51] Porte-Durrieu MC, Labrugere C, Villars F, Lefebvre F, Dutoya S, Guette A, Bordenave L, Baquey C. Development of RGD peptides grafted onto silica surfaces: XPS characterization and human endothelial cell interactions. J Biomed Mater Res 1999:46:368-75.
    [52] Pfaff M. Recognition sites of RGD-dependent integrins. In: Eble JA, editor. Integrin-Ligand Interaction. Heidelberg: Springer-Verlag; 1997. p. 101-21.
    
    [53] Lin HB, Zhao ZC, Garciaecheverria C, Rich DH, Cooper SL. Synthesis of a novel polyurethane copolymer containing covalently attached RGD peptide. J Biomater Sci Polyra Ed 1992;3:217 - 27.
    
    [54] Lin HB, Sun W, Mosher DF, Garciaecheverria C, Schaufelberger K, Lelkes PI, Cooper SL. Synthesis, surface, and celladhesion properties of polyurethanes containing covalently grafted RGD-peptides. J Biomed Mater Res 1994:28:329-42.
    
    [55] Marchand-Brynaert J. Surface modifications and reactivity assays of polymer films and membranes by selective wet chemistry. Recent Res Polym Sci 1998:2:335-61.
    
    [56] Marchand-Brynaert J, Detrait E, Noiset O, Boxus T, Schneider YJ, Remacle C. Biological evaluation of RGD peptidomimetics, designed for the covalent derivatization of cell culture substrata, as potential promotors of cellular adhesion. Biomaterials 1999:20:1773-82.
    [57] Jo S, Engel PS, Mikos AG. Synthesis of poly (ethylene glycol)-tethered poly(propylene fumarate) and its modification with GRGD peptide. Polymer 2000:41:7595-604.
    
    [58] Jo S, Mikos AG. Modification of poly(ethylene glycol)-tethered poly(propylene-co-fumarate) with RGD peptide. Polym Prep, 1999:40:183-4.
    
    [59] Drumheller PD, Hubbell JA. Polymer networks with grafted cell adhesion peptides for highly biospecific cell adhesive substrates. Anal Biochem 1994;222:380 - 8.
    
    [60] Kao WJ, Hubbell JA. Murine macrophage behavior on peptidegrafted polyethyleneglycol-containing networks. Biotechnol Bioeng .1998:59:2-9.
    
    [61] Drumheller PD, Elbert DL, Hubbell JA. Multifunctional poly(ethylene glycol) semi interpenetrating polymer networks ashighly selective adhesive substrates for bioadhesive peptide grafting. Biotechnol Bioeng 1994:43:772-80.
    
    [62] Myles JL .Burgess BT .Dickinson RB , et al.Modification of the adhesive properties of collagen by covalent grafting with RGD peptides. J Biomater Sci ,2000 ,11 :69-86.
    [63] 史嘉玮,董念国,孙宗全等,精氨酸—甘氨酸—天冬氨酸肽固定去细胞瓣构建组织工程瓣膜的实验研究.医学研究生学报,2006,19(10):874—877
    [64] 相金燕,李毓陵.紫外光接枝用于高分子材料表面改性,国际纺织导报,2003,4:7-9.
    [65] 邓建平,杨万泰.膜科学与技术,表面光接枝技术及其在分离膜中的应用.1999,19(3):13-17.
    [66] R. MARCOVICH, B. SEIFMAN, R. BEDUSCHI and J.S. WOLF Jr, Surface modification to improve in vitro attachment and proliferation of human urinary tract cells, BJU INTERNATIONAL. 2003, 92,: 636-640
    [67] Azmi Naqvi and Pradip Nahar, Photochemical immobilization of proteins on microwave - synthesized photoreactive polymers, Analytical Biochemistry. 2004, 327: 68-73
    [68] Gregory TC, Oenong Wang, Nicholas J, et al, Photochemical Micropatterning of Carbohydrates on a Surface, Langmuir, 2006, 22, 2899-2905
    [69] Kyung-Bok Lee, Yong-Won Lee, Dong Jin Kim, et al, Spatial Control over Chemical Functionalization of Biodegradable Poly(glycolic acid) (PGA) Sutures: Bulk vs. Surface Functionalization, Bull. Korean Chem. Soc, 2003, 24(11): 1702-1704
    [70] Tze-Wen Chunga, Der-Zen Liub, Sin-Ya Wang, et al. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. J Biomaterials, 2003, 24: 4655-4661
    [71] Tze-Wen Chunga, Ya-Fen Luc, Shoei-Shen Wang, et al, Growth of human endothelial cells on photochemically grafted Gly-Arg-Gly-Asp (GRGD) chitosans, J Biomaterials, 2002, 23: 4803-4809
    [72] 罗祥林,黄嘉,何斌等,光化学固定法——医用高分子材料表面改性的一种新方法,生物医学工程学杂志,2000:17(3):320~323
    [73] Sharon Sagnella, Eric Anderson, Naomi Sanabria, et al, Human Endothelial Cell Interaction with Biomimetic Surfactant Polymers Containing Peptide Ligands from the Heparin Binding Domain of Fibronectin, Tissue Eng. 2005; 11(1-2): 226-236.
    [74] Daniel Hal Davisa, Constantina S. Giannoulis, Immobilization of RGD to <111> silicon surfaces for enhancedcell adhesion and proliferation. Biomaterials, 2002, 23:4019 - 4027
    
    [75] Kantlehner M, Schaffner P, Finsinger D, Meyer J, Jonczyk A, Diefenbach B, Nies B, H. olzemann G, Goodman SL, Kessler H. Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. Chem-Bio Chem 2000;1:107 - 14.
    
