非均匀光纤和非均匀波导中光脉冲和光波的传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光脉冲在光纤中的传输,由于其在光通信中的重要应用,在过去几十年里一直是人们研究的热点之一。而近年来,随着光通信的不断发展,以及色散管理和色散、非线性和增益/损耗的综合管理的提出,光脉冲在非均匀光纤系统中的传输已得到了人们特别的关注。在理论上,光脉冲在非均匀光纤系统中的传输可以由变系数非线性薛定谔方程模型来描述。另一方面,由于空间光孤子是未来实现全光通信及全光器件最理想的途径之一,因而也同样引起了人们的兴趣。
     本文主要以变系数非线性薛定谔方程,变系数高阶非线性薛定谔方程,非均匀抛物型阶跃波导中的光波传输方程以及克尔介质中方位极化非傍轴光波的传输方程为模型,通过解析和数值相结合的方法,分别对啁啾暗(灰)孤波在非均匀光纤中的传输,高阶效应下脉冲串的产生、压缩和传输,非均匀波导中自相似光波的非线性隧穿以及克尔介质中的非傍轴环形孤波的传输进行了详细地研究。本文的结果将为进一步研究实际的光孤子控制系统或非均匀光纤系统,实现超高速、大容量的光信息传输提供了一定的理论依据;而且也为全光控制和全光开关的研究提供了一定的理论指导。
     本文的主要内容包括以下几个方面:
     (1)以描述皮秒光脉冲在非均匀光纤系统中传输的变系数非线性薛定谔方程为模型,运用变量代换,获得了该方程的精确啁啾暗(灰)1-孤子和2-孤子解。依据该精确解,我们运用数值的方法讨论了啁啾暗(灰)孤波在非均匀光纤系统中的传输特性,包括其在偏离可积条件和有限初始扰动影响下的传输稳定性,以及啁啾暗(灰)孤子之间的相互作用。由于在数值模拟中,我们采用了超高斯脉冲作为背景波。因此我们对超高斯型有限宽度背景波、有限宽度背景中的啁啾暗(灰)孤子的传输也进行了详细地研究。结果表明,通过选取适宜的初始啁啾参量,啁啾暗(灰)孤子可以有效地被压缩。并且啁啾暗(灰)孤子可以在非均匀光纤中有效地抑制偏离限制性条件和有限初始扰动的影响而稳定地传输。同时,我们还发现有限宽度背景波也可以在非均匀光纤中不受负载啁啾暗(灰)孤子的影响而稳定地传输。当取背景波脉宽与啁啾暗(灰)孤子的初始脉宽比例较大时,有限宽度背景中啁啾暗(灰)孤子的数值结果基本与其精确解相吻合。即使选取的背景波脉宽不够宽,有限宽度背景中的啁啾暗(灰)脉冲仍可以很好地保持其孤子性质。这些结果将为进一步的实验验证提供了一定的理论依据。
     (2)以描述亚皮秒或飞秒光脉冲在非均匀光纤系统中传输的变系数高阶非线性薛定谔方程为模型,在一般的Hirota条件(该条件是强加在变系数高阶非线性薛定谔方程系数上的一个限制关系)下,运用Darboux变换,获得了该方程精确的连续波背景上的孤子解。在一般情况下,这个解可以精确地描述由无限的周期扰动引起连续波的调制不稳定性过程。这个不稳定性的增长导致了连续波背景上序列脉冲串的形成。在实际应用中,为了得到能够稳定传输的脉冲串,我们从精确解中去掉背景波。然后运用这个没有背景波的脉冲串作为数值模拟的初始条件,对其在非均匀光纤系统中的传输进行讨论。结果表明,只要脉冲串的能量足够的大,该脉冲串就可以在非均匀光纤系统中有效地抑制有限的初始扰动和偏离一般Hirota条件的影响而稳定地长距离传输。这一结果将有利于提高其光孤子通信中的信号比特率,增加其信道容量。
     (3)以非均匀抛物型阶跃波导中的光波传输方程为模型,运用变量代换,给出该模型的精确亮暗空间自相似解。作为应用,我们讨论了自相似光波在非均匀抛物型阶跃波导中的非线性隧穿效应,以及它们之间的相互作用。结果显示在可积条件下,自相似光波可以自相似的通过非线性势垒(势阱),并且两相邻亮自相似光波在一定范围内呈现出弹性碰撞的相互作用。而在非可积条件下,当非线性势垒高度相对小时,自相似光波通过非线性势垒时可以有效地被压缩。但是当垒高参数足够大时,自相似光波将被分裂成一些细小的光波。这一结果,将有可能为全光控制和全光开关的研究提供一定的理论指导。
     (4)从Maxwell方程出发导出描述在克尔介质中方位极化非傍轴光波传输的非线性方程,并以此为模型,运用数值的方法求解出该方程的一系列非傍轴孤波解。随后,以此解为初始条件,利用保守定律和有限差分相结合的方法,数值模拟非傍轴暗孤波和环形孤波的传输。结果显示,我们所采用的方法,虽然可以有效的重现非傍轴暗孤波的稳定传输。但是在模拟环形孤波的传输时,该孤波只可以在短距离内传输,随后便出现了不稳定。
The transmission of optical pulses in fibers has been an attractive topic of research because of their important applications to optical communication in past decades.Recently,with the progress of optical communication,and the appearance of dispersion management and the comprehensive management of dispersion,nonlinearity and gain/loss,the transmission of optical pulses in inhomogenenous fibers has been obtained the particular attentions.The transmission of optical pulses in inhomogeneous fibers can be described by the generalized nonlinear Schr(o|¨)dinger equation with variable coefficients.Otherwise,because it may provide an effective means for all-optical circuits and control,spatial soliton has also attracted more interest.
