电磁波吸收复合物微波等效参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着雷达探测技术的发展,传统的吸波材料已无法满足现实的需求,铁基纳米晶软磁材料具有的高饱和磁化强度和低矫顽力以及特有的纳米效应,使其成为新一代的高频磁性材料。根据磁极限关系式,颗粒片状化有利于提高微波磁导率,扩展吸收频带。基于上述考虑,本课题采用湿法球磨工艺制备了片状FeSiAl纳米晶合金,深入研究制备工艺(球磨机转速、球料比、球磨时间等)对纳米晶合金的形貌及静态和动态磁性能的影响,从而确定最佳的工艺条件。
     雷达吸收材料通常是由吸收剂与基体(黏合剂)混合形成的复合物。吸波材料性能的优劣与复合物的等效磁导率与介电常数密切相关。计算磁性吸波复合物等效电磁参数一直是学术研究的重大基础问题之一,其核心内容包括混合方程和共振机理的研究和表达。解决了这两个难点,我们就可以准确快速的设计出具有预期电磁性能的材料。
     前人研究发现在基体中一致排列的片状铁磁颗粒有利于吸波性能的提高。为了进行深入的研究,作者利用商业CST微波工作室软件进行建模仿真,研究一致排列的片状铁磁颗粒在基体中的取向及空间分布对等效磁导率的影响,并将这两个因素引入到Maxwell-Garnett混合公式中,做适当的改进。计算得到不同模型的等效磁导率的理论值与仿真结果比较一致。此外,当片状颗粒在基体中的取向不唯一时,作者采用了一种半经验性的理论公式成功预测了复合材料的有效磁导率。
     铁基纳米晶颗粒在吉赫兹频段的主要磁共振机理是自然共振和交换共振。因此,Landau-Lifshitz-Gilbert方程可以用于计算本征磁导率。本文重点研究了不同形貌(球形,片状,纤维状)的铁基纳米晶颗粒在基体中随机取向及一致取向条件下的共振表达式。考虑到渗流效应以及颗粒间偶极偶极相互作用对等效电磁参数的影响,对Maxwell-Garnett方程作进一步的改进。计算得到的两种取向条件下片状铁基纳米晶复合物的有效磁导率与实验值非常吻合。这意味着直接从磁性材料静态参数出发来计算不同取向复合物等效微波参数成为可能,为磁性吸波材料性能设计奠定了理论基础。
With the development of radar technology, the traditional absorbing materials have been unable to meet the need at present, Iron-based nanocrystalline soft magnetic materials have become promising high-frequency magnetic materials owning to high saturation magnetization, low coercivity and obvious nano-effects. According to magnetic bounds relations, high microwave permeability and extended absorption band can be obtained for flake magnetic particles. Based on the above considerations, wet milling process is used for preparation of FeSiAl nanocrystalline flake particles. We delve into the effect of preparation technology (Speed of ball mill, Ration between balls and samples, Milling time) on the morphology, static and dynamic magnetic properties of nanocrystalline alloys and thus obtain the optimum conditions.
     Radar absorbing materials (RAM) are usually composites in which the absorber and matrix (adhesive) are mixed at appropriate proportion in practical application. The performance of RAM is closely related to effective permeability and permittivity of composites. Therefore, the calculations of effective electromagnetic parameters of magnetic absorbing composites have been one of the most significant basic researches, whose core contents include the investigation on resonance mechanism and expression on mixing formula. We can quickly and accurately design absorbing materials with expected electromagnetic properties on the basis of figuring out these issues. Previous studies found that aligned flake ferromagnetic particles in the matrix is advantageous to the improvement of absorbing properties. For in-depth study, commercial software CST ? microwave studio is used to investigate spatial orientation and position distribution effect on the effective permeability of composites consisting of aligned ferromagnetic flakes and Maxwell-Garnett mixing formula is improved considering these two factors. The effective permeabilities of simulation models calculated by virtue of corrected Maxwell-Garnett mixing formula are nearly consistent with simulation results. Furthermore, semi-empirical theoretical formula can successfully predict the effective permeability of composites in which the flakes are not aligned.
