母猪蛋白限制及糖皮质激素预处理对猪肾上腺皮质醇分泌能力的影响及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以往的研究表明,母体妊娠期应激可能使发育中的胚胎暴露在较高的糖皮质激素环境中,从而程序化地改变出生后肾上腺皮质醇分泌能力。本实验室以往的研究表明,中国地方猪种太湖猪肾上腺皮质醇分泌能力比国外猪种强,但发生机制尚不清楚。.由于太湖猪长期以来在低蛋白日粮的条件下饲养,而母猪蛋白限制也可能作为一种营养应激导致母体糖皮质激素升高,因此我们提出如下假说,即太湖猪较高的肾上腺皮质醇分泌能力是由于母猪妊娠期蛋白缺乏引起,而皮质醇参与介导这种程序化作用。本研究通过在体和离体两部分实验来验证这一假说。
     1母猪蛋白限制对新生仔猪皮质醇分泌能力的影响
     研究表明妊娠期蛋白限饲可作为一种应激源使母体血液皮质醇水平升高,从而程序化地影响后代下丘脑-垂体-肾上腺轴(Hypothalamic-pituitary-adrenal axis, HPA)功能。为研究梅山猪母猪妊娠期蛋白限制是否通过皮质醇影响后代仔猪肾上腺皮质功能,我们将梅山猪母猪分为对照组和蛋白限饲组,从配种到分娩全程饲喂标准蛋白水平日粮和蛋白缺乏日粮,限饲组日粮蛋白水平为对照组的50%。待母猪分娩后,采集母猪血清、0日龄仔猪血清和肾上腺。放免测定血清皮质醇水平,实时荧光RT-PCR定量检测0日龄仔猪肾上腺皮质细胞类固醇合成关键调节因子和酶的基因表达,包括类固醇生成急性调节蛋白(Steroidogenic acute regulatory protein, StAR)、胆固醇侧链裂解酶(Cholesterol side-chain cleavage cytochrome P450, P450scc)、17α-羟化酶(17α-hydroxylase cytochrome P450, P45017a)、21-羟化酶(21-hydroxylase cytochrome P450, P450c21). western-blotting方法分析0日龄仔猪肾上腺皮质糖皮质激素受体(Glucocorticoid receptor, GR)蛋白的表达。结果显示,蛋白限饲并未导致母猪皮质醇水平显著变化,新生仔猪皮质醇水平存在性别差异,但并没有表现组间差异。此外,新生仔猪肾上腺皮质中StAR、P450-17a、P450-scc、P450-c21 mRNA和GR的蛋白表达在两组间均未见显著差异,提示梅山猪新生仔猪肾上腺皮质的类固醇分泌能力并未受母体蛋白限制影响。
     2糖皮质激素预处理对梅山猪肾上腺皮质细胞皮质醇分泌能力的影响及其机制
     本实验以体外培养的原代猪肾上腺皮质细胞为模型,用糖皮质激素(皮质醇,地塞米松)预处理细胞48小时后,检测细胞在基础和应激状态下(ACTH刺激24小时)肾上腺皮质细胞分泌皮质醇的能力。试验分为六组:(1)空白预处理+基础分泌组;(2)空白预处理+ACTH刺激组;(3)皮质醇预处理+基础分泌组;(4)皮质醇预处理+ACTH刺激组;(5)地塞米松预处理+基础分泌组;(6)地塞米松预处理+ACTH刺激组。处理结束后收集培养液并提取细胞蛋白,放射免疫法测定各组细胞培养液的皮质醇水平,并用western-blotting方法分析各组细胞中类固醇合成酶的表达差异。结果显示,糖皮质激素预处理对细胞基础状态下皮质醇的分泌没有明显影响,但显著提高应激状态下(ACTH刺激)皮质醇水平。Western-blotting结果表明,糖皮质激素预处理显著增强肾上腺皮质细胞中类固醇合成关键因子StAR、P450scc以及黑皮素受体-2(Melanocortin type 2 receptor, MC2R)蛋白的表达,同时伴随GR蛋白水平显著上调。以上结果表明糖皮质激素预处理可以通过上调GR和类固醇合成关键因子的蛋白表达而增强猪肾上腺皮质细胞在ACTH刺激下分泌皮质醇的能力。
Previous studies indicated that maternal stress during pregnancy may program the postnatal capacity of glucocorticoid secretion from adrenal cortex of offspring, through prenatal exposure to high level of glucocorticoid. We found in our earlier studies that Chinese indigenous pig breed, Taihu pigs, possess significantly higher adrenocortical steroidogenic capacity compared to Western pig breed, leading to higher basal and stressed serum levels of cortisol. However the mechanisms underlying this difference are elusive. Since Taihu pigs have been traditionally raised under low protein diet and protein deficiency during pregnacy is considered as a stress which is able to raise plasma cortisol levels, we came up with a hypothesis that maternal protein restriction may increase adrenocortical steroidogenic capacity of the offspring through the mediation of cortisol. To test this, we conducted the following in vivo and in vitro experiments.