     In the dissertation,based on the generalized nonlinear Schr(o|¨)dinger equation with variable coefficients,the generalized higher-order nonlinear Schr(o|¨)dinger equation with variable coefficients,the nonlinear wave equation governing the transmission of optical waves in the inhomogeneous parabolic-index waveguides,and the nonlinear wave equation describing the transmission of azimuthally polarized nonparaxial optical waves in Kerr media,by analytical and numerical methods,we in detail discuss the transmission of chirped dark(gray) solitons in inhomogeneous fibers, generation,compression and transmission of pulse trains under higher-order effects,nonlinear tunneling of optical similaritons in inhomogeneous waveguides,nonparaxial ring solitary waves in Kerr media.Here,the results obtained and the methods used may be helpful to provide some theoretical analysis for studying the stable transmission of optical pulses in real optical soliton control systems or inhomogeneous fiber systems,and studying all-optical switches and logic.The main contents are as follows:
     (1) Based on the nonlinear Schr(o|¨)dinger equation with variable coefficients,governing the transmission of picosecond optical pulses in inhomogeneous fibers,and by using direct transformation of variables and functions,the explicit chirped dark(gray) soliton solutions are presented.By employing the exact solutions,we in detail analyze the propagation characteristics of the chirped dark(gray) soliton,including the stability against either the deviation from integrable condition or the initial perturbation,and the interaction between the chirped dark(gray) solitons. Because we use a super-Gaussian pulse as a background wave in our numerical simulation,it is necessary to analyze the propagation of finite-width super-Gaussian background waves and chirped dark(gray) solitons superimposed upon finite-width background waves.The results show that the dark(gray) solitons can be effectively compressed by choosing the appropriate initial chirp.And the chirped dark(gray) pulses are stable against the deviation from integrable condition,as well as the initial perturbation. The super-Gaussian background waves can stably propagate in inhomogeneous fibers,even though chirped dark(gray) solitons are superimposed upon them.When the ratio of the width of the background wave to the initial width of chirped dark(gray) soliton is large enough,the numerical solutions of chirped dark(gray) solitons can be in agreement with the exact solutions.Even if the width of background waves is not enough broad,chirped dark(gray) pulses can also maintain their soliton characteristics.These results can provide some theoretical analysis for experimental verification.
