PMS1077抑制NF-кB活化并促进TNF-α诱导的前列腺癌细胞凋亡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核因子kappa B (NF-κB)是普遍存在于哺乳动物中的转录因子,其参与多种恶性肿瘤相关基因的表达调控。NF-κB在细胞增殖、抵抗凋亡、细胞迁移、血管新生等癌症发生发展过程中发挥关键作用,因此NF-κB信号通路已成为多种恶性肿瘤治疗和药物发现的一个重要靶点。PMS化合物是一系列同时具有抗血小板激活因子活性和抗HIV-1病毒活性的哌嗪类衍生物,本研究组前期研究证明其中PMS1077能够诱导B淋巴瘤Raji细胞的凋亡和急性早幼粒白血病HL-60细胞的再分化,但其作用机理尚不明确。
     本研究旨在以NF-κB信号通路为靶点探讨PMS化合物的抗肿瘤活性及其作用机理。首先在稳定表达NF-κB调控荧光素酶报告基因的前列腺癌细胞DU145和PC3中初步评价了11种PMS同系物对NF-κB活性的影响,其中PMS1077、PMS1120和PMS1144能够显著抑制肿瘤坏死因子(TNF-α)诱导的NF-κB信号通路活性,同时MTT实验证明此三种PMS化合物具有较低的细胞毒性作用;采用双荧光素酶报告基因系统进一步准确评价了PMS1077对NF-κB活性的影响,发现PMS1077(20、40、60和80μM)对NF-κB活性的抑制呈现浓度依赖效应;免疫印迹实验结果显示PMS1077能够抑制TNF-α诱导的NF-κB抑制蛋白(IKB-α)的磷酸化和降解以及NF-κB异源二聚体中p65的磷酸化;免疫细胞化学和细胞核质分离实验结果证明PMS1077抑制了TNF-α诱导p65的核转位;通过计算机分子动力学模拟对接手段推测PMS1077可能是通过直接结合IKK-β (IκB激酶p)亚基的激酶结构域从而抑制了后续信号通路的活化;MTT细胞增殖与流式细胞凋亡分析发现PMS1077能够显著促进TNF-α诱导的前列腺癌细胞凋亡;免疫印迹和RT-PCR对基因表达分析表明PMS1077处理细胞显著下调了NF-κB调控抗凋亡基因Bcl-xL、Bcl-2和Survivin的表达,同时促进了TNF-α诱导凋亡特征性蛋白分子PARP的裂解。
     综上所述,PMS1077可以通过下调前列腺癌细胞中NF-κB调控的抗凋亡基因表达而促进TNF-α诱导的细胞凋亡效应。本研究工作部分阐述了PMS化合物抗肿瘤活性的作用机理,为进一步优化该系列化合物的结构和改善其抗肿瘤生物活性提供了理论依据。
The nuclear factor-kappa B (NF-κB) are ubiquitous eukaryotic transcription factors in mammals that regulate key genes involved in the development of numerous malignant tumors. Because of its critical role in tumor cell survival, proliferation, invasion, metastasis, and angiogenesis, NF-κB signaling pathway has become a key therapeutic target for anti-caner drug development. PMS compounds are tri-substituted derivatives of piperazine with anti-PAF and anti-HIV-1properties. Our previous studies have demonstrated that PMS1077could induce apoptosis of Raji cells and differentiation of HL-60cells, but the mechanism of action remains unclear.