     1 Effect of maternal protein restriction on adrenocortical steroidogenesis in newborn offspring pigs
     Previous studies indicated that protein restriction during pregnancy may act as a stressor to elevate plasma cortisol levels of the mother which cause alterations in the function of HPA-axis in offspring. To investigate the effect of maternal protein restriction on adrenocortical cortisol secretion of the newborn piglets, Meishan sows were allocated to two groups, one fed low protein diet containing 50% crude protein of the standard diet, and the other fed standard diet from conception to parturition. The blood and adrenal of the newborn piglets, as well as the blood of sows were collected. Serum concentration of cortisol was measured with radioimmunoassay, adrenal expression of steroidogenic regulatory factors/enzymes were determined with Real-time RT-PCR, and the GR protein content was determined with Western blot analysis. The results showed that maternal protein restriction did not induce changes of serum cortisol concentrations in sows or piglets, although differences were observed between genders in newborn piglets. Furthermore, no differences were detected between control and maternal protein restriction groups in adrenal protein content of GR or mRNA abundances of StAR、P450-17a、P450scc and P450-c21 in newborn piglets. These results indicate that the adrenocortical steroidogenic capacity in new born piglets was not affected by maternal protein restriction in Meishan pigs.
     2 Effect of glucocorticoid pretreatment on steroidogenic capacity of adrenocortical cells isolated from Meishan piglets and mechanisms involved
     The present in vitro experiment was designed to test whether 48 h of pretreatment with glucocorticoid, cortisol or dexamethasone, would affect the basal and ACTH-stimulated (24 h) cortisol secretion from primary cultures of pig adrenocortical cells. Cells were divided into six groups:1, blank pretreatment+basal secretion; 2, blank pretreatment+ACTH challenge; 3, cotisol pretreatment+basal secretion; 4, cotisol pretreatment+ACTH challenge;5, dexamethasone pretreatment+basal secretion; 6, dexamethasone pretreatment +ACTH challenge. The culture medium and cells were collected at the end of treatment. Cortisol concentration in medium was measured with radioimmunoassay, protein contents of GR and key regulatory factors for steroidogenesis were detected with Western blot analysis. The results showed that glucocorticoid pretreatment did not affect cortisol secretion under basal condition, but significantly enhanced ACTH-stimulated cortisol secretion. Furthermore, the protein contents of GR, MC2R, StAR, and P450scc were all increased in groups pretreated with glucocorticoid. These results indicate that adrenocortical cells pretreated with glucocorticoid are more responsive to stress showing higher steroidogenic capacity under ACTH challenge, through up-regulation of GR and other steroidogenic regulatory factors.
引文
[1]Yamazaki T, Shimodaira M, Kuwahara H. Tributyltin disturbs bovine adrenal steroidogenesis by two modes of action. Steroids 2005; 70:913-921.
    [2]Yivgi-Ohana N, Sher N, Orly J. Transcription of steroidogenic acute regulatory protein in the rodent ovary and placenta:alternative modes of cyclic adenosine 3',5'-monophosphate dependent and independent regulation. Endocrinology 2009; 150:977-989.
    [3]Stocco DM. StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol 2001; 63:193-213.
    [4]Lin D, Sugawara T, Strauss JF. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 1995; 267:1828-1831.
    [5]Christenson LK, Strauss JF. Steroidogenic acute regulatory protein:an update on its regulation and mechanism of action. Arch. Med. Res.2001; 32:576-586.
    [6]Bao B, Calder MD, XieS, Smith MF, Salfen BE, Youngquist RS, Garverick HA. Expression of steroidogenic acute regulatory protein messenger ribonucleic acid is limited to theca of healthy bovine follicles collected during recruitment, selection, and dominance of follicles of the first follicular wave. Biol.Reprod.1998; 59:953-959.
    [7]Bao B, Garverick HA. Expression of steroidogenic enzyme and gonadotropin receptor genes in bovine follicles during ovarian follicular waves:a review. J. Anim Sci.1998; 76:1903-1921.
    [8]Ford SL, Reinhart AJ, Lukyanenko Y, Hutson JC, Stocco DM. Pregnenolone synthesis in immature rat Sertoli cells. Mol. Cell Endocrinol.1999; 157:87-94.