     (2) A generalized higher-order nonlinear Schr(o|¨)dinger equation with variable coefficients,describing the transmission of subpicosecond and femtosecond optical pulses in inhomogeneous fibers,is considered.Imposing generalized Hirota conditions on the variable coefficients,we obtain exact solutions for a soliton sitting on top of a continuous-wave(CW) background by means of the Darboux transform.In the general form,the same solution provides for an exact description of the development of the modulational instability of a CW state,initiated by an infinitesimal periodic perturbation and leading to formation of a periodic array of solitons with a residual CW background.To obtain a more practically relevant solution for a soliton array without the CW component,we subtract it from the exact solution,and use the result as an initial approximation,to generate solutions in direct simulations.As a result,if only the energy of pulse trains is large enough,we can obtain robust pulse trains,which are stable against arbitrary perturbations, as well as against violations of the Hirota conditions.It is useful for raising the signal bit-rate and increasing the capacity in optical communications.
     (3) The nonlinear wave equation,governing the transmission of optical waves in the inhomogeneous parabolic-index waveguide,is considered.By using the direct transformation of variables and functions,we present the exact general bright and dark spatial self-similar solutions.As an application, we discuss the nonlinear tunneling of optical similaritons and their interactions.The results show that under integrable condition,the optical waves can similarliy pass through the nonlinear barrier or well.And the interaction between the neighboring waves is elastic collision in certain distance.Under nonintegrable condition,when they pass through the nonlinear barrier,the optical waves can be effectively compressed for the relatively small value of height parameter of nonlinear barrier.However, when the parameter is large enough,the wave splits into some filaments. These results may be helpful to provide some theoretical analysis for studying all-optical switches and logic.
     (4) Finally,the nonlinear wave equation,which is obtained directly from the Maxwell equations,describing the transmission of azimuthally polarized nonparaxial optical waves in Kerr media,is considered.By numerical method, we present a set of nonparaxial solitary wave solutions.Then using these results as initial approximations,by the conservation law and finite-difference methods,we discuss the propagation of the nonparaxial dark and ring solitary waves.The results show that these methods can effectively simulate the stable propagation of nonparaxial dark solitary waves.But by these methods,the nonparaxial ring solitary waves only stably propagate in finite distance,then they become unstable.
引文
[1]黄景宁,徐济仲,熊吟涛。孤子概念、原理和应用。北京:高等教育出版社,2004,3.
    [2]郭柏灵,庞小峰,孤立子,科学出版社,1987年2月。
    [3]J.Scott-Russell.Report on Waves.Proc.Roy.Soc.,1844,Edinburgh,319-320.
    [4]田慧平.超短光脉冲在非保守系统中的传输研究.1.太原,山西大学博士研究生学位论文,2003,1-13
    [5]Zhiyong Xu.All-optical Soliton Control in Photonic Lattices.Spain.Barcelona,Institut de Ciencies Fotoniques and Universitat Politecnica de Catalunya,2007,2.
    [6]谷超豪,郭柏灵,李翊神.孤立子理论与应用.1.杭州,浙江科学技术出版社,1990,1-5.
    [7]D.J.Korteweg and G..de Vries.On the change of form of long waves advancing in a rectangular channel,and on anew type of long stationary waves.Phil.Mag.,1895,39,ser.5,422-443.
    [8]N.J.Zabusky and M.D.Kruskal.Interaction of"Solitons" in a Collisionless Plasma and the Recurrence of Initial States.Phys.Rev.Lett.,1965,15,6,240-243.
    [9]杨祥林,温扬敬著,光纤孤子通信理论基础,国防工业出版社,2000.
    [10]陈陆君,梁昌洪著,孤立子理论及其应用,西安电子科技大学出版社,1997.
    [11]M.J.Ablowitz and P.A.Clarkson.Soliton,Nonlinear Evolution Equation and Inverse Scattering.Cambridge,University Press,1991.
    [12]Y.S.Kivshar and B.A.Malomed.Dynamics ofsolitons in nearly integrable systems.Rev.Mod.Phys.,1989,61,4,763-915.