     In this study, we mainly focus on the mechanisms involved in the anti-cancer activities of PMS compounds by evaluating their effects on NF-κB signaling pathway. We first determined the effects of11PMS structural analogs on NF-κB signaling acticity in DU145and PC3cell lines stably expressing a NF-κB promoter driving luciferase reporter. We found that PMS1077, PMS1120, and PMS1144significantly inhibited TNF-a induced NF-κB activity and showed a moderate cytotoxicity in MTT assay. In the further more accurate dual-luciferase assay, PMS1077(20,40,60, and80μM) was found to inhibit the TNF-a induced NF-κB activity in a dose dependent manner. Western blot assay indicated that PMS1077suppressed the TNF-a induced inhibitor of κB alpha (IκB-α) phosphorylation, IκB-a degradation, and p65phosphorylation. PMS1077consistently blocked TNF-a induced p65nuclear translocation as demonstrated in the immunocytochemistry and Western blot assay used. Molecular docking studies predicted that PMS1077might suppress the activation of NF-κB by interacting directly with the IκB kinase-P (IKK-P) subunit. In addition, we further found that PMS1077significantly sensitized DU145cells to TNF-a induced apoptosis, as evidenced by MTT assay and flow cytometry. Results from Western blot and RT-PCR assay showed that TNF-a induced expression of the anti-apoptosis genes Bcl-xL, Bcl-2, and Survivin were down-regulated and TNF-a induced cleavage of PARP was significantly increased by PMS1077.
     Finally, the present study demonstrated that PMS1077sensitized prostate cancer cells to TNF-a induced apoptosis by suppressing the expression of NF-κB regulated anti-apoptotic genes.Accordingly, the present data partially explained the mechanism underlying the anti-tumor activities of PMS compounds and may help us to further optimize their structures and improve their properties for potential anti-cancer drug development.
引文
[1]Ranjan Sen and David Baltimore, Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism[J]. Cell.1986,47(6):921-928.
    [2]M. S. Hayden and S. Ghosh, NF-kappaB in immunobiology[J]. Cell Res.2011, 21(2):223-44.
    [3]V. F. Shih, R. Tsui, A. Caldwell, and A. Hoffmann, A single NFkappaB system for both canonical and non-canonical signaling[J]. Cell Res.2011,21(1):86-102.
    [4]Matthew S. Hayden and Sankar Ghosh, NF-kappa B, the first quarter-century:remarkable progress and outstanding questions[J]. Genes & Development.2012,26(3):203-234.
    [5]M. Karin, Y. Yamamoto, and Q. M. Wang, The IKK NF-kappa B system:a treasure trove for drug development[J]. Nat Rev Drug Discov.2004,3(1):17-26.
    [6]S. Liu and Z. J. Chen, Expanding role of ubiquitination in NF-kappaB signaling[J]. Cell Res. 2011,21(1):6-21.
    [7]G. Sethi, B. Sung, and B. B. Aggarwal, Nuclear factor-kB activation:From bench to bedside[J]. Experimental Biology and Medicine.2008,233(1):21-31.
    [8]A. Oeckinghaus and S. Ghosh, The NF-kappaB family of transcription factors and its regulation[J]. Cold Spring Harb Perspect Biol.2009, 1(4):a000034.
    [9]U. Senftleben, Y. Cao, G. Xiao, F. R. Greten, G. Krahn, G. Bonizzi, Y. Chen, Y. Hu, A. Fong, S. C. Sun, and M. Karin, Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway[J]. Science.2001,293(5534):1495-9.
    [10]P. A. Baeuerle and V. R. Baichwal, NF-kappa B as a frequent target for immunosuppressive and anti-inflammatory molecules[J]. Adv Immunol.1997,65:111-37.
    [11]F. Mercurio and A. M. Manning, NF-kappaB as a primary regulator of the stress response[J]. Oncogene.1999,18(45):6163-71.
    [12]M. S. Hayden and S. Ghosh, Signaling to NF-kappaB[J]. Genes Dev.2004,18 (18): 2195-224.
    [13]S. Ghosh and M. Karin, Missing pieces in the NF-kappaB puzzle[J]. Cell.2002,109 Suppl:S81-96.
    [14]K. Verhelst, L. Verstrepen, I. Carpentier, and R. Beyaert, IkappaB kinase varepsilon (IKKvarepsilon):A therapeutic target in inflammation and cancer[J]. Biochem Pharmacol. 2013,85(7):873-80.