    [9]Gregory CW, DePhilip RM. Detection of steroidogenic acute regulatory protein (stAR) in mitochondria of cultured rat Sertoli cells incubated with follicle-stimulating hormone. Biol. Reprod.1998; 58: 470-474.
    [10]Miller WL, Strauss III JF. Molecular pathology and mechanism of action of the steroidog-enic acute regulatory protein, StAR. J. Steroid Biochem. Mol. Biol.1999; 69:131-141.
    [11]Hales DB, Sha LL, Payne AH. Testosterone inhibits cAMP-induced de Novo synthesis of Leydig cell cytochrome P-450(17 alpha) by an androgen receptor-mediated mechanism. J. Biol. Chem.1987; 262: 11200-11206.
    [12]Manna PR, Dyson MT, Eubank DW, Clark BJ, Lalli E, Sassone-Corsi P, Zeleznik AJ, Stocco DM. Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family. Mol. Endocrinol.2002; 16:184-199.
    [13]Manna PR, Stocco DM. Regulation of the steroidogenic acute regulatory protein expression:functional and physiological consequences. Curr. Drug Targets. Immune. Endocr. Metabol. Disord.2005; 5: 93-108.
    [14]Tsujishita Y, Hurley JH. Structure and lipid transport mechanism of a StAR-related domain. Nat. Struct. Biol.2000; 7:408-414.
    [15]Fielden MR, Halgren RG, Fong CJ, StaubC, Johnson L, Chou K, Zacharewski TR. Gestational and lactational exposure of male mice to diethylstilbestrol causes long-term effects on the testis, sperm fertilizing ability in vitro, and testicular gene expression. Endocrinology.2002; 143:3044-3059.
    [16]Manna PR, Huhtaniemi IT, Wang XJ, Eubank DW, Stocco DM. Mechanisms of epidermal growth factor signaling:regulation of steroid biosynthesis and the steroidogenic acute regulatory protein in mouse Leydig tumor cells. Biol. Reprod.2002,67:1393-1404.
    [17]Seger R, Hanoch T, Rosenberg R, Dantes A, Merz WE, Strauss III JF, Amsterdam A. The ERK signaling cascade inhibits gonadotropin-stimulated steroidogenesis. J. Biol. Chem.2001; 276:13957-13964.
    [18]Morisaki M, Duque C, Ikekawa N. Substrate specificity of adrenocortical cytochrome P-450scc-I. Effect of structural modification of cholesterol side-chain on pregnenolone production. J Steroid Biochem 1980; 13:545-550.
    [19]Miller WL. Molecular biology of steroid hormone synthesis. Endocr Rev 1988; 9:295-318.
    [20]Nebert DW, Gonzalez FJ. P450 genes:structure, evolution, and regulation. Annu Rev Biochem 1987; 56: 945-993.
    [21]Hall PF. Cytochromes P-450 and the regulation of steroid synthesis. Steroids 1986; 48:131-196.
    [22]Manna PR, Stocco DM. Regulation of the steroidogenic acute regulatory protein expression:functional and physiological consequences. Curr Drug Targets Immune Endocr Metabol Disord 2005; 5:93-108.
    [23]Tsujishita Y, Hurley JH. Structure and lipid transport mechanism of a StAR-related domain. Nat Struct Biol 2000; 7:408-414.
    [24]Black SD, Coon MJ. P-450 cytochromes:structure and function. Adv. Enzymol. Relat Areas Mol. Biol.
    1987; 60:35-87.
    [25]Gonzalez FJ. The molecular biology of cytochrome P450s. Pharmacol. Rev.1988; 40:243-288.
    [26]Christenson LK, Strauss JF. Steroidogenic acute regulatory protein:an update on its regulation and mechanism of action. Arch. Med Res.2001; 32:576-586.
    [27]Lorence MC, Murry BA, Trant JM, Mason JI. Human 3 beta-hydroxysteroid dehydrogenase/delta 5--4isomerase from placenta:expression in nonsteroidogenic cells of a protein that catalyzes the dehydrogenation/isomerization of C21 and C19 steroids. Endocrinology.1990; 126:2493-2498.
    [28]Nakajin S, Hall PF. Microsomal cytochrome P-450 from neonatal pig testis. Purification and properties of A C21 steroid side-chain cleavage system (17 alpha-hydroxylase-C 17,20 lyase). J. Biol. Chem.1981; 256:3871-3876.
    [29]Kimura T, Suzuki K. Components of the electron transport system in adrenal steroid hydroxylase. Isolation and properties of non-heme iron protein (adrenodoxin). J Biol Chem 1967,242:485-491.