    [76] Jeschke B, Meyer J, Jonczyk A, Kessler H, Adamietz P, Meenen NM, Kantlehner M, Goepfert C, Nies B. RGD-peptides for tissue engineering of articular cartilage. Biomaterials 2002;23:3455 - 63.
    
    [77] Danilov YN, Juliano RL. (Arg - Gly Asp) n-albumin conjugates as a model substratum for integrin-mediated cell adhesion. Exp Cell Res 1989; 182:186-96.
    
    [78] Massia SP, Hubbell JA. An RGD spacing of 440nm is sufficient for integrin avb3-mediated fibroblast spreading and 140nm for focal contact fiber formation. J Cell Biol 1991;114:1089 - 100.
    
    [79] Garland W. Fussella, Stuart L. Cooper, Synthesis and characterization of acrylic terpolymers with RGD peptides for biomedical applications, Biomaterials , 2004 (25): 2971-2978
    
    [80] Garland W. Fussell, Stuart L. Cooper, Endothelial cell adhesion on RGD-containing methacrylate terpolymers, Wiley InterScience, 2004, 2: 265-272
    
    [81] James Holland, Leroy Hersh, Marie Bryhan,et al, Culture of human vascular endothelial cells on an RGD-containing synthetic peptide attached to a starch-coated polystyrene surface: comparison with fibronectin-coated tissue grade polystyrene, Biomaterials, 1996,17:2147-2156
    
    [82] Tze-Wen Chung, Ya-Fen Lu, Hsin-Ya Wang, et al, Growth of Human Endothelial Cells on Different Concentrations of Gly-Arg-Gly-Asp Grafted Chitosan Surface, Artif Organs, 2003,27(2):155-161
    
    [83] Aota S, Nomizu M, Yamada KM. The short amino acid sequence ro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem 1994:269:24756-61.
    
    [84] Hojo K, Sususki Y, MaedaM, Okazaki I, Nomizu M, Kamada H, et al. Amino acids and peptides. Part 39: a bivalent poly(ethylene glycol) hybrid containing an active site (RGD) and its synergistic site (PHSRN) of fibronectin. Bioorg Med Chem Lett 2001;11 (2001):1429 - 32.
    
    [85] Benoit DSW, Anseth KS. The effect on osteoblasts function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials 2005:26:5209-20.
    
    [86] Anastasia Mardilovich, Jennifer A. Craig, Matthew Q, et al, Design of a Novel Fibronectin-Mimetic Peptide-Amphiphile for Functionalized Biomaterials, Langmuir 2006, 22(7), 3259-3264
    
    [87] Alok Tiwari, Henryk J. Salacinski, Geoffrey Punshon,et al , Development of a hybrid cardiovascular graft using a tissue engineering approach, The FASEB Journal, 2002, 16: 791-796
    
    [88] Beer JH, Springer KT, Coller BS. Immobilized Arg - Gly Asp (RGD) peptides of varying lengths as structural probes of the platelet glycoprotein IIb/IIIa receptor. Blood 1992:79:117-28.
    
    [89] Houseman BT, Mrksick M, The microenvironment of immobilized Arg-Gly-Asp peptides is an important determinant of cell adhesion. Biomaterials. 2001 May;22(9):943-55.
    
    [90] Hersel U , Dahmen C , Kessler H. RGD modified polymers : biomaterials for stimulated celladhesion and beyond. Biomaterials ,2003 ,24 :4385-4415.
    
    [91] Pfaff M, Tangemann K, Muller B, Gurrath M, Muller G, Kessler H, et al. Selective recognition of cyclic RGD peptides of NMR defined conformation by aIIbb3, avb3, and a5b1 integrins. J Biol Chem 1994:32:20233-8.
    
    [92] Xiao Y, Truskey GA. Effect of receptor - ligand affinity on the strength of endothelial cell adhesion. Biophys J 1996:71:2869-84.
    [93] Verrier S, Pallu S, Bareille R, Jonczyk A, Meyer J, Dard M, et al. Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion process. Biomaterials 2002;23:585-96.
    
    [94] Dechantsreiter MA, Planker E, Matha B, Lohof E, Holzemann G, Jonczyk A, et al. N-Methylated cyclic RGD peptides as highly active and selective alpha(v)beta(3) integrin antagonists. J Med Chem 1999;42:3033 - 40.
    
    [95]Sarah E. Ochsenhirt, Efrosini Kokkoli, James B. Effect of RGD secondary structure and the synergy site PHSRN on cell adhesion, spreading and specific integrin engagement. Biomaterials 2006, 27: 3863-3874
    
    [96] B. R. Sessions, K. I. Aston, A. P. Davis, Effects of Amino Acid Substitutions In and Around the Arginine-Glycine-Aspartic Acid (RGD) Sequence on Fertilization and Parthenogenetic Development in Mature Bovine Oocytes, Molecular Reproduction and Development , 2006, 73:651 -657
    
    [97] Lopez-Moratalla N, et al. Activation of human lymphomononuclear cells by peptides derived from extracellular matrix proteins. Biochim Biophys Acta 1995:1265:181-8.
    
    [98] Kao WJ, Liu Y, Gundloori R, Li J, Lee D, Einerson N, et al. Engineering endogenous inflammatory cells as delivery vehicle. J Controlled Release 2001:78:219-33.
    
    [99] Kao WJ, Liu Y. Utilizing biomimetic oligopeptides to probe fibronectin-integrin binding and signaling in regulating macrophage function in vitro and in vivo. Front Biosci 2001;6:d992 - 9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700