    [15]Y. Hu, V. Baud, M. Delhase, P. Zhang, T. Deerinck, M. Ellisman, R. Johnson, and M. Karin, Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase[J]. Science.1999,284(5412):316-20.
    [16]A. S. Shifera, The zinc finger domain of IKKgamma (NEMO) protein in health and disease[J]. J Cell Mol Med.2010,14(10):2404-14.
    [17]M. Rushe, L. Silvian, S. Bixler, L. L. Chen, A. Cheung, S. Bowes, H. Cuervo, S. Berkowitz, T. Zheng, K. Guckian, M. Pellegrini, and A. Lugovskoy, Structure of a NEMO/IKK-associating domain reveals architecture of the interaction site[J]. Structure. 2008,16(5):798-808.
    [18]S. Miyamoto, Nuclear initiated NF-kappaB signaling:NEMO and ATM take center stage[J]. Cell Res.2011,21(1):116-30.
    [19]B. Huang, X. D. Yang, A. Lamb, and L. F. Chen, Posttranslational modifications of NF-kappa B:Another layer of regulation for NF-kappa B signaling pathway[J]. Cellular Signalling.2010,22(9):1282-1290.
    [20]H. Sakurai, H. Chiba, H. Miyoshi, T. Sugita, and W. Toriumi, IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain[J]. J Biol Chem.1999,274(43):30353-6.
    [21]I. Mattioli, H. Geng, A. Sebald, M. Hodel, C. Bucher, M. Kracht, and M. L. Schmitz, Inducible phosphorylation of NF-kappa B p65 at serine 468 by T cell costimulation is mediated by IKK epsilon[J]. J Biol Chem.2006,281(10):6175-83.
    [22]H. Buss, A. Dorrie, M. L. Schmitz, R. Frank, M. Livingstone, K. Resch, and M. Kracht, Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity[J]. J Biol Chem.2004,279(48):49571-4.
    [23]J. Bohuslav, L. F. Chen, H. Kwon, Y. Mu, and W. C. Greene, p53 induces NF-kappaB activation by an IkappaB kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase 1[J]. J Biol Chem.2004,279(25):26115-25.
    [24]M. Adli and A. S. Baldwin, IKK-i/IKKepsilon controls constitutive, cancer cell-associated NF-kappaB activity via regulation of Ser-536 p65/RelA phosphorylation[J]. J Biol Chem. 2006,281 (37):26976-84.
    [25]L. F. Chen, S. A. Williams, Y. Mu, H. Nakano, J. M. Duerr, L. Buckbinder, and W. C. Greene, NF-kappaB RelA phosphorylation regulates RelA acetylation[J]. Mol Cell Biol. 2005,25(18):7966-75.
    [26]J. E. Hoberg, A. E. Popko, C. S. Ramsey, and M. W. Mayo, IkappaB kinase alpha-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300[J]. Mol Cell Biol.2006, 26(2):457-71.
    [27]H. Buss, A. Dorrie, M. L. Schmitz, E. Hoffmann, K. Resch, and M. Kracht, Constitutive and interleukin-1-inducible phosphorylation of p65 NF-{kappa}B at serine 536 is mediated by multiple protein kinases including I{kappa}B kinase (IKK)-{alpha}, IKK{beta}, IKK{epsilon}, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA-binding protein-associated factor II31-mediated interleukin-8 transcription[J]. J Biol Chem.2004,279(53):55633-43.
    [28]J. Suh, F. Payvandi, L. C. Edelstein, P. S. Amenta, W. X. Zong, C. Gelinas, and A. B. Rabson, Mechanisms of constitutive NF-kappaB activation in human prostate cancer cells[J]. Prostate.2002,52(3):183-200.
    [29]K. Verhelst, I. Carpentier, and R. Beyaert, Regulation of TNF-induced NF-kappaB activation by different cytoplasmic ubiquitination events[J]. Cytokine Growth Factor Rev. 2011,22(5-6):277-86.