    [30]NakamuraY, Otsuka H, Tamaoki BI. Requirement of a new flavoprotein and a non-heme iron-containing protein in the steroid 11-beta-and 18-hydroxylase system. Biochim Biophys Acta 1966; 122:34-42.
    [31]Thomas JL, Myers RP, Strickler RC. Human placental 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5--4-ene-isomerase:purification from mitochondria and kinetic profiles, biophysical characterization of the purified mitochondrial and microsomal enzymes. J Steroid Biochem 1989; 33: 209-217.
    [32]Berube D, Luu T. Assignment of the human 3 beta-hydroxysteroid dehydrogenase gene (HSDB3) to the p13 band of chromosome. Cytogenet Cell Genet 1989; 52:199-200.
    [33]Marple DN. Effects of humidity and temperature on porcine plasma adrenal corticoids, ACTH and Growth Hormone levels. J Anim Sci.1972; 34:809-812.
    [34]吴永魁,计红,李乾学.冷应激对断乳仔猪ACTH及皮质醇的影响.应用与环境生物学报,2005;11(4):477-478.
    [35]Dupouy JP, Chatelain A, Boudouresque F, Oliver C. Effects of chronic maternal dexamethasone treatment on the hormones of the hypothalamo-pituitary-adrenal axis in the rat fetus. Biol Neonate.1987; 52:216-222.
    [36]Rushen J. Stres and nursing in the pig, role of HPA axis and endogenous opioidpeptides. Physiology and
    Behavior.1995; 58:43-48.
    [37]Dwyer CM, Stickland NC. The effects of maternal undernutrition on maternal and fetal serum insulin-like growth factors, thyroid hormones and cortisol in the guinea pig. J Dev Physiol.1992; 18: 303-313.
    [38]Lingas R, Dean F, Matthews SG. Maternal nutrient restriction (48 h) modifies brain corticosteroid receptor expression and endocrine function in the fetal guinea pig. Brain Res.1999; 846:236-242.
    [39]Li LA, Xia D, Bao ED, Zhao RQ. Erhualian and Pietrain pigs exhibit distinct behavioral, endocrine and biochemical responses during transport. Livestock Science 2008; 113:169-177.
    [1]Fetoui H, Garoui M, Zeghal N. Protein restriction in pregnant-and lactating rats-induced oxidative stress and hypohomocysteinaemia in their offspring. J Anim Physiol Anim Nutr (Berl) 2009; 93: 263-270.
    [2]Gheorghe CP, Goyal R, Holweger JD. Placental Gene Expression Responses to Maternal Protein Restriction in the Mouse. Placenta 2009; 30:411-417.
    [3]Bendiktsson R, Calder AA, Edwards CR. Placental 11 beta-hydroxysteroid dehydrog-enase:a key regulator of fetal glucocorticoid exposure. Clin Endocrinol 1997; 46:161-166.
    [4]Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986; 1:1077-1081.
    [5]Barker DJ, Winter PD, Osmond C. Weight in infancy and death from ischaemic heart disease. Lancet 1989; 2:577-580.
    [6]Kapoor A, Leen J, Matthews SG. Molecular regulation of the hypothalamic-pituitary-adrenal axis in adult male guinea pigs after prenatal stress at different stages of gestation. J Physiol 2008; 586: 4317-4326.
    [7]Dawn Owen, Marcus H. Andrews, Stephen G. Matthews. Maternal adversity, glucocorticoids and programming of neuroendocrine function and behaviour. Neuroscience and Biobehavioral Reviews; 2005; 29:209-226.
    [8]Rene P, De Keyzer Y. The vasopressin receptor of corticotroph pituitary cells. Prog Brain Res.2002; 139:345-357.
    [9]Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 2000; 428:191-212.
    [10]Matthews SG, Challis JR. CRH and AVP-induced changes in synthesis and release of ACTH from the ovine fetal pituitary in vitro:negative influences of cortisol. Endocrine 1997; 6:293-300.
    [11]Takahashi LK, Turner JG, Kalin NH. Prolonged stress-induced elevation in plasma corticosterone during pregnancy in the rat:implications for prenatal stress studies. Psychoneuroendocrinology 1998; 23:571-581.
    [12]Dauprat P, Monin G, Dalle M, Delost P. The effects of psychosomatic stress at the end of pregnancy on maternal and fetal plasma cortisol levels and liver glycogen in guinea-pigs. Reprod Nutr Dev 1984; 24:45-51.