     Main resonance mechanisms of ferromagnetic nanocrystalline particles in GHz band are natural resonance and exchange resonance. Therefore, Landau-Lifshitz-Gilbert equation can be used to obtain the expression of intrinsic permeability. In this paper, we put emphasis on the investigation about the resonance expressions of ferromagnetic nanocrystalline particles with different shapes (sphere, flake, fiber), whose orientations are aligned and random in the matrix. Maxwell-Garnett mixing rule is further improved considering percolation threshold and dipole-dipole interaction between particles effect on the effective electromagnetic parameters. The effective permeabilities of flake composites for two kinds of orientation cases have been calculated and an excellent agreement between theoretical and experiment results is obtained. This means that it is possible for us to calculate effective electromagnetic parameters for different orientation cases from static magnetic parameters, which laid a theoretical foundation for the performance design of magnetic absorbing materials.
引文
[1]刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料.北京:化学工业出版社,2006
    [2] A. Sihvola. Electromagnetic mixing formulas and applications. London: The Institution of Electrical Engineers, 1999
    [3] M. Z. Wu, H. J. Zhang, X. Yao, et al. Microwave characterization of ferrite particles. J. Phys. D: Appl. Phys., 2001, 34: 889-895
    [4] M. J. Park, J. Choi, S. S. Kim. Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders. IEEE Trans. Magn. , 2000, 36: 3272-3274
    [5] V. B. Bragar. Advantages of ferromagnetic nanoparticle composites in microwave absorbers. IEEE Trans. Magn. , 2004, 40: 1679 -1684
    [6] W. M. Merrill, R. E. Diaz, M. M. Lore. Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum. IEEE Trans. Antennas Propag., 2000, 47: 142-148
    [7] H. S. Cho, S. S. Kim. M-Hexaferrites with Planar Magnetic Anisotropy and Their Application to High-Frequency Microwave Absorbers. IEEE Trans. Magn. , 1999, 35:3151-3153
    [8] I. G. Chen, S. H. Hsu, Y.H. Chang. Preparation and magnetic properties of Ba–Co2Z and Sr–Zn2Y ferrites. J. Appl. Phys., 2000, 87: 6247-6249
    [9] P.H. Zhou, L.J. Deng, J.L. Xie.et al. Nanocrystalline structure and particle size effect on microwave permeability of FeNi powders prepared by mechanical alloying. J. Magn. Magn. Mater. , 2005, 292: 325-331
    [10] L. J. Deng, P.H. Zhou, J.L. Xie, et al. Characterization and microwave resonance in nanocrystalline FeCoNi flake composite, J. Appl. Phys., 2007, 101 : 103916
    [11] S. Yoshida, S. Ando, Y. Shimada,et al.Crystal structure and microwave permeability of very thin Fe-Si-Al flakes produced by microforging. J. Appl. Phys., 2003, 93:6659-6661
    [12] S. Yoshida, M.Sato, E.Sugawara, et al. Permeability and electromagnetic-interference characteristics of Fe–Si–Al alloy flakes–polymer composite. J. Appl. Phys., 1999, 85:4636 -4638
    [13] S. Nafisi, D. Emadi, M. T. Shehata, et al. Effects of electromagnetic stirring and superheat on the microstructural characteristics of Al-Si-Fe alloy. Mater. Sci. Eng., A , 2006, 432:71 -83
    [14]陆伟,严彪,殷俊林.纳米晶软磁材料及其应用.上海钢研, 2003, 4: 3-10
    [15] M. E. McHenry, M. A. Willard, D. E. Laughlin. Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci., 1999, 44: 291-433
    [16]李言荣,谢孟贤,恽正中,等.纳米电子材料与器件.北京:电子工业出版社,2005
    [17]周佩珩.铁磁纳米晶结构动态磁化特性及微波共振机理研究:[博士学位论文].四川:电子科技大学,2009
    [18]黄永杰.磁性材料.成都:电子科技大学出版社,1993