    [30]I. Carpentier, B. Coornaert, and R. Beyaert, Function and regulation of tumor necrosis factor receptor type 2[J]. Curr Med Chem.2004, 11(16):2205-12.
    [31]T. Henmi, K. Amano, Y. Nagaura, K. Matsumoto, S. Echigo, S. Tamura, and T. Kobayashi, A mechanism for the suppression of interleukin-1-induced nuclear factor kappaB activation by protein phosphatase 2Ceta-2[J]. Biochem J.2009,423(1):71-8.
    [32]M. Yu, D. Shao, J. Yang, S. Feng, and J. Xu, Ketamine suppresses intestinal TLR4 expression and NF-kappaB activity in lipopolysaccharide-treated rats[J]. Croat Med J.2006, 47(6):825-31.
    [33]Y. C. Lu, W. C. Yeh, and P. S. Ohashi, LPS/TLR4 signal transduction pathway[J]. Cytokine. 2008,42(2):145-51.
    [34]K. A. Park, H. S. Byun, M. Won, K. J. Yang, S. Shin, L. Piao, J. M. Kim, W. H. Yoon, E. Junn, J. Park, J. H. Seok, and G. M. Hur, Sustained activation of protein kinase C downregulates nuclear factor-kappaB signaling by dissociation of IKK-gamma and Hsp90 complex in human colonic epithelial cells[J]. Carcinogenesis.2007,28(1):71-80.
    [35]K. B. Harikumar, A. B. Kunnumakkara, K. S. Ahn, P. Anand, S. Krishnan, S. Guha, and B. B. Aggarwal, Modification of the cysteine residues in IkappaBalpha kinase and NF-kappaB (p65) by xanthohumol leads to suppression of NF-kappaB-regulated gene products and potentiation of apoptosis in leukemia cells[J]. Blood.2009,113(9):2003-13.
    [36]C. Thevenin, S. J. Kim, P. Rieckmann, H. Fujiki, M. A. Norcross, M. B. Sporn, A. S. Fauci, and J. H. Kehrl, Induction of nuclear factor-kappa B and the human immunodeficiency virus long terminal repeat by okadaic acid, a specific inhibitor of phosphatases 1 and 2A[J]. New Biol.1990,2(9):793-800.
    [37]L. M. Brandes, Z. P. Lin, S. R. Patierno, and K. A. Kennedy, Reversal of physiological stress-induced resistance to topoisomerase Ⅱ inhibitors using an inducible phosphorylation site-deficient mutant of I kappa B alpha[J]. Mol Pharmacol.2001,60(3):559-67.
    [38]A. Ozaki, H. Morimoto, H. Tanaka, H. Okamura, K. Yoshida, B. R. Amorim, and T. Haneji, Okadaic acid induces phosphorylation of p65NF-kappaB on serine 536 and activates NF-kappaB transcriptional activity in human osteoblastic MG63 cells[J]. J Cell Biochem. 2006,99(5):1275-84.
    [39]M. Karin, Nuclear factor-kappaB in cancer development and progression[J]. Nature.2006, 441(7092):431-6.
    [40]S. M. Noha, A. G. Atanasov, D. Schuster, P. Markt, N. Fakhrudin, E. H. Heiss, O. Schrammel, J. M. Rollinger, H. Stuppner, V. M. Dirsch, and G. Wolber, Discovery of a novel IKK-beta inhibitor by ligand-based virtual screening techniques[J]. Bioorg Med Chem Lett.2011,21(1):577-83.
    [41]V. R. Yadav, S. Prasad, S. C. Gupta, B. Sung, S. S. Phatak, S. Zhang, and B. B. Aggarwal, 3-Formylchromone interacts with cysteine 38 in p65 protein and with cysteine 179 in IkappaBalpha kinase, leading to down-regulation of nuclear factor-kappaB (NF-kappaB)-regulated gene products and sensitization of tumor cells[J]. J Biol Chem. 2012,287(1):245-56.