    [13]Montano MM, Wang M-H, Vom Saal FS. Sex differences in plasma corticosterone in mouse fetuses are mediated by differential placental transport from the mother and eliminated by maternal adrenalectomy or stress. J Reprod Fertil 1993; 99:283-290.
    [14]Sloboda DM, Moss TJ, Gurrin LC, Newnham JP, Challis JR. The effect of prenatal betamethasone administration on postnatal ovine hypothalamic-pituitary-adrenal function. J Endocrinol 2002; 172: 71-81.
    [15]Schneider ML, Moore CF, Kraemer GW, Roberts AD, DeJesus OT. The impact of prenatal stress, fetal alcohol exposure, or both on development:perspectives from a primate model. Psychoneuroendocrinology 2002; 27:285-298.
    [16]Szuran TF, Pliska V, Pokorny J, Welzl H. Prenatal stress in rats:effects on plasma corticosterone, hippocampal glucocorticoid receptors, and maze performance. Physiol Behav 2000; 71:353-362.
    [17]Levine S. Infantile experience and resistance to physiological stress. Science 1957; 126:405.
    [18]Welberg LAM, Seckl JR. Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol 2001; 13:113-128.
    [19]Kapoor A, Dunn E, Kostaki A. Fetal programming of hypothalamo-pituitary-adrenal function: prenatal stress and Glucocorticoids. The Journal of physiology 2006; 572:31-34.
    [20]Jones CT, Lafeber HN, Rolph TP, Parer JT, Studies on the growth of the fetal guinea pig. The effects of nutritional manipulation on prenatal growth and plasma somatomedin activity and insulin-like growth factor concentrations, J. Dev. Physiol.1990; 13:189-197.
    [21]Ward HE, Johnson EA, Salm AK, Birkle DL. Effects of prenatal stress on defensive withdrawal behavior and corticotropin releasing factor systems in rat brain. Physiol Behav 2000; 70:359-366.
    [22]Llorente E, Brito ML, Machado P, Gonzalez MC. Effect of prenatal stress on the hormonal response to acute and chronic stress and on immune parameters in the offspring. J Physiol Biochem 2002; 58:143-149.
    [23]Koehl M, Darnaudery M, Dulluc J. Prenatal stress alters circadian activity of hypothalamo-pituitary-adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender. J Neurobiol 1999; 40:302-315.
    [24]Estanislau C, Morato S. Prenatal stress produces more behavioral alterations than maternal separation in the elevated plus-maze and in the elevated T-maze. Behav Brain Res 2006; 163: 70-77.
    [25]Weinstock M, Razin M, Schorer-Apelbaum D. Gender differences in sympathoadrenal activity in rats at rest and in response to footshock stress. Int J Dev Neurosci 1998; 16:289-295.
    [26]Haussmann MF, Carroll JA, Weesner GD, Daniels MJ, Matteri RL, Lay Jr DC. Administration of ACTH to restrained, pregnant sows alters their pigs hypothalamic-pituitary-adrenal (HPA) axis. J Anim Sci 2000; 78:2399-2411.
    [27]Haussmann MF, Carroll JA,Weesner GD. Administration of ACTH to restrained, pregnant sows alters their pigs' hypothalamic-pituitary-adrenal (HPA) axis. J Anim Sci 2000; 78:2399-2411.
    [28]Kanitz E, Otten W, Tuchscherer M. Changes in endocrine and neurochemical profiles in neonatal pigs prenatally exposed to increased maternal cortisol. J Endocrinol 2006; 191:207-220.
    [29]Maccari S, Piazza PV, Kabbaj M, Barbazanges A, Simon H, Le Moal M. Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress. J Neurosci 1995; 15: 110-116.
    [30]Henry C, Kabbaj M, Simon H, Le Moal M, Maccari S. Prenatal stress increases the hypothalamo-pituitary-adrenal axis response in young and adult rats. J Neuroendocrinol 1994; 6: 341-345.
    [31]Weinstock M, Matlina E, Maor GI, Rosen H, McEwen BS. Prenatal stress selectively alters the reactivity of the hypothalamic-pituitary adrenal system in the female rat. Brain Res 1992; 595: 195-200.
    [32]Szuran TF, Pliska V, Pokorny J, Welzl H. Prenatal stress in rats:effects on plasma corticosterone, hippocampal glucocorticoid receptors, and maze performance. Physiol Behav 2000; 71:353-362.
    [33]Ohkawa T, Takeshita S, Murase T, Okinaga S, Arai K. The effect of an acute stress in late pregnancy on hypothalamic catecholamines of the rat fetus. Nippon Sanka Fujinka Gakkai Zasshi-Acta Obstet Gynaecol Jap 1991; 43:783-787.
