松鼠葡萄球菌mecA和金黄色葡萄球菌mecA在松鼠葡萄球菌耐药机制及细胞壁合成中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金黄色葡萄球菌是引起医院内获得性感染和社区获得性感染的重要致病菌之一。β-内酰胺类抗生素曾经是治疗金黄色葡萄球菌感染的有效武器,但随着耐甲氧西林的金黄色葡萄球菌(Methicillin resistant Staphylococcus aureus,MRSA)分离率的逐渐增加,金黄色葡萄球菌引起的感染成为临床上非常棘手的问题。耐药的主要决定基因为mecA。mecA编码的青霉素结合蛋白2A(penicillin-binding protein 2A,PBP2A)对β-内酰胺类抗生素亲和力很低,当固有的PBP被β-内酰胺类抗生素饱和时,PBP2A可替代这些PBPs的转肽功能催化细胞壁合成。mecA基因并非金黄色葡萄球菌的固有基因,而是一外源基因,其来源有很多假设,目前认为是从松鼠葡萄球菌中获得。大多数松鼠葡萄球菌的mecA并不提供抗药性,但把活化的松鼠葡萄球菌mecA引入到敏感的金黄色葡萄球菌可使后者的抗药性大大增加,松鼠葡萄球菌的mecA基因产物能够利用金黄色葡萄球菌的细胞壁前体合成金黄色葡萄球菌的细胞壁。最近,我们分离到了既含有松鼠葡萄球菌的mecA又含有金黄色葡萄球菌的mecA的松鼠葡萄球菌K3,K3为黄色菌落,在没有抗生素存在时能自发分化为K3y(黄色菌落)和K3w(白色菌落)。前者表型和基因型与亲代菌完全相同,后者仅含有松鼠葡萄球菌mecA而丢失了金黄色葡萄球菌的mecA。本论文将针对这两个mecA基因在松鼠葡萄球菌的耐药性及细胞壁合成中的作用进行研究。
     目的:进一步研究松鼠葡萄球菌的生物学特征和基因特征以期更深入的理解金黄色葡萄球菌耐药性基因mecA来源以及MRSA菌株的耐药机制;同时,认识临床上分离率日益增加的松鼠葡萄球菌的耐药机制。方法:通过抗生素压力选择出松鼠葡萄球菌K3的高度均一耐药株;应用E-test和PAP试验来检测松鼠葡萄球菌对苯唑西林的耐药性;PCR扩增两个mecA基因并制备DNA探针;多重PCR用于菌株K3和K8的SCCmec分型;应用Northern blot和Western blot分别检测两个mecA基因在转录水平和蛋白质水平上的表达;通过克隆和测序排布出敏感菌K1及耐药菌K3 orfX区的基因分布,与GenBank中的同源序列进行比较并分析其特征;SmaⅠ消化染色体DNA后,脉冲场电泳分离消化产物,Southern blot检测orfX和mecA在染色体上的位置关系;分离、纯化细菌膜蛋白后应用PBP assay鉴定出松鼠葡萄球菌的青霉素结合蛋白图谱以及各个PBPs对β-内酰胺类抗生素的亲和力;分离、纯化细胞壁,高压液相法分析细胞壁成分。
     结果:经过抗生素选择压力,筛选出K3的homo*衍生菌K3HO,K3HW,K3HWO。K3对苯唑西林呈异质性耐药,K3 homo*衍生菌对苯唑西林高度均一耐药,MIC>400μg/ml。在抗生素存在的情况下,K3自发分化为K3w和K3y的现象被抑制,分化出的黄,白菌落均含有松鼠葡萄球菌mecA和金黄色葡萄球菌mecA。同时,金黄色葡萄球菌的mecA被大量诱导,但Northern blot检测不到松鼠葡萄球菌mecA的表达。K3 homo*衍生菌的金黄色葡萄球菌mecA表达轻微提高,但也未能检测到松鼠葡萄球菌mecA在RNA水平的表达。K3和K8分别为SCCmecⅢB和SCCmecⅢA型,SCCmec准确的插入到orfX区。K1和K3 orfX区的基因排布和表皮葡萄球菌和溶血葡萄球菌相似而和金黄色葡萄球菌差异较大。orfX和mecA基因在染色体上的位置随菌株不同而不同。鉴定了6种PBPs,其中PBP4即为松鼠葡萄球菌mecA的表达产物,对苯唑西林呈低亲和力。PBP6在苯唑西林耐药性方面可能发挥了重要作用。苯唑西林耐药菌细胞壁交联率高于敏感菌,但交联率的高低和菌株的MIC值并不呈线形关系。在抗生素压力下,金黄色葡萄球菌的mecA产物能利用松鼠葡萄球菌细胞壁合成前体合成松鼠葡萄球菌的细胞壁。结论:在两个mecA共存的松鼠葡萄球菌中,金黄色葡萄球菌mecA和抗药性直接相关,但也不能排除松鼠葡萄球菌mecA的作用。orfX和mecA位于基因重组的热点或附近,这有利于松鼠葡萄球菌获得新的SCCmec或松鼠葡萄球菌mecA的转移。松鼠葡萄球菌细胞壁的高度交联率和耐药性相关,这不同于敏感和耐药的金黄色葡萄球菌细胞壁特征。松鼠葡萄球菌的mecA和金黄色葡萄球菌mecA在细胞壁的合成中具有相互替代性。
Staphylococcus aureus (S. aureus) is a versatile and dangerous pathogen in humans. In the past,β-lactam antibiotics were powerful weapons to treat infections caused by staphylococci. However, treatment of these infections had stumbled since the emergence of methicillin-resistant S. aureus (MRSA). The genetic determinant of methicillin resistance in MRSA is mecA, which encodes the low-affinity penicillin-binding protein 2A (PBP2A). PBP2A takes over the transpeptidase role of the normal penicillin-binding proteins (PBPs) in the presence of oxacillin, thus continuing the process of cell wall synthesis. The mecA gene that is carried by SCCmec vehicle is not an original gene of MRSA and speculated to be evolved from the species of Staphylococcus sciuri (S. sciuri) in staphylococcal genus. S. sciuri belongs to coagulase-negative staphylococci (CNS) and is generally considered one of the most primitive staphylococcal species. It is distantly related to S. aureus along taxonomic lines. One hundred thirty four independent and genetically diverse S. sciuri isolates were each found to carry the mecA homologue, yet most of the mecA homologues do not confer resistance to antibiotics. Further study showed the laboratory S. sciuri mutant selected by methicillin was highly resistant to methicillin duo to a point mutation in the mecA promoter. Introduction of the activated S. sciuri mecA into S. aureus led to the increase of antibiotic resistance. The imported S. sciuri mecA was involved in the process of cell wall synthesis of the host strain of S. aureus. Recently, a clinical S. sciuri isolate K3 harboring both S. sciuri mecA and S. aureus mecA was isolated and showed resistance to methicillin. K3 strain was unstable in the absence of drug selection and tended to segregate into K3w accompanied by the loss of S. aureus mecA and K3y which had the same phenotypic and genetic characters as parental strain. This result promotes us to characterize the roles of S. sciuri mecA and S. aureus mecA in theβ-lactam antibiotic resistance and cell wall synthesis.
     Objective: To identify biological and genetic characteristics of S. sciuri strains and give insights into the evolution of the mecA gene in the MRSA strain as well as the mechanism(s) of methicillin resistance in staphylococci; To clarify the molecular mechanisms of antibiotic resistance among the increasingly isolated multiple-drug resistant strains of S. sciuri, which would provide useful information for clinical researches. Method: K3 containing both S. sciuri mecA and S. aureus mecA was the main strain used in this thesis. Isolates representing three subspecies of S. sciuri were also included in different experiments. Homo* derivatives of K3 were obtained after antibiotic selection. Antibiotic susceptibility profiles of the strains were analyzed by E-test and population analysis profiles (PAP). PCR was used to amplify two mecA genes and prepare all the probes; SCCmec typing was determined by multiple PCR. Expression of mecA genes were studied by Northern blot and Western blot; The genetic organization of orfX region was identified by cloning and sequencing; The putative function of the newly-identified genes was revealed by comparing with the homologues in GenBank; Detection of variations of orfX and mecA genes in chromosomal location was performed by pulse field with Sma I digestion and Southern blot; Penicillin-binding proteins were identified and characterized by PBP flurographic assay; High-pressure liquid chromatography was used to analyze the compositions of cell wall. Result: K3 strain carrying two copies of mecA genes confered heterogenous resistance to oxacillin. Segregation of antibiotic-susceptible