    [19] L.Z. Wu, J. Ding, H.B. Jiang, et al. Particle size influence to the microwave properties of iron based magnetic particulate composites. J. Magn. Magn. Mater., 2005,285:233-239
    [20] S. S. Kim, S. T. Kim, Y. C. Yoon, et al. Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. J. Appl. Phys. , 2005, 97: 10F905
    [21] X. Zhang, T. Ekiert, K. M. Unruh, et al. High frequency properties of polymer composites consisting of aligned Fe flakes . J. Appl.Phys., 2005, 99: 08M914
    [22] R. M. Walser, W. Kang. Fabrication and properties of microforged ferromagnetic nanoflakes. IEEE Trans. Magn., 1998, 34: 1144-1146
    [23] B.S.Zhang, Y. Feng, J. Xiong, et al. Microwave-Absorbing Properties of De-Aggregated Flake-Shaped Carbonyl-Iron Particle Composites at 2-18 GHz. 2006, IEEE Trans. Magn. , 42: 1778 -1781
    [24] R. M. Walser, W. Win, P. M. Valanju. Shape-optimized ferromagnetic particles with maximum theoretical microwave susceptibility. IEEE Trans. Magn. , 1998, 34: 1390-1392
    [25] L.Qiao, X.H.Hua, B.Gao, et al. Microwave absorption properties of the hierarchically branched Ni nanowire composites. J Appl Phys., 2009, 105: 053911
    [26] A.Aharoni. Effect of surface anisotropy on the exchange resonance modes. J. Appl. Phys., 1997, 81: 830-833
    [27] A.Aharoni. Exchange resonance modes in ferromagnetic sphere. J. Appl. Phys., 1991, 69: 7762-7764.
    [28] F. S. Wen, H.B.Yi, L. Qiao, et al. Analyses on double resonance behavior in microwave magnetic permeability of multiwalled carbon nanotube composites containing Ni catalyst. 2008, 92: 04257
    [29] J.Ma, J.Li, X.Ni, et al. Microwave resonance in Fe/SiO2 nanocomposite. Appl. Phys. Lett.,2009, 95: 102505
    [30]宛德福,马兴隆.磁性物理学.北京:电子工业出版社, 1999
    [31] O. Acher, A. Adenot. Bounds on the dynamic properties of magnetic materials. Phys. Rev. B, 2000, 62: 11324-11327
    [32] O. Acher, and S. Dubourg. Generalization of Snoek’s law to ferromagnetic films and composites. Phys. Rev. B, 2008, 77: 104440
    [33] G. Perrin, O. Acher, J. C. Peuzin, et al. Sum rules for gyromagnetic permeability of ferromagnetic thin films: theoretical and experimental results. J. Magn.Magn. Mater., 1996, 157/158: 289 -290
    [34] E. van de Riet, F. Roozeboom. Ferromagnetic resonance and eddy currents in high-permeable thin films. J. Appl. Phys., 1997, 81: 350
    [35] Y. W. Yu, J. W. Harrell, W. D. Doyle. Ferromagnetic resonance spectra of oriented barium ferrite tapes. J. Appl. Phys. , 1994, 75: 5550 -5552
    [36] W. L. Song,J. Yuan, Z. L. Hou, et al. Modeling and Computing Example for Effective Electromagnetic Parameters of Multiphase Composite Media. Chin. Phys. Lett., 2009, 26: 057702
    [37] V. Finkelberg. Mean field strength in an inhomogeneous medium. Sov. Phys. JETP, 1964, 19: 494-498
    [38] L. T .Tsang , J. A.Kong .Scattering of electromagnetic waves from random media with strong permittivity fluctuation. Radio Sci. , 1981, 16: 303-320
    [39] A. N. Arslan, H. Wang, J.Pullianinen, et al. Effective permittivity of wet snow using strong fluctation therory. PIER, 2001, 31: 273-290
    [40] Z. H.Peng, M. S.Cao, J.Yuan , et al. Strong fluctuation theory for effective electromagnetic parameters of fiber fabric radar absorbing materials. Mater. Design, 2004, 25: 379-384
    [41] T. Zakri, J. P. Laurent, M. Vauclin. Theoretical evidence for‘Lichtenecker’s mixture formulae’based on the effective medium theory. J. Phys. D: Appl. Phys., 1998, 31:1589-1594