    [42]I. Alkalay, A. Yaron, A. Hatzubai, A. Orian, A. Ciechanover, and Y. Ben-Neriah, Stimulation-dependent I kappa B alpha phosphorylation marks the NF-kappa B inhibitor for degradation via the ubiquitin-proteasome pathway[J]. Proc Natl Acad Sci U S A.1995, 92(23):10599-603.
    [43]Y. Lin, L. Bai, W. Chen, and S. Xu, The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy[J]. Expert Opin Ther Targets.2010, 14(1):45-55.
    [44]R. X. Shi, C. N. Ong, and H. M. Shen, Luteolin sensitizes tumor necrosis factor-alpha-induced apoptosis in human tumor cells[J]. Oncogene.2004,23(46): 7712-7721.
    [45]Xiwen Lou, Shaogang Sun, Wei Chen, Yi Zhou, Yuefeng Huang, Xing Liu, Yufei Shan, and Chen Wang, Negative Feedback Regulation of NF-kappa B Action by CITED2 in the Nucleus[J]. Journal of Immunology.2011,186(1):539-548.
    [46]J. Kucharczak, M. J. Simmons, Y. Fan, and C. Gelinas, To be, or not to be:NF-kappaB is the answer--role of Rel/NF-kappaB in the regulation of apoptosis[J]. Oncogene.2003, 22(56):8961-82.
    [47]Wen-Ming Chu, Tumor necrosis factor[J]. Cancer Letters.2013,328(2):222-225.
    [48]E. C. LaCasse, D. J. Mahoney, H. H. Cheung, S. Plenchette, S. Baird, and R. G. Korneluk, IAP-targeted therapies for cancer[J]. Oncogene.2008,27(48):6252-75.
    [49]Jasmin N. Dynek and Domagoj Vucic, Antagonists of IAP proteins as cancer therapeutics [J]. Cancer Letters.2013,332(2):206-14.
    [50]Dario C. Altieri, Targeting survivin in cancer[J]. Cancer Letters.2013,332(2):225-8.
    [51]E. Varfolomeev, T. Goncharov, H. Maecker, K. Zobel, L. G. Komuves, K. Deshayes, and D. Vucic, Cellular inhibitors of apoptosis are global regulators of NF-kappaB and MAPK activation by members of the TNF family of receptors [J]. Sci Signal.2012,5(216):ra22.
    [52]A. R. Safa, c-FLIP, a master anti-apoptotic regulator[J]. Exp Oncol.2012,34(3):176-84.
    [53]R. Wilkie-Grantham, S. I. Matsuzawa, and J. C. Reed, Novel phosphorylation and ubiquitination sites regulate ROS-dependent degradation of anti-apoptotic c-FLIP protein[J]. J Biol Chem.2013.
    [54]C. Hall, S. M. Troutman, D. K. Price, W. D. Figg, and M. H. Kang, Bcl-2 family of proteins as therapeutic targets in genitourinary neoplasms[J]. Clin Genitourin Cancer.2013, 11(1):10-9.
    [55]A. Bravo-Cuellar, G. Hernandez-Flores, J. M. Lerma-Diaz, J. R. Dominguez-Rodriguez, L. F. Jave-Suarez, R. De Celis-Carrillo, A. Aguilar-Lemarroy, P. Gomez-Lomeli, and P. C. Ortiz-Lazareno, Pentoxifylline and the proteasome inhibitor MG132 induce apoptosis in human leukemia U937 cells through a decrease in the expression of Bcl-2 and Bcl-XL and phosphorylation of p65[J]. J Biomed Sci.2013,20(l):13.
    [56]Mohammad Shamsul Ola, Mohd Nawaz, and Haseeb Ahsan, Role of Bcl-2 family proteins and caspases in the regulation of apoptosis[J]. Molecular and Cellular Biochemistry.2011, 351(1-2):41-58.
    [57]A. C. Bellail, J. J. Olson, X. Yang, Z. J. Chen, and C. Hao, A20 ubiquitin ligase-mediated polyubiquitination of RIP1 inhibits caspase-8 cleavage and TRAIL-induced apoptosis in glioblastoma[J]. Cancer Discov.2012,2(2):140-55.