cells K3w containing one copy of S. sciuri mecA was inhibited under oxaicllin pressure. Strains K3HO, K3HW, and K3HWO which were derived from K3 strain showed homogenous resistance to oxacillin. Expression of S. aureus mecA was highly induced in K3 strain with oxacillin and expression of S. sciuri mecA was not detectable by Northern blot. Slightly increase was detected in K3 homo* derivatives. K3 belonged to SCCmecⅢB and its SCCmec was precisely integrated in the orfX region. The genetic locations of S. sciuri mecA and orfX gene varied strain by strain. Six PBPs were identified in S. sciuri strains. PBP4 was only detected in oxacillin resistant S. sciuri strains and it was the genetic product of S. sciuri rnecA and showed low-affinity to oxacillin. These observations implied that PBP4 may be responsible for the resistance in oxacillin resistant S. sciuri strains. Furthermore, PBP6 was also determined to be a major PBP in conferring oxacillin resistance since the enhancement of PBP6 in oxacillin resistant strain K1M200 and the loss of PBP6 in K3w along with the decreased MIC comparing with parental strain K3. Cross-linking degree of cell wall in oxacillin-susceptible S. sciuri strains was 27.9% for K1 strain and 29.1% for K3w strain whereas the cross-linking rate was increased to 36.6% in K3, 36.7% in strain K3HO, 37.7% in strain SS-37 and 59.8% in strain K1M200. There was no proportional relationship between cross-linking degree and MIC value. In the presence of oxacillin, S. aureus mecA was expressed dominantly in K3 strain and the product serving as transpeptidase can use the cell wall precursor of S. sciuri to synthesize the S. sciuri type of cell wall. Conclusion: S. aureus mecA was more likely to respond to antibiotic pressure and confered resistance to the S. sciuri host. Nevertheless, S. sciuri mecA was not so silent as we thought, orfX and S. sciuri mecA genes were located at hotspots for genetic recombination, which might favor the bacteria for adoption of SCCmec and donation of S. sciuri mecA. The species of S. sciuri would have more options in development of resistance toβ-lactam antibiotics depending on the special relationship with the two mecA genes. Cross-linking degree was higher in oxacillin resistant S. sciuri strains than oxacillin susceptible S. sciuri strains. S. aureus mecA and S. sciuri mecA were functionally interchangeable in the cell wall synthesis.
引文
[1] Arbeloa, A., J. E. Hugonnet, A. C. Sentilhes, N. Josseaume, L. Dubost, C. Monsempes, D. Blanot, J. P. Brouard, and M. Arthur. Synthesis of mosaic peptidoglycan cross-bridges by hybrid peptidoglycan assembly pathways in gram-positive bacteria. J Biol Chem, 2004, 279:41546-56.
    [2] Archer, G. L., and D. M. Niemeyer. Origin and evolution of DNA associated with resistance to methicillin in staphylococci. Trends Microbiol , 1994,2:343-7.
    [3] Archer, G. L., J. A. Thanassi, D. M. Niemeyer, and M. J. Pucci. Characterization of IS 1272, an insertion sequence-like element from Staphylococcus haemolyticus. Antimicrob Agents Chemother,1996, 40:924-9.
    [4] Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. Short protocols in molecular biology. Greene Publishing Associates and John Wiley, New York.
    [5] Baba, T., F. Takeuchi, M. Kuroda, H. Yuzawa, K. Aoki, A. Oguchi, Y. Nagai, N. Iwama, K. Asano, T. Naimi, H. Kuroda, L. Cui, K. Yamamoto, and K. Hiramatsu. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet, 2002, 359:1819-27.
    [6] Berger-Bachi, B. Genetic basis of methicillin resistance in Staphylococcus aureus. Cell Mol Life Sci, 1999, 56:764-70.
    [7] Berger-Bachi, B. Insertional inactivation of staphylococcal methicillin resistance by Tn551. J Bacteriol, 1983,154:479-87.
    [8] Berger-Bachi, B., L. Barberis-Maino, A. Strassle, and F. H. Kayser. FemA, a host-mediated factor essential for methicillin resistance in Staphylococcus aureus: molecular cloning and characterization. Mol Gen Gene, 1989, 219:263-9.
    [9] Bondi, J. A., and Dietz, C.C. Penicillin resistant staphylococci. Proc. Royal Soc. Exper.Biol.Med, 1945, 60:55-58.
    [10] Boneca, I. G., Z. H. Huang, D. A. Gage, and A. Tomasz. Characterization of Staphylococcus aureus cell wall glycan strands, evidence for a new beta-N-acetylglucosaminidase activity. J Biol Chem, 2000, 275:9910-8.
    [11] Casewell, M. W. Epidemiology and control of the 'modern' methicillin-resistant Staphylococcus aureus. J Hosp Infect, 1986, 7 Suppl A:1-11.
    [12] Casewell, M. W., and R. L. Hill. The carrier state: methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother, 1986,18 Suppl A: 1-12.
    [13] Cheung, A. L., J. M. Koomey, C. A. Butler, S. J. Projan, and V. A. Fischetti. Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. Proc Natl Acad Sci U S A, 1992, 89:6462-6.
    [14] Chongtrakool, P., T. Ito, X. X. Ma, Y. Kondo, S. Trakulsomboon, C. Tiensasitorn, M. Jamklang, T. Chavalit, J. H. Song, and K. Hiramatsu. Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: a proposal for a new nomenclature for SCCmec elements. Antimicrob Agents Chemother, 2006, 50:1001-12.
    [15] Chung, M., H. de Lencastre, P. Matthews, A. Tomasz, I. Adamsson, M. Aires de Sousa, T. Camou, C. Cocuzza, A. Corso, I. Couto, A. Dominguez, M. Gniadkowski, R. Goering, A. Gomes, K. Kikuchi, A. Marchese, R. Mato, O. Melter, D. Oliveira, R. Palacio, R. Sa-Leao, I. Santos Sanches, J. H. Song, P. T. Tassios, and P. Villari. Molecular typing of methicillin-resistant Staphylococcus aureus by pulsed-field gel electrophoresis: comparison of results obtained in a multilaboratory effort using identical protocols and MRSA strains. Microb Drug Resist, 2000, 6:189-98.
    