    [42] D. Rousselle, A. Berthault, O. Acher, et al. Effective medium at finite frequency:Theory and experiment. J. Appl. Phys., 1993, 74(1):475-479
    [43]张永刚,韩雅芳,陈国良.金属间化合物结构材料.北京:国防工业出版社,2001,140
    [44] B. Z. Jiang, D. S. Yang, A. N. Ulyanov, et. al. Local structure and magnetic properties of mechanical alloyed Co–C compositions[J], J. Appl. Phys., 2004, 95: 7115-7117
    [45]徐民,程力智,何开元.机械合金化纳米晶合金Ni50Bi50的结构和磁性[J],功能材料, 1997,28: 356-375
    [46]周廷栋,FeSiAl片状微粉的制备、结构及性能研究:[博士学位论文].四川:电子科技大学,2008
    [47]高正娟,曹茂盛,朱静.复合吸波材料等效电磁参数的研究进展.宇航材料工艺,2004,4:12-15
    [48] T. C. Choy. Effective Medium Theory, Principles and Applications. Oxford: Oxford University Press, 1999
    [49] S. Torquato. Random Heterogeneous Materials: Microstructure and Macroscopic Properties. New York: Springer, 2002
    [50] G. W. Milton. The Theory of Composites. Cambridge: Cambridge University Press, 2002
    [51] D. J. Bergman , D. Stroud, Physical Properties of Macroscopically Inhomogeneous Media. Solid State Phys., 1992, 46: 147-269
    [52] R. J. Elliott, J. A. Krumhansl, P. L. Leath. The theory and properties of randomly disordered crystals and related physical systems. Rev. Mod. Phys., 1974, 46: 465-543
    [53] L. Jylh?, A. H. Sihvola. Numerical Modeling of Disordered Mixture Using Pseudorandom Simulations. IEEE Trans. Geosci. Remote Sens. , 2005, 43: 59 -64
    [54] B. Sareni, L. kr?henbühl, A.Beroual, et al. Effective dielectric constant of random composite materials. J. Appl. Phys., 1997, 81(5): 2375-2383,
    [55] Y. H. Cheng, X. L. Chen, K. Wu, et al. Modeling and simulation for effective permittivity of two -phase disordered composites. J. Appl. Phys., 2008, 103: 034111
    [56] K. N. Rozanov, A. V. Osipov, D. A. Petrov,et al. The effect of shape distribution of inclusions on the frequency dependence of permeability in composites. J. Magn. Magn. Mater. , 2008, 321: 738-741
    [57] G. W. Milton. Concerning bounds on the transport and mechanical properties of multicomponent composite materials. Appl. Phys., 1981, A26 :125-130
    [58] D. J. Bergman . Variational bounds on some bulk properties of a two-phase composite material. Phys. Rev. B, 1976, 14 : 1531-1542
    [59] G . W. Milton. Bounds on the complex dielectric constant of a composite material. 1980, Appl. Phys. Lett. , 37: 300-302
    [60] D .J. Bergman. Dielectric constant of a two-component granular composite: A practical scheme for calculating the pole spectrum. Phys. Rev. B, 1979, 19: 2359-2368
    [61] D. J. Bergman , K. J .Dunn. Bulk effective dielectric constant of a composite with a periodic microgeometry. Phys. Rev. B, 1992, 45: 13262-13271
    [62] D. J. Bergman. The dielectric constant of a composite material—A problem in classical physics. Phys. Rep. 1978, 43: 377-407
    [63] A. M . Dykhne. Conducivity of a 2-dimensional 2-phase system. Sov. Phys. JETP, 1970, 32 : 63-65
    [64] J. R. Birchak, L. G. Gardner, J. W. Hipp, et al. High dielectric constant microwave probes for sensing soil moisture. Proceedings of the IEEE, 1974, 62 (1): 93-98
    [65] H. Looyenga. Dielectric constants of mixtures. Physica, 1965, 31: 401-406
    [66] K. Lichtenecker , K. Rother. Die herleitung des logarithmischen mischungsgesetzes aus allgemeinen prinzipien der station?ren str?mung. Phys. Zeitschr., 1931, 32: 255–260
    [67] R.C, Pullar, S. G. Appleton , A. K. Bhattacharya. The microwave properties of aligned hexagonal ferrite fibers. J.Mater. Sci. Lett. ,1998, 17: 973–975
    [68] S. Evans. Dielectric properties of ice and snow-a review. J. Glaciology, 1965, 5:773-792.