    [34]Challis JRG, Matthews SG, Gibb W, Lye SJ. Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev 2000; 21:514-550.
    [35]Kanitz E, Otten W, Tuchscherer M, Manteuffel G. Effects of prenatal stress on corticosteroid receptors and monoamine concentrations in limbic areas of suckling piglets (Sus scrofa) at different ages. J Vet Med A 2003; 50:132-139.
    [36]Levitt NS, Lindsay RS, Holmes MC, Seckl JR. Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid'receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology 1996; 64:412-418.
    [37]Welberg LAM, Seckl JR, Holmes MC. Prenatal glucocorticoid programming of brain corticosteroid
    receptors and corticotrophin-releasing hormone:possible implications for behaviour. Neuroscience 2001; 104:71-79.
    [38]Mitchell JB, Iny LJ, Meaney MJ. The role of serotonin in the development and environmental regulation of type II corticosteroid receptor binding in rat hippocampus. Dev Brain Res 1990; 55: 231-235.
    [39]Meaney MJ, Diorio J, Francis D, Weaver S, Yau J, Chapman K. Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus:the effects of thyroid hormones and serotonin. J Neurosci 2000; 20:3926-3935.
    [40]Meaney MJ, Diorio J, Francis D, Weaver S, Yau J, Chapman K. Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus:the effects of thyroid hormones and serotonin. J Neurosci 2000; 20:3926-3935.
    [41]Erdeljan P, MacDonald JF, Matthews SG. Glucocorticoids and serotonin alter glucocorticoid receptor (GR) but not mineralocorticoid receptor (MR) mRNA levels in fetal mouse hippocampal neurons, in vitro. Brain Res 2001; 896:130-136.
    [42]Edwards LJ, Simonetta G, Owens JA. Restriction of placental and fetal growth in sheep alters fetal blood pressure responses to angiotensin II and captopril. J Physiol 1999; 515:897-904.
    [43]E.R. De Kloet, E. Vreugdenhil, M.S. Oitzl, M. Joels, Brain corticosteroid receptor balance in health and disease, Endocr. Rev.1998; 19:269-301.
    [1]Handler JD, Schimmer BP, Flynn TR. An enhancer element and a functional cyclic AMP-dependent protein kinase are required for pression of adrenocortical 21-hydroxylase. J Biol Chem 1988; 263:13068-13073.
    [2]Picard-Hagen N, Penhoat A, Hue D. Glucocorticoids enhance corticotropin receptor mRNA levels in ovine adrenocortical cells. J Mol Endocrinol 1997; 19:29-36.
    [3]Darbeida H, Durand P. Glucocorticoid enhancement of adrenocorticotropin-induced 3',5'-cyclic adenosine monophosphate production by cultured ovine adrenocortical cells. Endocrinology 1987; 121:1051-1055.
    [4]Darbeida H, Durand P. Glucocorticoid enhancement of glucocorticoid production by cultured ovine adrenocortical cells. Biochim Biophys 1988; 972:200-208.
    [5]Forti FL, Dias MH, Armelin HA. ACTH receptor:ectopic expression, activity and signaling. Mol Cell Biochem 2006; 293:147-160.
    [6]Feltus FA, Cote S, Melner MH. Glucocorticoids enhance activation of the human type Ⅱ 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase gene. J Steroid Biochem 2003; 82: 55-63.
    [7]Carsia RV, Malamed S. Glucocorticoid control of steroidogenesis in isolated rat adrenocortical cells. Biochim Biophys Acta 1983; 763:83-89.
    [8]Carsia RV, Macdonald GJ, Malamed S. Steroid control of steroidogenesis in isolated adrenocortical cells:molecular and species specificity. Steroids 1983; 41:741-755.
    [9]Arola J, Heikkila P, Voutilainen R. Corticosterone regulates cell proliferation and cytochrome P450 cholesterol side-chain cleavage enzyme messenger ribonucleic acid expression in primary cultures of fetal rat adrenals. Endocrinology 1994; 135:2064-2069.
    [10]Carsia RV, Malamed S. Acute self-suppression of corticosteroidogenesis in isolated adrenocortical cells. Endocrinology 1979; 105:911-914.
    [11]Schneider ML, Roughton EC, Koehler AJ. Growth and development following prenatal stress exposure in primates:an examination of ontogenetic vulnerability. Child Dev 1999; 70:263-274.
    [12]Seckl JR. Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Mol Cell Endocrinol 2001; 185:61-71.
    [13]Matthews SG. Antenatal glucocorticoids and programming of the developing CNS. Pediatr Res 2000; 47:291-300.