    [16] Coombs, G. W., G. R. Nimmo, J. M. Bell, F. Huygens, F. G. O'Brien, M. J. Malkowski, J. C. Pearson, A. J. Stephens, and P. M. Giffard. Genetic diversity among community methicillin-resistant Staphylococcus aureus strains causing outpatient infections in Australia. J Clin Microbiol, 2004, 42:4735-43.
    
    [17] Couto, I., H. de Lencastre, E. Severina, W. Kloos, J. A. Webster, R. J. Hubner, I. S. Sanches, and A. Tomasz. Ubiquitous presence of a mecA homologue in natural isolates of Staphylococcus sciuri. Microb Drug Resist, 1996,2:377-91.
    
    [18] Couto, I., I. S. Sanches, R. Sa-Leao, and H. de Lencastre. Molecular characterization of Staphylococcus sciuri strains isolated from humans. J Clin Microbiol, 2000, 38:1136-43.
    
    [19] Couto, I., S. W. Wu, A. Tomasz, and H. de Lencastre. Development of methicillin resistance in clinical isolates of Staphylococcus sciuri by transcriptional activation of the mecA homologue native to the species. J Bacteriol, 2003,185:645-53.
    
    [20] Daum, R. S., T. Ito, K. Hiramatsu, F. Hussain, K. Mongkolrattanothai, M. Jamklang, and S. Boyle-Vavra. A novel methicillin-resistance cassette in community-acquired methicillin-resistant Staphylococcus aureus isolates of diverse genetic backgrounds. J Infect Dis, 2002-186:1344-7.
    
    [21] de Jonge, B. L., Y. S. Chang, D. Gage, and A. Tomasz. Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. J Biol Chem, 1992, 267:11248-54.
    [22] de Jonge, B. L., Y. S. Chang, N. Xu, and D. Gage. Effect of exogenous glycine on peptidoglycan composition and resistance in a methicillin-resistant Staphylococcus aureus strain. Antimicrob Agents Chemother, 1996, 40:1498-503.
    
    [23] De Jonge, B. L., D. Gage, and N. Xu. The carboxyl terminus of peptidoglycan stem peptides is a determinant for methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother, 2002, 46:3151-5.
    
    [24] de Jonge, B. L., and A. Tomasz. Abnormal peptidoglycan produced in a methicillin-resistant strain of Staphylococcus aureus grown in the presence of methicillin: functional role for penicillin-binding protein 2A in cell wall synthesis. Antimicrob Agents Chemother, 1993, 37:342-6.
    
    [25] de Lencastre, H., A. M. Sa Figueiredo, C. Urban, J. Rahal, and A. Tomasz. Multiple mechanisms of methicillin resistance and improved methods for detection in clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother, 1991,35:632-9.
    
    [26] de Lencastre, H., and A. Tomasz. Reassessment of the number of auxiliary genes essential for expression of high-level methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother, 1994, 38:2590-8.
    
    [27] De Lencastre, H., S. W. Wu, M. G. Pinho, A. M. Ludovice, S. Filipe, S. Gardete, R. Sobral, S. Gill, M. Chung, and A. Tomasz. Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb Drug Resist, 1999, 5:163-75.
    
    [28] Enright, M. C, D. A. Robinson, G. Randle, E. J. Feil, H. Grundmann, and B. G. Spratt. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A, 2002, 99:7687-92.
    [29] Eriksen, K. R. ["Celbenin"-resistant staphylococci.]. Ugeskr Laeger, 1961, 123:384-6.
    [30] Georgopapadakou, N. H., S. A. Smith, and D. P. Bonner. Penicillin-binding proteins in a Staphylococcus aureus strain resistant to specific beta-lactam antibiotics. Antimicrob Agents Chemother, 1982, 22:172-5.
    [31] Ghuysen, J. M. Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol, 1991, 45:37-67.
    [32] Goffin, C, and J. M. Ghuysen. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev, 1998, 62:1079-93.
    [33] Groom, A. V., D. H. Wolsey, T. S. Naimi, K. Smith, S. Johnson, D. Boxrud, K. A. Moore, and J. E. Cheek. Community-acquired methicillin-resistant Staphylococcus aureus in a rural American Indian community. Jama, 2001, 286:1201-5.
    [34] Hakenbeck, R., M. Tarpay, and A. Tomasz. Multiple changes of penicillin-binding proteins in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother, 1980,17:364-71.
    [35] Hanssen, A. M., and J. U. Ericson Sollid. SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol, 2006, 46:8-20.
    [36] Herold, B. C, L. C. Immergluck, M. C. Maranan, D. S. Lauderdale, R. E. Gaskin, S. Boyie-Vavra, C. D. Leitch, and R. S. Daum. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. Jama ,1998, 279:593-8.
    [37] Hiramatsu, K., K. Asada, E. Suzuki, K. Okonogi, and T. Yokota. Molecular cloning and nucleotide sequence determination of the regulator region of mec A gene in methicillin-resistant Staphylococcus aureus (MRSA). FEBS Lett, 1992,298:133-6.
    
    [38] Hiramatsu, K., L. Cui, M. Kuroda, and T. Ito. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol , 2001,9:486-93.
    
    [39] Ito, T., Y. Katayama, K. Asada, N. Mori, K. Tsutsumimoto, C. Tiensasitorn, and K. Hiramatsu. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother, 2001,45:1323-36.
    
    [40] Ito, T., X. X. Ma, F. Takeuchi, K. Okuma, H. Yuzawa, and K. Hiramatsu. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob Agents Chemother, 2004,48:2637-51.
    
    [41] Juuti, K., S. Ibrahem, A. Virolainen-Julkunen, J. Vuopio-Varkila, and P. Kuusela. The pls gene found in methicillin-resistant Staphylococcus aureus strains is common in clinical isolates of Staphylococcus sciuri. J Clin Microbiol, 2005,43:1415-9.
    
    [42] Katayama, Y., F. Takeuchi, T. Ito, X. X. Ma, Y. Ui-Mizutani, I. Kobayashi, and K. Hiramatsu. Identification in methicillin-susceptible Staphylococcus hominis of an active primordial mobile genetic element for the staphylococcal cassette chromosome mec of methicillin-resistant Staphylococcus aureus. J Bacteriol, 2003,185:2711-22.
    
    [43] Katayama, Y., H. Z. Zhang, D. Hong, and H. F. Chambers. Jumping the barrier to beta-lactam resistance in Staphylococcus aureus. J Bacteriol, 2003, 185:5465-72.
    
    [44] Kloos, W. E., D. N. Ballard, J. A. Webster, R. J. Hubner, A. Tomasz, I. Couto, G. L. Sloan, H. P. Dehart, F. Fiedler, K. Schubert, H. de Lencastre, I. S. Sanches, H. E. Heath, P. A. Leblanc, and A. Ljungh. Ribotype delineation and description of Staphylococcus sciuri subspecies and their potential as reservoirs of methicillin resistance and staphylolytic enzyme genes. Int J Syst Bacteriol, 1997, 47:313-23.
    