    [69] C. F. Bohren,L. J. Battan. Radar backscattering of microwaves by spongy ice spheres. J. Atmos. Sci., 1982, 39: 2623-2628
    [70] D. S. McLachlan, M. Blaszkiewicz, R. E. Newnham, et al. J. Am. Ceram. Soc., 73, 2187-1990
    [71] C. Brosseau. Generalized effective medium theory and dielectric relaxation in particle-filled polymeric resins. J. Appl. Phys., 2002, 91: 3197-3204
    [72] D. Stauffer, A. Aharony. Introduction to Percolation Theory. Philadelphia: Taylor and Francis, 1994
    [73] M. Sahimi. Applications of Percolation Theory. London: Taylor and Francis,1994
    [74] P. Chen ,R. X. Wu, T. E. Zhao, et al. Complex permittivity and permeability of metallic magnetic granular composites at microwave frequencies. J. Phys. D: Appl. phys., 2005, 38: 2302 -2305
    [75] O. Wiener. Zur theorie der refraktionskonstanten.Berichteüber Verhandlungen K?niglich-S?chsischen Gesellschaft Wisseschaften Leipzig, 1910, 256-277
    [76] K. K. K?rkk?inen, A. H. Sihvola, K. I. Nikoskinen. Effective Permittivity of Mixtures: Numerical Validation by the FDTD Method. IEEE Trans. Geosci. Remote Sens., 2000, 38: 1303 -1308
    [77] L.Jylh?,A. H. Sihvola. Numerical modeling of disordered mixture using pseudorandom simulations. IEEE Trans. Geosci. Remote Sens., 2005, 43: 59-64
    [78] L.Jylh?,J. Honkamo, H. Jantunen, et al. Microstructure-based numerical modeling method for effective permittivity of ceramic/polymer composites. J. Appl. Phys., 2005, 97:104104
    [79] P.H. Zhou, L.J. Deng, B.-I.Wu, et al. Influence of scatterer’s geometry on power-law formula in random mixing composites. PIER, 2008, 85: 69-82.
    [80] D. T. Zimmerman, J. D. Cardellino, K. T. Cravener, K. R. Feather, N. M. Miskovsky, G. J. Weisel, Appl. Phys. Lett., 2008, 93: 214103.
    [81] X. Jing, W. Zhao. The effect of particle size on Electric conducting percolation threshold in polymer/conduction particle composites. J Mater Sci Lett, 2000, 19: 377-379
    [82]贾向明,杨其,李光宪.填充型导电高分子复合材料的逾渗理论进展.中国塑料,2003,17:9-14
    [83] R. Zallen. The physics of amorphous solids. New York: Wiley, 1983
    [84] F.Bueche. Conductive polymer composites. J. Appl. Phys., 1972, 43:837-841
    [85] E. Lux. Models proposed to explain the electrical conductivity of mixtures make of conductive and insulating materials. J Mater Sci, 1993, 28: 285-301
    [86] M. Sumita, K. Sakata, S. Asai, et al. Dispersion of Filler and the Electrical conductivity of polymer blends filled with carbon black. Pllym Bull, 1991, 25: 265-271
    [87] M. Sumita, A. Asai, N. Niyadera, et al. Electrical conductivity of carbon black filled ethyleneviny acetate copolymer as a function of vinyl acetate content. Colloid polym Sci, 1986, 264: 212-217.
    [88] B. Wessling. Electrical conductivity in heterogeneous polymer systems. Polymer Eng Sci, 1991, 31(16): 1200-1206
    [89] V.I. Odelevsky, Ph. D. Thes., Moscow, 1947.