    [58]L. Verstrepen, K. Verhelst, G. van Loo, I. Carpentier, S. C. Ley, and R. Beyaert, Expression, biological activities and mechanisms of action of A20 (TNFAIP3)[J]. Biochem Pharmacol. 2010,80(12):2009-20.
    [59]K. L. He and A. T. Ting, A20 inhibits tumor necrosis factor (TNF) alpha-induced apoptosis by disrupting recruitment of TRADD and RIP to the TNF receptor 1 complex in Jurkat T cells[J]. Mol Cell Biol.2002,22(17):6034-45.
    [60]H. R. Jin, S. Z. Jin, X. F. Cai, D. Li, X. Wu, J. X. Nan, J. J. Lee, and X. Jin, Cryptopleurine targets NF-kappaB pathway, leading to inhibition of gene products associated with cell survival, proliferation, invasion, and angiogenesis[J]. PLoS One.2012,7(6):e40355.
    [61]A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, Global cancer statistics[J]. CA Cancer J Clin.2011,61(2):69-90.
    [62]S. P. Balk and K. E. Knudsen, AR, the cell cycle, and prostate cancer[J]. Nucl Recept Signal.2008,6:e001.
    [63]Lewis MacKenzie, Pamela McCall, Sophia Hatziieremia, Jamie Catlow, Claire Adams, Peter McArdle, Morag Seywright, Claire Tanahill, Andrew Paul, Mark Underwood, Simon MacKay, Robin Plevin, and Joanne Edwards, Nuclear factor kappa B predicts poor outcome in patients with hormone-naive prostate cancer with high nuclear androgen receptor[J]. Human Pathology.2012,43(9):1491-1500.
    [64]R. Garg, J. Blando, C. J. Perez, H. Wang, F. J. Benavides, and M. G. Kazanietz, Activation of nuclear factor kappaB (NF-kappaB) in prostate cancer is mediated by protein kinase C epsilon (PKCepsilon)[J]. J Biol Chem.2012,287(44):37570-82.
    [65]A. V. Gasparian, Y. J. Yao, D. Kowalczyk, L. A. Lyakh, A. Karseladze, T. J. Slaga, and I. V. Budunova, The role of IKK in constitutive activation of NF-kappaB transcription factor in prostate carcinoma cells[J]. J Cell Sci.2002,115(Pt 1):141-51.
    [66]L. Zhang, S. Altuwaijri, F. Deng, L. Chen, P. Lai, U. K. Bhanot, R. Korets, S. Wenske, H. G. Lilja, C. Chang, H. I. Scher, and W. L. Gerald, NF-kappaB regulates androgen receptor expression and prostate cancer growth[J]. Am J Pathol.2009,175(2):489-99.
    [67]L. Zhang, M. Charron, W. W. Wright, B. Chatterjee, C. S. Song, A. K. Roy, and T. R. Brown, Nuclear factor-kappaB activates transcription of the androgen receptor gene in Sertoli cells isolated from testes of adult rats[J]. Endocrinology.2004,145(2):781-9.
    [68]M. Martin, N. Serradji, N. Dereuddre-Bosquet, G. Le Pavec, G. Fichet, A. Lamouri, F. Heymans, J. J. Godfroid, P. Clayette, and D. Dormont, PMS-601, a new platelet-activating factor receptor antagonist that inhibits human immunodeficiency virus replication and potentiates zidovudine activity in macrophages[J]. Antimicrobial Agents and Chemotherapy. 2000,44(11):3150-3154.
    [69]N. Serradji, O. Bensaid, M. Martin, E. Kan, N. Dereuddre-Bosquet, C. Redeuilh, J. Huet, F. Heymans, A. Lamouri, P. Clayette, C. Z. Dong, D. Dormont, and J. J. Godfroid, Structure-activity relationships in platelet-activating factor (PAF).10. From PAF antagonism to inhibition of HIV-1 replication[J]. Journal of Medicinal Chemistry.2000, 43(11):2149-2154.