    [45] Kloos, W. E., R. J. Zimmerman, and R. F. Smith. Preliminary studies on the characterization and distribution of Staphylococcus and Micrococcus species on animal skin. Appl Environ Microbiol, 1976, 31:53-9.
    
    [46] Kobayashi, N., K. Taniguchi, and S. Urasawa. Analysis of diversity of mutations in the mecI gene and mecA promoter/operator region of methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother, 1998, 42:717-20.
    
    [47] Kopp, U., M. Roos, J. Wecke, and H. Labischinski. Staphylococcal peptidoglycan interpeptide bridge biosynthesis: a novel antistaphylococcal target? Microb Drug Resist, 1996, 2:29-41.
    
    [48] Kornblum, J., B. J. Hartman, R. P. Novick, and A. Tomasz. Conversion of a homogeneously methicillin-resistant strain of Staphylococcus aureus to heterogeneous resistance by Tn551 -mediated insertional inactivation. Eur J Clin Microbiol, 1986, 5:714-8.
    
    [49] Kreiswirth, B., J. Kornblum, R. D. Arbeit, W. Eisner, J. N. Maslow, A. McGeer, D. E. Low, and R. P. Novick. Evidence for a clonal origin of methicillin resistance in Staphylococcus aureus. Science, 1993, 259:227-30.
    
    [50] Kuwahara-Arai, K., N. Kondo, S. Hori, E. Tateda-Suzuki, and K. Hiramatsu. Suppression of methicillin resistance in a mecA -containing pre-methicillin-resistant Staphylococcus aureus strain is caused by the mecI-mediated repression of PBP 2' production. Antimicrob Agents Chemother, 1996, 40:2680-5.
    [51] Leski, T. A., and A. Tomasz. Role of penicillin-binding protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus: evidence for the cooperative functioning of PBP2, PBP4, and PBP2A. J Bacteriol, 2005,187:1815-24.
    [52] Libman, H., and R. D. Arbeit. Complications associated with Staphylococcus aureus bacteremia. Arch Intern Med, 1984, 144:541-5.
    [53] Lim, D., and N. C. Strynadka. Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Biol, 2002, 9:870-6.
    [54] Lowy, F. D. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest, 2003,111:1265-73.
    [55] Lowy, F. D. Staphylococcus aureus infection. The N Engl J Med, 1998, 339:520-532.
    [56] Ludovice, A. M., S. W. Wu, and H. de Lencastre. Molecular cloning and DNA sequencing of the Staphylococcus aureus UDP-N-acetylmuramyl tripeptide synthetase (murE) gene, essential for the optimal expression of methicillin resistance. Microb Drug Resist,1998, 4:85-90.
    [57] Luong, T. T., S. Ouyang, K. Bush, and C. Y. Lee. Type 1 capsule genes of Staphylococcus aureus are carried in a staphylococcal cassette chromosome genetic element. J Bacteriol, 2002,184:3623-9.
    [58] Massova, L, and S. Mobashery. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother, 1998,42:1-17.
    [59] Matthews, P., and A. Tomasz. Insertional inactivation of the mec gene in a transposon mutant of a methicillin-resistant clinical isolate of Staphylococcus aureus. Antimicrob Agents Chemother, 1990, 34:1777-9.
    [60] Mazmanian, S. K., H. Ton-That, and O. Schneewind. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol, 2001,40:1049-57.
    [61] McKinney, T. K., V. K. Sharma, W. A. Craig, and G. L. Archer. Transcription of the gene mediating methicillin resistance in Staphylococcus aureus (mecA) is corepressed but not coinduced by cognate mecA and beta-lactamase regulators. J Bacteriol, 2001,183:6862-8.
    [62] Medeiros, A. A. Evolution and disseminatin of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clin Infect. Dis, 1997, 24 Suppl. 1:S19-45.
    [63] Miragaia, M., I. Couto, and H. de Lencastre. Genetic diversity among methicillin-resistant Staphylococcus epidermidis (MRSE). Microb Drug Resist, 2005,11:83-93.
    [64] Mongkolrattanothai, K., S. Boyle, M. D. Kahana, and R. S. Daum. Severe Staphylococcus aureus infections caused by clonally related community-acquired methicillin-susceptible and methicillin-resistant isolates. Clin Infect Dis, 2003,37:1050-8.
    [65] Mueller, J. P., and H. W. Taber. Isolation and sequence of ctaA, a gene required for cytochrome aa3 biosynthesis and sporulation in Bacillus subtilis. J Bacteriol, 1989,171:4967-78.
    [66] Murakami, K., and A. Tomasz. Involvement of multiple genetic determinants in high-level methicillin resistance in Staphylococcus aureus. J Bacteriol, 1989,171:874-9.
    [67] Mylotte, J. M., C. McDermott, and J. A. Spooner. Prospective study of 114 consecutive episodes of Staphylococcus aureus bacteremia. Rev Infect Dis, 1987, 9:891-907.
    [68] Naimi, T. S., K. H. LeDell, D. J. Boxrud, A. V. Groom, C. D. Steward, S. K. Johnson, J. M. Besser, C. O'Boyle, R. N. Danila, J. E. Cheek, M. T. Osterholm, K. A. Moore, and K. E. Smith. Epidemiology and clonality of community-acquired methicillin-resistant Staphylococcus aureus in Minnesota, 1996-1998. Clin Infect Dis, 2001, 33:990-6.
    [69] Oliveira, D. C, and H. de Lencastre. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother, 2002,46:2155-61.
    [70] Oliveira, D. C, C. Milheirico, S. Vinga, and H. de Lencastre. Assessment of allelic variation in the ccrAB locus in methicillin-resistant Staphylococcus aureus clones. J Antimicrob Chemother, 2006, 58:23-30.
    [71] Pierre, J., L. Gutmann, M. Bornet, E. Bergogne-Berezin, and R. Williamson. Identification of coagulase-negative staphylococci by electrophoretic profile of total proteins and analysis of penicillin-binding proteins. J Clin Microbiol, 1990, 28:443-6.
    [72] Pinho, M. G., S. R. Filipe, H. de Lencastre, and A. Tomasz. Complementation of the essential peptidoglycan transpeptidase function of penicillin-binding protein 2 (PBP2) by the drug resistance protein PBP2A in Staphylococcus aureus. J Bacteriol, 2001,183:6525-31.
    [73] Pucci, M. J., J. A. Thanassi, L. F. Discotto, R. E. Kessler, and T. J. Dougherty. Identification and characterization of cell wall-cell division gene clusters in pathogenic gram-positive cocci. J Bacteriol, 1997, 179:5632-5.
    [74] Robinson, D. A., and M. C. Enright. Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother, 2003, 47:3926-34.
    [75] Rosato, A. E., W. A. Craig, and G. L. Archer. Quantitation of mecA transcription in oxacillin-resistant Staphylococcus aureus clinical isolates. J Bacteriol, 2003,185:3446-52.
    [76] Rosato, A. E., B. N. Kreiswirth, W. A. Craig, W. Eisner, M. W. Climo, and G. L. Archer. mecA-blaZ corepressors in clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother, 2003, 47:1460-3.
    [77] Sambrook, J., Fritsch, E. F., and Maniatis, T. Molecular cloning, a laboratory manual (2nd ed). Cold Spring Harbor Laboratory Press.
    [78] Sanabria, T. J., J. S. Alpert, R. Goldberg, L. A. Pape, and S. H. Cheeseman. Increasing frequency of staphylococcal infective endocarditis. Experience at a university hospital, 1981 through 1988. Arch Intern Med, 1990,150:1305-9.
    [79] Severin, A., S. W. Wu, K. Tabei, and A. Tomasz. High-level (beta)-lactam resistance and cell wall synthesis catalyzed by the mecA homologue of Staphylococcus sciuri introduced into Staphylococcus aureus. J Bacteriol, 2005,187:6651-8.
    [80] Severin, A., S. W. Wu, K. Tabei, and A. Tomasz. Penicillin-binding protein 2 is essential for expression of high-level Vancomycin resistance and cell wall synthesis in vancomycin-resistant Staphylococcus aureus carrying the enterococcal vanA gene complex. Antimicrob Agents Chemother, 2004, 48:4566-73.
    [81] Shittu, A., J. Lin, D. Morrison, and D. Kolawole. Isolation and molecular characterization of multiresistant Staphylococcus sciuri and Staphylococcus haemolyticus associated with skin and soft-tissue infections. J Med Microbiol, 2004,53:51-5.
    [82] Shore, A., A. S. Rossney, C. T. Keane, M. C. Enright, and D. C. Coleman. Seven novel variants of the staphylococcal chromosomal cassette mec in methicillin-resistant Staphylococcus aureus isolates from Ireland. Antimicrob Agents Chemother, 2005, 49:2070-83.
    [83] Sieradzki, K., M. G. Pinho, and A. Tomasz. Inactivated pbp4 in highly glycopeptide-resistant laboratory mutants of Staphylococcus aureus. J Biol Chem, 1999, 274:18942-6.
    [84] Skulnick, M., M. P. Patel, and D. E. Low. Evaluation of five commercial systems for identification of coagulase-negative staphylococci to species level. Eur J Clin Microbiol Infect Dis,1989, 8:1001-3.
    [85] Song, M. D., M. Wachi, M. Doi, F. Ishino, and M. Matsuhashi. Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett, 1987, 221:167-71.
    