    [90] A. H. Sihvola , J. A. Kong. Effective Permittivity of Dielectric Mixtures. IEEE Trans. Geosci. Remote Sens., 1988, 26: 420-429
    [91] J. H. Claassen. FEM analysis of magnetic flake composites. J. Magn. Magn. Mater., 2009, 321: 2166-2169
    [92] V. Myroshnychenko, C. Brosseau. Finite-element modeling method for the prediction of the complex effective permittivity of two-phase random statistically isotropic heterostructures. J. Appl. Phys. , 2005, 97: 044101
    [93] C. Liu, L. C. Shen. Dielectric constant of two-component, two-dimensional mixtures in terms of Bergman-Milton simple poles. J. Appl. Phys., 1993, 73: 1897 -1903
    [94] L. Jylh?, J. Honkamo, H. Jantunen, et al. Numerical Modeling of Disordered Mixture UsingPseudorandom Simulations. J. Appl. Phys., 2005, 97: 104104
    [95] S. I. White, B. A. Didonna, M. F. Mu, et al. Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment. Phys. Rev. B , 2009, 79: 024301
    [96] E. B. Wei, G. Q. Gu, K. W. Yu. Transformation field method for calculating the effective properties of isotropic graded composites having arbitrary shapes. Phys. Rev. B , 2007, 76: 134206
    [97] X. D. Chen, T. M. Grzegorczyk, B. I. Wu, et al. Phys. Rev. E 70, 016608 (2004).
    [98] L. Z. Wu, J. Ding, H. B. Jiang, et al. High frequency complex permeability of iron particles in a nonmagnetic matrix. J. Appl. Phys., 2006, 99: 083905
    [99] R. B. Tao, Z. Chen, P. Sheng. First-principles Fourier approach for the calculation of the effective dielectric constant of periodic composites. Phys. Rev. B, 1990, 41: 2417-2420
    [100] R. B. Tao, P. Sheng. First-principle approach to the calculation of elastic moduli for arbitrary periodic composites. J. Acoust. Soc. Am., 1985, 77: 1651 -1658
    [101] L. C. Shen, C. Liu, J. Korringa, et al. Computation of conductivity and dielectric constant of periodic porous media. J. Appl. Phys., 1990, 67: 7071-7081
    [102] B. Sareni, L. Kr? Henbühl, A. Beroual, et al. Effective dielectric constant of periodic composite materials. J. Appl. Phys. , 1996, 80: 1688-1696
    [103] K. S. Lee, Y. C. Yun, S .W. Kim, et al. Microwave absorption ofλ/4 wave absorbers using high permeability magnetic composites in quasimicrowave frequency band. J. Appl. Phys., 2008, 103: 07E504
    [104] W. F. Yang, L.Qiao, J. Q. Wei, et al. Microwave permeability of flake-shaped FeCuNbSiB particle composite with rotational orientation. J. Appl. Phys., 2010, 107 :033913
    [105] R. Ramprasad, P. Zurcher, M. Petras, et al. Magnetic properties of metallic ferromagnetic nanoparticle composites. J. Appl.Phys., 2004, 96: 519-529
    [106] C. A. Grimes, D. M. Grimes. Permeability and permittivity spectra of granular materials. Phys. Rev. B, 1991, 43: 10780 -10788
    [107] L.Qiao, F. S. Wen, J. Q. Wei, et al. Microwave permeability spectra of flake-shaped FeCuNbSiB particle composites. J. Appl. Phys., 2008, 103:06390
    [108]廖绍彬.铁磁学.北京:科学出版社, 1987, 42-45
    [109] P. H. Zhou, Y. Q. Liu, L. J. Deng, et al. Effect of 3d transition metal substitution on microstructure and microwave absorption properties of FeSiB nanocrystalline flakes. J. Magn.Magn. Mater., 2009, 322: 794-798
    [110] C. Tannous. J. Gieraltowski. The Stoner–Wohlfarth model of ferromagnetism. Eur. J. Phys., 2008, 29: 475-487
    [111] K. Miyasaka, K.Watanabe, E. Jojima, et al. Electrical conductivity of carbon-polymer composites as a function of carbon content. J. Mater. Sci ., 1982, 17: 1610-1616
    [112] S. I. White, B.A. Didonna, M.F. Mu,et al. Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment. Phys. Rev. B, 2009, 79: 024301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700