    [14]Myers RE. Maternal psychological stress and fetal asphyxia:a study in the monkey. Am J Obstet Gynecol 1975; 122:47-59.
    [15]Coe CL, Lubach GR. Prenatal origins of individual variation in behavior and immunity. Neurosci Biobehav Rev 2005; 29:39-49.
    [16]Haussmann MF, Carroll JA, Weesner GD, Daniels MJ, Matteri RL, Lay Jr DC. Administration of ACTH to restrained, pregnant sows alters their pigs hypothalamic-pituitary-adrenal (HPA) axis. J Anim Sci 2000; 78:2399-2411.
    [17]Andrews MH, Matthews SG. Programming of the hypothalamopituitary-adrenal axis:serotonergic involvement. Stress 2004; 7:15-27.
    [18]Matthews SG, Owen D, Kalabis G. Fetal glucocorticoid exposure and hypothalamopituitary-adrenal (HPA) function after birth. Endocr Res 2004; 30:827-836.
    [19]McCabe L, Marash D, Li A. Repeated antenatal glucocorticoid treatment decreases hypothalamic corticotropin releasing hormone mRNA but not corticosteroid receptor mRNA expression in the fetal guinea-pig brain. J Neuroendocrinol 2001; 13:425-431.
    [20]Liu L, Li A, Matthews SG. Maternal glucocorticoid treatment programs HPA regulation in adult offspring:sex-specific effects. Am J Physiol Endocrinol Metab 2001; 280:729-739.
    [21]Erdeljan P, MacDonald JF, Matthews SG. Glucocorticoids and serotonin alter glucocorticoid receptor (GR) but not mineralocorticoid receptor (MR) mRNA levels in fetal mouse hippocampal neurons, in vitro. Brain Res 2001; 896:130-136.
    [22]Dean F, Yu C, Lingas RI. Prenatal glucocorticoid modifies hypothalamo-pituitary-adrenal regulation in prepubertal guinea pigs. Neuroendocrinology 2001; 73:194-202.
    [23]Kanitz E, Otten W, Tuchscherer M. Changes in endocrine and neurochemical profiles in neonatal pigs prenatally exposed to increased maternal cortisol. J Endocrinol 2006; 191:207-220.
    [24]De Bosscher K, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid
    receptor and nuclear factor or activator protein:molecular mechanisms for gene repression. Endocr Rev 2003; 24:488-522.
    [25]Bamberger CM, Bamberger AM, Caslro M. glucocorticoid receptor beta a potential endogenous inhibitor of glucocorticoid action in human. J Clin Invest 1995; 95:2435-2444.
    [26]Onate SA, Tsai SY, Tsai MJ. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995; 270:1354-1362.
    [27]Ristimaki A, Narko K, Hla T. Down-regulation of cytokine induced cyco-oxygense-2 transcript isoforms by dexamethasone:eviduce for post-transcriptional regulation. Biochem J 1996; 318: 325-338.
    [28]Haukkamaa M. Membrane-associated steroid hormone Receptor:their intracellular localization. Horwood:Chichester-Ellis 1987; 155-169.
    [29]Gametchu B. Glucocorticoid receptor-like antigen in lymphoma cell membranes:correlation to cell lysis. Science 1987; 236:456-462.
    [30]Hua SY, chen YZ. Membrane receptor-mediated electrophysiological effects of glucocorticoid on mammalian neurons. Endocrinology 1989; 124:687-69.
    [1]Fetoui H, Garoui M, Zeghal N. Protein restriction in pregnant-and lactating rats-induced oxidative stress and hypohomocysteinaemia in their offspring. J Anim Physiol Anim Nutr (Berl) 2009; 93: 263-270.
    [2]Kanitz E, Otten W, Tuchscherer M. Changes in endocrine and neurochemical profiles in neonatal pigs prenatally exposed to increased maternal cortisol. J Endocrinol 2006; 191:207-220.
    [3]Kapoor A, Matthews SG. Short periods of prenatal stress affect growth, behaviour and hypothalamo-pituitary-adrenal axis activity in male guinea pig offspring. J Physiol 2005; 566: 967-977.
    [4]Kapoor A, Matthews SG. Prenatal stress modifies behavior and hypothalamic-pituitary-adrenal function in female guinea pig offspring:effects of timing of prenatal stress and stage of reproductive cycle. Endocrinology 2008; 149:6406-6415.
    [5]Kapoor A, Leen J, Matthews SG. Molecular regulation of the hypothalamic-pituitary-adrenal axis in adult male guinea pigs after prenatal stress at different stages of gestation. J Physiol 2008; 586: 4317-4326.