    [86] Stepanovic, S., I. Dakic, S. Djukic, B. Lozuk, and M. Svabic-Vlahovic. Surgical wound infection associated with Staphylococcus sciuri. Scand J Infect Dis, 2002, 34:685-6.
    [87] Stepanovic, S., I. Dakic, D. Morrison, T. Hauschild, P. Jezek, P. Petras, A. Martel, D. Vukovic, A. Shittu, and L. A. Devriese. Identification and characterization of clinical isolates of members of the Staphylococcus sciuri group. J Clin Microbiol, 2005, 43:956-8.
    [88] Stepanovic, S., D. Vukovicc, V. Trajkovic, T. Samardzic, M. Cupic, and M. Svabic-Vlahovic. Possible virulence factors of Staphylococcus sciuri. FEMS Microbiol Lett, 2001,199:47-53.
    [89] Tesch, W., C. Ryffel, A. Strassle, F. H. Kayser, and B. Berger-Bachi. Evidence of a novel staphylococcal mec-encoded element (mecR) controlling expression of penicillin-binding protein 2'. Antimicrob Agents Chemother, 1990,34:1703-6.
    [90] Tomasz, A. The staphylococcal cell wall, in V. A. FISCHETTI, R. P. Novick, J. J. Ferreti, D. A. Portnoy and J. I. Rood(ed), GRAM-POSITIVE PATHOGENS. American Society for Microbiology, Washington, D.C. 2006:443-455.
    [91] Wada, A., and H. Watanabe. Penicillin-binding protein 1 of Staphylococcus aureus is essential for growth. J Bacteriol, 1998,180:2759-65.
    [92] Wu, C. Y., J. Hoskins, L. C. Blaszczak, D. A. Preston, and P. L. Skatrud. Construction of a water-soluble form of penicillin-binding protein 2 a from a methicillin-resistant Staphylococcus aureus isolate. Antimicrob Agents Chemother, 1992,36:533-9.
    [93] Wu, S., H. de Lencastre, and A. Tomasz. Genetic organization of the mecA region in methicillin-susceptible and methicillin-resistant strains of Staphylococcus sciuri. J Bacteriol, 1998,180:236-42.
    [94] Wu, S., C. Piscitelli, H. de Lencastre, and A. Tomasz. Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of mecA from a methicillin susceptible strain of Staphylococcus sciuri. Microb Drug Resist, 1996, 2:435-41.
    [95] Wu, S. W., H. de Lencastre, and A. Tomasz. Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J Bacteriol, 2001,183:2417-24.
    [96] Zhang, H. Z., C. J. Hackbarth, K. M. Chansky, and H. F. Chambers. A proteolytic transmembrane signaling pathway and resistance to beta-lactams in staphylococci. Science, 2001, 291:1962-5.
    1. Arbeloa, A., J. E. Hugonnet, A. C. Sentilhes, N. Josseaume, L. Dubost, C. Monsempes, D. Blanot, J. P. Brouard, and M. Arthur. 2004. Synthesis of mosaic peptidoglycan cross-bridges by hybrid peptidoglycan assembly pathways in gram-positive bacteria. J Biol Chem 279:41546-56.
    
    2. Archer, G. L., and D. M. Niemeyer. 1994. Origin and evolution of DNA associated with resistance to methicillin in staphylococci. Trends Microbiol 2:343-7.
    
    3. Archer, G. L., J. A. Thanassi, D. M. Niemeyer, and M. J. Pucci. 1996. Characterization of IS 1272, an insertion sequence-like element from Staphylococcus haemolyticus. Antimicrob Agents Chemother 40:924-9.
    
    4. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1992. Short protocols in molecular biology. Greene Publishing Associates and John Wiley, New York.
    
    5. Baba, T., F. Takeuchi, M. Kuroda, H. Yuzawa, K. Aoki, A. Oguchi, Y. Nagai, N. Iwama, K. Asano, T. Naimi, H. Kuroda, L. Cui, K. Yamamoto, and K. Hiramatsu. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:1819-27.
    
    6. Berger-Bachi, B. 1999. Genetic basis of methicillin resistance in Staphylococcus aureus. Cell Mol Life Sci 56:764-70.
    
    7. Bondi, J. A., and Dietz, C.C. 1945. Penicillin resistant staphylococci. Proc. Royal Soc. Exper.Biol.Med. 60:55-58.
    
    8. Chambers, H. F., and M. Sachdeva. 1990. Binding of beta-lactam antibiotics to penicillin-binding proteins in methicillin-resistant Staphylococcus aureus. J Infect Dis 161:1170-6.
    
    9. Chongtrakool, P., T. Ito, X. X. Ma, Y. Kondo, S. Trakulsomboon, C. Tiensasitorn, M. Jamklang, T. Chavalit, J. H. Song, and K. Hiramatsu. 2006. Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: a proposal for a new nomenclature for SCCmec elements. Antimicrob Agents Chemother 50:1001-12.
    