    [70]N. Serradji, M. Martin, O. Bensaid, S. Cisternino, C. Rousselle, N. Dereuddre-Bosquet, J. Huet, C. Redeuilh, A. Lamouri, C. Z. Dong, P. Clayette, J. M. Scherrmann, D. Dormont, and F. Heymans, Structure-activity relationships in platelet-activating factor.12. Synthesis and biological evaluation of platelet-activating factor antagonists with anti-HIV-1 activity[J]. Journal of Medicinal Chemistry.2004,47(25):6410-6419.
    [7I]Nawal Serradji, Okkacha Bensaid, Marc Martin, Wafa Sallem, Nathalie Dereuddre-Bosquet, Houcine Benmehdi, Catherine Redeuilh, Aazdine Lamouri, Georges Dive, Pascal Clayette, and Francoise Heymans, Part 13:Synthesis and biological evaluation of piperazine derivatives with dual anti-PAF and anti-HTV-1 or pure antiretroviral activity[J]. Bioorganic & Medicinal Chemistry.2006,14(23):8109-8125.
    [72]Wen-di Wang, Xi-ming Xu, Ying Chen, Peng Jiang, Chang-zhi Dong, and Qin Wang, Apoptosis of Human Burkitt's Lymphoma Cells Induced by 2-N,N-Diethy lamino carbony loxymethyl-l-diphenylmethyl-4-(3,4,5-trimethoxy benzoyl)piperazine Hydro chloride (PMS-1077)[J]. Archives of Pharmacal Research.2009,32(12):1727-1736.
    [73]P. Jiang, X. Xu, Y. Chen, W. Zhang, N. Serradji, J. Yang, C. Dong, and Q. Wang, PMS-1077, a PAF antagonist, induced differentiation of HL-60 cells with its novel activity[J]. Cell Biol Int.2010,34(12):1227-30.
    [74]Jianxin He, Jie Shi, Ximing Xu, Wenhua Zhang, Yuxin Wang, Xing Chen, Yuping Du, Ning Zhu, Jing Zhang, Qin Wang, and Jinbo Yang, STAT3 mutations correlated with hyper-lgE syndrome lead to blockage of IL-6/STAT3 signalling pathway[J]. Journal of Biosciences.2012,37(2):243-257.
    [75]G. Xu, Y. C. Lo, Q. Li, G. Napolitano, X. Wu, X. Jiang, M. Dreano, M. Karin, and H. Wu, Crystal structure of inhibitor of kappaB kinase beta[J]. Nature.2011,472(7343):325-30.
    [76]M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R. Hutchison, Avogadro:An advanced semantic chemical editor, visualization, and analysis platform[J]. J Cheminform.2012,4(1):17.
    [77]G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, AutoDock4 and AutoDockTools4:Automated docking with selective receptor flexibility[J]. J Comput Chem.2009,30(16):2785-91.
    [78]O. Trott and A. J. Olson, AutoDock Vina:improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. J Comput Chem. 2010,31(2):455-61.
    [79]J. D. Durrant and J. A. McCammon, NNScore 2.0:a neural-network receptor-ligand scoring function[J]. J Chem Inf Model.2011,51(11):2897-903.
    [80]J. D. Durrant and J. A. McCammon, BINANA:a novel algorithm for ligand-binding characterization[J], J Mol Graph Model.2011,29(6):888-93.
    [81]Roman A. Laskowski and Mark B. Swindells, LigPlot+:Multiple Ligand-Protein Interaction Diagrams for Drug Discovery[J]. Journal of Chemical Information and Modeling.2011,51(10):2778-2786.
    [82]R. T. Peters, S. M. Liao, and T. Maniatis, IKKepsilon is part of a novel PMA-inducible IkappaB kinase complex[J]. Mol Cell.2000,5(3):513-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700