    [6]Kapoor A, Dunn E, Kostaki A. Fetal programming of hypothalamo-pituitary-adrenal function: prenatal stress and Glucocorticoids. The Journal of physiology 2006; 572:31-34.
    [7]Welberg LAM, Seckl JR. Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol 2001; 13:113-128.
    [8]Kutzler MA, Coksaygan T, Ferguson AD. Maternally administered dexamethasone at 0.7 of gestation suppresses maternal and fetal pituitary and adrenal responses to hypoxemia in sheep. Pediatr Res 2004; 55:755-763.
    [9]Haussmann MF, Carroll JA, Weesner GD. Administration of ACTH to restrained, pregnant sows alters their pigs' hypothalamic-pituitary-adrenal (HPA) axis. J Anim Sci 2000; 78:2399-2411.
    [10]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.Methods 2001; 25:402-408.
    [11]Li LA, Xia D, Bao ED, Zhao RQ. Erhualian and Pietrain pigs exhibit distinct behavioral, endocrine and biochemical responses during transport. Livestock Science 2008; 113:169-177.
    [12]Weinstock M, Razin M, Schorer-Apelbaum D. Gender differences in sympathoadrenal activity in rats at rest and in response to footshock stress. Int J Dev Neurosci 1998; 16:289-295.
    [13]Haussmann MF, Carroll JA, Weesner GD, Daniels MJ, Matteri RL, Lay Jr DC. Administration of ACTH to restrained, pregnant sows alters their pigs hypothalamic-pituitary-adrenal (HPA) axis. J Anim Sci 2000;78:2399-2411.
    [14]Haussmann MF, Carroll JA,Weesner GD. Administration of ACTH to restrained, pregnant sows alters their pigs' hypothalamic-pituitary-adrenal (HPA) axis. J Anim Sci 2000; 78:2399-2411.
    [15]Szuran TF, Pliska V, Pokorny J, Welzl H. Prenatal stress in rats:effects on plasma corticosterone, hippocampal glucocorticoid receptors, and maze performance. Physiol Behav 2000; 71:353-362.
    [16]Kanitz E, Otten W, Tuchscherer M, Manteuffel G. Effects of prenatal stress on corticosteroid receptors and monoamine concentrations in limbic areas of suckling piglets (Sus scrofa) at different ages. J Vet Med A 2003; 50:132-139.
    [17]Kapoor A, Dunn E, Kostaki A. Fetal programming of hypothalamo-pituitary-adrenal function: prenatal stress and Glucocorticoids. The Journal of physiology 2006; 572:31-34.
    [18]Welberg LAM, Seckl JR, Holmes MC. Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone:possible implications for behaviour. Neuroscience 2001; 104:71-79.
    [19]Mitchell JB, Iny LJ, Meaney MJ. The role of serotonin in the development and environmental regulation of type II corticosteroid receptor binding in rat hippocampus. Dev Brain Res 1990; 55: 231-235.
    [1]Huang H S, Wu M C, Li P H. Expression of steroidogenic enzyme messenger ribonucleic acid and cortisol production in adrenocortical cells isolated from halothane-sensitive and halothane-resistant pigs. J. Cell Biochem.2000; 79:58-70.
    [2]Picard-Hagen N, Penhoat A, Hue D. Glucocorticoids enhance corticotropin receptor mRNA levels in ovine adrenocortical cells. J Mol Endocrinol 1997; 19:29-36.
    [3]Darbeida H, Durand P. Glucocorticoid enhancement of adrenocorticotropin-induced 3',5'-cyclic adenosine monophosphate production by cultured ovine adrenocortical cells. Endocrinology 1987; 121:1051-1055.
    [4]Feltus FA, Cote S, Melner MH. Glucocorticoids enhance activation of the human type Ⅱ 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase gene. J Steroid Biochem 2003; 82: 55-63.
    [5]Carsia RV, Malamed S. Glucocorticoid control of steroidogenesis in isolated rat adrenocortical cells. Biochim Biophys Acta 1983; 763:83-89.
    [6]Carsia RV, Malamed S. Acute self-suppression of corticosteroidogenesis in isolated adrenocortical cells. Endocrinology 1979; 105:911-914.
    [7]Carsia RV, Macdonald GJ, Malamed S. Steroid control of steroidogenesis in isolated adrenocortical cells:molecular and species specificity. Steroids 1983; 41:741-755.
    [8]Izumi S, Abe K, Hayashi T. Immunohistochemical localization of the ACTH (MC-2) receptor in the rat placenta and adrenal gland. Arch Histol Cytol 2004; 67:443-453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700