    10. Chung, M., H. de Lencastre, P. Matthews, A. Tomasz, I. Adamsson, M. Aires de Sousa, T. Camou, C. Cocuzza, A. Corso, I. Couto, A. Dominguez, M. Gniadkowski, R. Goering, A. Gomes, K. Kikuchi, A. Marchese, R. Mato, O. Melter, D. Oliveira, R. Palacio, R. Sa-Leao, I. Santos Sanches, J. H. Song, P. T. Tassios, and P. Villari. 2000. Molecular typing of methicillin-resistantStaphylococcus aureus by pulsed-field gel electrophoresis: comparison of results obtained in a multilaboratory effort using identical protocols and MRSA strains. Microb Drug Resist 6:189-98.
    
    11. Coombs, G. W., G. R. Nimmo, J. M. Bell, F. Huygens, F. G. O'Brien, M. J. Malkowskl, J. C. Pearson, A. J. Stephens, and P. M. Giffard. 2004. Genetic diversity among community methicillin-resistant Staphylococcus aureus strains causing outpatient infections in Australia. J Clin Microbiol 42:4735-43.
    
    12. Couto, L, H. de Lencastre, E. Severina, W. Kloos, J. A. Webster, R. J. Hubner, I. S. Sanches, and A. Tomasz. 1996. Ubiquitous presence of a mecA homologue in natural isolates of Staphylococcus sciuri. Microb Drug Resist 2:377-91.
    
    13. Couto, I., I. S. Sanches, R. Sa-Leao, and H. de Lencastre. 2000. Molecular characterization of Staphylococcus sciuri strains isolated from humans. J Clin Microbiol 38:1136-43.
    
    14. Couto, I., S. W. Wu, A. Tomasz, and H. de Lencastre. 2003. Development of methicillin resistance in clinical isolates of Staphylococcus sciuri by transcriptional activation of the mecA homologue native to the species. J Bacteriol 185:645-53.
    
    15. Daum, R. S., T. Ito, K. Hiramatsu, F. Hussain, K. Mongkolrattanothai, M. Jamklang, and S. Boyle-Vavra. 2002. A novel methicillin-resistance cassette in community-acquired methicillin-resistant Staphylococcus aureus isolates of diverse genetic backgrounds. J Infect Dis 186:1344-7.
    
    16. de Jonge, B. L., Y. S. Chang, D. Gage, and A. Tomasz. 1992. Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. J Biol Chem 267:11248-54.
    
    17. de Jonge, B. L., Y. S. Chang, N. Xu, and D. Gage. 1996. Effect of exogenous glycine on peptidoglycan composition and resistance in a methicillin-resistant Staphylococcus aureus strain. Antimicrob Agents Chemother 40:1498-503.
    
    18. De Jonge, B. L., D. Gage, and N. Xu. 2002. The carboxyl terminus of peptidoglycan stem peptides is a determinant for methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 46:3151-5.
    
    19. de Lencastre, H., A. M. Sa Figueiredo, C. Urban, J. Rahal, and A. Tomasz. 1991. Multiple mechanisms of methicillin resistance and improved methods for detection in clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother 35:632-9.
    
    20. De Lencastre, H., S. W. Wu, M. G. Pinho, A. M. Ludovice, S. Filipe, S. Gardete, R. Sobral, S. Gill, M. Chung, and A. Tomasz. 1999. Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb Drug Resist 5:163-75.
    
    21. Dmitriev, B. A., F. V. Toukach, O. Hoist, E. T. Rietschel, and S. Ehlers. 2004. Tertiary structure of Staphylococcus aureus cell wall murein. J Bacteriol 186:7141-8.
    
    22. Enright, M. C, D. A. Robinson, G. Randle, E. J. Feil, H. Grundmann, and B. G. Spratt. 2002. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A 99:7687-92.
    
    23. FD., L. 1998. Staphylococcus aureus infection. New England Journal of Medicine 339:520-532.
    
    24. Fitzgerald, J. R., D. E. Sturdevant, S. M. Mackie, S. R. Gill, and J. M. Musser. 2001. Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. Proc Natl Acad Sci USA98:8821-6.
    
    25. Georgopapadakou, N. H., and F. Y. Liu. 1980. Binding of beta-lactam antibiotics to penicillin-binding proteins of Staphylococcus aureus and Streptococcus faecalis: relation to antibacterial activity. Antimicrob Agents Chemother 18:834-6.
    
    26. Georgopapadakou, N. H., and F. Y. Liu. 1980. Penicillin-binding proteins in bacteria. Antimicrob Agents Chemother 18:148-57.
    
    27. Georgopapadakou, N. H., S. A. Smith, and D. P. Bonner. 1982. Penicillin-binding proteins in a Staphylococcus aureus strain resistant to specific beta-lactam antibiotics. Antimicrob Agents Chemother 22:172-5.
    
    28. Ghuysen, J. M. 1991. Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol 45:37-67.
    
    29. Gill, S. R., D. E. Fouts, G. L. Archer, E. F. Mongodin, R. T. Deboy, J. Ravel, I. T. Paulsen, J. F. Kolonay, L. Brinkac, M. Beanan, R. J. Dodson, S. C. Daugherty, R. Madupu, S. V. Angiuoli, A. S. Durkin, D. H. Haft, J. Vamathevan, H. Khouri, T. Utterback, C. Lee, G. Dimitrov, L. Jiang, H. Qin, J. Weidman, K. Tran, K. Kang, I. R. Hance, K. E. Nelson, and C. M. Fraser. 2005. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187:2426-38.
    
    30. Goffin, C, and J. M. Ghuysen. 1998. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62:1079-93.
    
    31. Hakenbeck, R., M. Tarpay, and A. Tomasz. 1980. Multiple changes of penicillin-binding proteins in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 17:364-71.
    
    32. Hanssen, A. M., and J. U. Ericson Sollid. 2006. SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol 46:8-20.
    
    33. Hartman, B. J., and A. Tomasz. 1984. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 158:513-6.
    
    34. Henze, U. U., and B. Berger-Bachi. 1996. Penicillin-binding protein 4 overproduction increases beta-lactam resistance in Staphylococcus aureus. Antimicrob Agents Chemother 40:2121-5.
    
    35. Hiramatsu, K., K. Asada, E. Suzuki, K. Okonogi, and T. Yokota. 1992. Molecular cloning and nucleotide sequence determination of the regulator region of mec A gene in methicillin-resistant Staphylococcus aureus (MRSA). FEBS Lett 298:133-6.
    
    36. Ito, T., Y. Katayama, K. Asada, N. Mori, K. Tsutsumimoto, C. Tiensasitorn, and K. Hiramatsu. 2001. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45:1323-36.
    
    37. Ito T, K. Y. H. K. 1999. Cloning and nucleotidesequence determination of the entire mec DNA of premethicillin-resistant Staphylococcus aureus N315. Antimicrob Agents Chemother 43:1449-1458.
    
    38. Ito, T., X. X. Ma, F. Takeuchi, K. Okuma, H. Yuzawa, and K. Hiramatsu. 2004. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob Agents Chemother 48:2637-51.
    
    39. Ito, T., K. Okuma, X. X. Ma, H. Yuzawa, and K. Hiramatsu. 2003. Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: genomic island SCC. Drug Resist Updat 6:41-52.
    
    40. Juuti, K., S. Ibrahem, A. Virolainen-Julkunen, J. Vuopio-Varkila, and P. Kuusela. 2005. The pls gene found in methicillin-resistant Staphylococcus aureus strains is common in clinical isolates of Staphylococcus sciuri. J Clin Microbiol 43:1415-9.
    
    41. Katayama, Y., T. Ito, and K. Hiramatsu. 2001. Genetic organization of the chromosome region surrounding mecA in clinical staphylococcal strains: role of IS431-mediated mecl deletion in expression of resistance in mecA-carrying, low-level methicillin-resistant Staphylococcus haemolyticus. Antimicrob Agents Chemother 45:1955-63.
    
    42. Katayama, Y., T. Ito, and K. Hiramatsu. 2000. A new class of genetic element, Staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44:1549-55.
    
    43. Katayama, Y., F. Takeuchi, T. Ito, X. X. Ma, Y. Ui-Mizutani, I. Kobayashi, and K. Hiramatsu. 2003. Identification in methicillin-susceptible Staphylococcus hominis of an active primordial mobile genetic element for the staphylococcal cassette chromosome mec of methicillin-resistant Staphylococcus aureus. J Bacteriol 185:2711-22.
    
    44. Katayama, Y., H. Z. Zhang, D. Hong, and H. F. Chambers. 2003. Jumping the barrier to beta-lactam resistance in Staphylococcus aureus. J Bacteriol 185:5465-72.
    
    45. Kloos, W. E., D. N. Ballard, J. A. Webster, R. J. Hubner, A. Tomasz, I. Couto, G. L. Sloan, H. P. Dehart, F. Fiedler, K. Schubert, H. de Lencastre, I. S.- Sanches, H. E. Heath, P. A. Leblanc, and A. Ljungh. 1997. Ribotype delineation and description of Staphylococcus sciuri subspecies and their potential as reservoirs of methicillin resistance and staphylolytic enzyme genes. Int J Syst Bacteriol 47:313-23.
    
    46. Kloos, W. E., R. J. Zimmerman, and R. F. Smith. 1976. Preliminary studies on the characterization and distribution of Staphylococcus and Micrococcus species on animal skin. Appl Environ Microbiol 31:53-9.
    
    47. Kreiswirth, B., J. Kornblum, R. D. Arbeit, W. Eisner, J. N. Maslow, A. McGeer, D. E. Low, and R. P. Novick. 1993. Evidence for a clonal origin of methicillin resistance in Staphylococcus aureus. Science 259:227-30.
    
    48. Kuwahara-Arai, K., N. Kondo, S. Hori, E. Tateda-Suzuki, and K. Hiramatsu. 1996. Suppression of methicillin resistance in a mecA-containing pre-methicillin-resistant Staphylococcus aureus strain is caused by the mecI-mediated repression of PBP 2'production. Antimicrob Agents Chemother 40:2680-5.
    
    49. Labischinski, H. 1992. Consequences of the interaction of beta-lactam antibiotics with penicillin binding proteins from sensitive and resistant Staphylococcus aureus strains. Med Microbiol Immunol 181:241-65.
    
    50. Labischinski, H., G. Barnickel, H. Bradaczek, and P. Giesbrecht. 1979. On the secondary and tertiary structure of murein. Low and medium-angle X-ray evidence against chitin-based conformations of bacterial peptidoglycan. Eur J Biochem 95:147-55.
    
    51. Leski, T. A., and A. Tomasz. 2005. Role of penicillin-binding protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus: evidence for the cooperative functioning of PBP2, PBP4, and PBP2A. J Bacteriol 187:1815-24.
    
    52. Lim, T. T., F. N. Chong, F. G. O'Brien, and W. B. Grubb. 2003. Are all community methicillin-resistant Staphylococcus aureus related? A comparison of their mec regions. Pathology 35:336-43.
    
    53. Lowy, F. D. 2003. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 111:1265-73.
    
    54. Massova, I., and S. Mobashery. 1998. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother 42:1-17.
    
    55. Matthews, P., and A. Tomasz. 1990. Insertional inactivation of the mec gene in a transposon mutant of a methicillin-resistant clinical isolate of Staphylococcus aureus. Antimicrob Agents Chemother 34:1777-9.
    
    56. Mazmanian, S. K., H. Ton-That, and O. Schneewind. 2001. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol 40:1049-57.
    
    57. Medeiros, A. A. 1997. Evolution and disseminatin of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clin Infect. Dis. 24 Suppl. 1:S19-45.
    
    58. Miragaia, M., I. Couto, and H. de Lencastre. 2005. Genetic diversity among methicillin-resistant Staphylococcus epidermidis (MRSE). Microb Drug Resist 11:83-93.
    
    59. Mongkolrattanothai, K., S. Boyle, M. D. Kahana, and R. S. Daum. 2003. Severe Staphylococcus aureus infections caused by clonally related community-acquired methicillin-susceptible and methicillin-resistant isolates. Clin Infect Dis 37:1050-8.
    
    60. Mongkolrattanothai, K., S. Boyle, T. V. Murphy, and R. S. Daum. 2004. Novel non-mecA-containing staphylococcal chromosomal cassette composite island containing pbp4 and tagF genes in a commensal staphylococcal species: a possible reservoir for antibiotic resistance islands in Staphylococcus aureus. Antimicrob Agents Chemother 48:1823-36.
    
    61. Musser, J. M., and V. Kapur. 1992. Clonal analysis of methicillin-resistant Staphylococcus aureus strains from intercontinental sources: association of the . mec gene with divergent phylogenetic lineages implies dissemination by horizontal transfer and recombination. J Clin Microbiol 30:2058-63.
    
    62. Oliveira, D. C, and H. de Lencastre. 2002. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 46:2155-61.
    
    63. Oliveira, D. C, C. Milheirico, S. Vinga, and H. de Lencastre. 2006. Assessment of allelic variation in the ccrAB locus in methicillin-resistant Staphylococcus aureus clones. J Antimicrob Chemother 58:23-30.
    
    64. Pierre, J., L. Gutmann, M. Bornet, E. Bergogne-Berezin, and R. Williamson. 1990. Identification of coagulase-negative staphylococci by electrophoretic profile of total proteins and analysis of penicillin-binding proteins. J Clin Microbiol 28:443-6.
    
    65. Pinho, M. G., H. de Lencastre, and A. Tomasz. 2001. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc Natl Acad Sci U S A 98:10886-91.
    
    66. Pinho, M. G., S. R. Filipe, H. de Lencastre, and A. Tomasz. 2001. Complementation of the essential peptidoglycan transpeptidase function of penicillin-binding protein 2 (PBP2) by the drug resistance protein PBP2A in Staphylococcus aureus. J Bacteriol 183:6525-31.
    
    67. Pucci, M. J., J. A. Thanassi, L. F. Discotto, R. E. Kessler, and T. J. Dougherty. 1997. Identification and characterization of cell wall-cell division gene clusters in pathogenic gram-positive cocci. J Bacteriol 179:5632-5.
    
    68. Reynolds, P. E., and D. F. Brown. 1985. Penicillin-binding proteins of beta-lactam-resistant strains of Staphylococcus aureus. Effect of growth conditions. FEBS Lett 192:28-32.
    
    69. Robinson, D. A., and M. C. Enright. 2003. Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47:3926-34.
    
    70. Ryffel, C, F. H. Kayser, and B. Berger-Bachi. 1992. Correlation between regulation of mecA transcription and expression of methicillin resistance in staphylococci. Antimicrob Agents Chemother 36:25-31.
    
    71. Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular cloning, a laboratory manual (2nd ed). Cold Spring Harbor Laboratory Press.
    
    72. Senadheera, M. D., B. Guggenheim, G. A. Spatafora, Y. C. Huang, J. Choi, D. C. Hung, J. S. Treglown, S. D. Goodman, R. P. Ellen, and D. G. Cvitkovitch. 2005. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol 187:4064-76.
    
    73. Severin, A., S. W. Wu, K. Tabei, and A. Tomasz. 2005. High-level (beta)-lactam resistance and cell wall synthesis catalyzed by the mecA homologue of Staphylococcus sciuri introduced into Staphylococcus aureus. J Bacteriol 187:6651-8.
    
    74. Severin, A., S. W. Wu, K. Tabei, and A. Tomasz. 2004. Penicillin-binding protein 2 is essential for expression of high-level Vancomycin resistance and cell wall synthesis in vancomycin-resistant Staphylococcus aureus carrying the enterococcal vanA gene complex. Antimicrob Agents Chemother 48:4566-73.
    
    75. Shittu, A., J. Lin, D. Morrison, and D. Kolawole. 2004. Isolation and molecular characterization of multiresistant Staphylococcus sciuri and Staphylococcus haemolyticus associated with skin and soft-tissue infections. J Med Microbiol 53:51-5.
    
    76. Shore, A., A. S. Rossney, C. T. Keane, M. C. Enright, and D. C. Coleman. 2005. Seven novel variants of the staphylococcal chromosomal cassette mec in methicillin-resistant Staphylococcus aureus isolates from Ireland. Antimicrob Agents Chemother 49:2070-83.
    
    77. Sieradzki, K., M. G. Pinho, and A. Tomasz. 1999. Inactivated pbp4 in highly glycopeptide-resistant laboratory mutants of Staphylococcus aureus. J Biol Chem 274:18942-6.
    
    78. Song, M. D., M. Wachi, M. Doi, F. Ishino, and M. Matsuhashi. 1987. Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett 221:167-71.
    79. Stepanovic, S., I. Dakic, S. Djukic, B, Lozuk, and M. Svabic-Vlahovic. 2002. Surgical wound infection associated with Staphylococcus sciuri. Scand J Infect Dis 34:685-6.
    
    80. Stepanovic, S., I. Dakic, D. Morrison, T. Hauschild, P. Jezek, P. Petras, A. Martel, D. Vukovic, A. Shittu, and L. A. Devriese. 2005. Identification and characterization of clinical isolates of members of the Staphylococcus sciuri group. J Clin Microbiol 43:956-8.
    
    81. Stepanovic, S., D. Vukovicc, V. Trajkovic, T. Samardzic, M. Cupic, and M. Svabic-Vlahovic. 2001. Possible virulence factors of Staphylococcus sciuri. FEMS Microbiol Lett 199:47-53.
    
    82. Strominger, J. L., and J. M. Ghuysen. 1967. Mechanisms of enzymatic bacteriaolysis. Cell walls of bacteri are solubilized by action of either specific carbohydrases or specific peptidases. Science 156:213-21.
    
    83. Szurmant, H., K. Nelson, E. J. Kim, M. Perego, and J. A. Hoch. 2005. YycH regulates the activity of the essential YycFG two-component system in Bacillus subtilis. J Bacteriol 187:5419-26.
    
    84. Takeuchi, F., S. Watanabe, T. Baba, H. Yuzawa, T. Ito, Y. Morimoto, M. Kuroda, L. Cui, M. Takahashi, A. Ankai, S. Baba, S. Fukui, J. C. Lee, and K. Hiramatsu. 2005. Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J Bacteriol 187:7292-308.
    
    85. Tesch, W., C. Ryffel, A. Strassle, F. H. Kayser, and B. Berger-Bachi. 1990. Evidence of a novel staphylococcal mec-encoded element (mecR) controlling expression of penicillin-binding protein 2'. Antimicrob Agents Chemother 34:1703-6.
    
    86 Tomasz, A. The staphylococcal cell wall, in V. A. FISCHETTI, R. P. Novick, J. J. Ferreti, D. A. Portnoy and J. I. Rood(ed), GRAM-POSITIVE PATHOGENS. American Society for Microbiology, Washington, D.C. 2006:443-455.
    87. Tomasz, A., H. B. Drugeon, H. M. de Lencastre, D. Jabes, L. McDougall, and J. Bille. 1989. New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity. Antimicrob Agents Chemother 33:1869-74.
    
    88. Trees, D. L., and J. J. Iandolo. 1988. Identification of a Staphylococcus aureus transposon (Tn4291) that carries the methicillin resistance gene(s). J Bacteriol 170:149-54.
    
    89. Van Hijenoort, J. 1994. Biosynthesis of the bacterial peptidoglycan unit, p. 39-54. in J.-M Ghuysen and R. Hakenbeck(ed.), Bacterial Gell Wall,vol. 27. Elsevier Science B. V., Amesterdam, The Netherlands.
    
    90. Van Hijenoort, J. 2001. Formation of the glycan chains in the synthesis of bacterial peptidoglycan, Glycogilogy 11:25R-36R.
    
    91. Wada, A., and H. Watanabe. 1998. Penicillin-binding protein 1 of Staphylococcus aureus is essential for growth. J Bacteriol 180:2759-65.
    
    92. Wielders, C. L., M. R. Vriens, S. Brisse, L. A. de Graaf-Miltenburg, A. Troelstra, A. Fleer, F. J. Schmitz, J. Verhoef, and A. C. Fluit. 2001. In-vivo transfer of mecA DNA to Staphylococcus aureus [corrected]. Lancet 357:1674-5.
    
    93. Wisplinghoff, H., A. E. Rosato, M. C. Enright, M. Noto, W. Craig, and G. L. Archer. 2003. Related clones containing SCCmec type IV predominate among clinically significant Staphylococcus epidermidis isolates. Antimicrob Agents Chemother 47:3574-9.
    
    94. Wu, S., H. de Lencastre, and A. Tomasz. 1998. Genetic organization of the mecA region in methicillin-susceptible and methicillin-resistant strains of Staphylococcus sciuri. J Bacteriol 180:236-42.
    
    95. Wu, S., C. Piscitelli, H. de Lencastre, and A. Tomasz. 1996. Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of mecA from a methicillin susceptible strain of Staphylococcus sciuri. Microb Drug Resist 2:435-41.
    
    96. Wu, S. W., H. de Lencastre, and A. Tomasz. 2001. Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J Bacteriol 183:2417-24.
    
    97. Zhang, H. Z., C. J. Hackbarth, K. M. Chansky, and H. F. Chambers. 2001. A proteolytic transmembrane signaling pathway and resistance to beta-lactams in staphylococci. Science 291:1962-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700