    [13]李禄.光脉冲在光纤中传输特性的理论研究.1.太原,山西大学博士研究生学位论文,2004,2-3.
    [14]A.C.Scott,F.Y.F.Chu and D.W.McLaughlin.The soliton:A new concept in applied science.Proe.of IEEE,1973,61,10,1443-1483.
    [15]R.Hirota.Exact Solution of the Korteweg—de Vries Equation for Multiple Collisions of Solitons.Phys.Rev.Lett.,1971,27,18,1192-1194.
    [16]R.Hirota.Exact envelope-soliton solutions of a nonlinear wave equation.J.Math.Phys.(N.Y.),1973,14,7,805-809.
    [17]S.L.Liu and W.Z.Wang.Exact N-soliton solution of the modified nonlinear Schr(o|¨)dinger equation.Phys.Rew E,1993,48,4,3054-3059.
    [18]S.L.Liu and W.Z.Wang.Exact N-soliton solutions of the extended nonlinear Schr(o|¨)dinger equation.Phys.Rev.E,1994,49,6,5726-5730.
    [19]M.Gedalin,T.C.Scott and Y.B.Band.Optical Solitary Waves in the Higher Order Nonlinear Schr(o|¨)dinger Equation.Phys.Rev.Lett.,1997,78,3,448-451.
    [20]K.Porsezian and K.Nakkeeran.Optical Solitons in Presence of Kerr Dispersion and Self-Frequency Shift.Phys.Rev.Lett.,1996,76,21,3955-3958.
    [21]D.Mihalache,N.Truta and L.-C.Crasovan.Painleve analysis and bright solitary waves of the higher-order nonlinear Schr(o|¨)dinger equation containing third-order dispersion and self-steepening term.Phys.Rev.E,1997,56,1,1064-1070.
    [22]A.Mahalingam and K.Porsezian.Propagation of dark solitons with higher-order effects in optical fibers.Phys.Rev.E,2001,64,4,046608(1-9).
    [23]J.Kim,Q.H.Park and H.J.Shin.Conservation laws in higher-order nonlinear Schr(o|¨)dinger equations.Phys.Rev.E,1998,58,5,6746-6751.
    [24]B.Xu and W.Wang.Traveling-wave method for solving the modified nonlinear Schr(o|¨)dinger equation describing soliton propagation along optical fibers.Phys.Rev.E,1995,51,2,1493-1498.
    [25]V.B.Matveev and M.A.Salli.Darboux Transformation and Solitons.Berlin,Springer Series in Nonlinear Dynamics,Springer-Verlag,1991.
    [26]Z.Y.Xu,L.Li,Z.H.Li and G.S.Zhou.Modulation instability and solitons on a cw background in an optical fiber with higher-order effects.Phys.Rev.E,2003,67,2,026603(1-7).
    [27]郝瑞宇.可变参量光纤系统中光脉冲的传输特性研究.1.太原,山西大学博士研究生学位论文,2006,1-2。
    [28]G.P.AGRAWAL著,贾东方,余震虹等译.非线性光纤光学原理及应用.北京:电子工业出版社,2002:87和47.
    [29]A.Hasegawa and F.Tappert.Transformation of stationary nonlinear optical pulses in dispersive dielectric fibers.I.Anomalous dispersion,Appl.Phys.Lett.,1973,23,3,142-144;Ⅱ.Normal dispersion,Appl.Phys.Lett.,1973,23,4,171-172.
    [30]L.F.Mollenauer,R.H.Stolen and J.P.Gordorn.Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett., 1980,45, 13,1095-1098.
    [31] P. Emplit, J. P. Hamaide, R. Reynaud, C. Frodhly and A. Barthelemy. Picosecond steps and dark pulses through nonlinear single mode fibers. Opt. Commun. 1987, 62, 374-379.
    [32] D. Krokel, N. J. Halas, G. Giuliani and D. Grischkowsky. Dark-Pulse Propagation in Optical Fibers. Phys. Rev. Lett., 1988, 60,1,29-32.
    [33] A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird and W. J. Tomlinson. Experimental Observation of the Fundamental Dark Soliton in Optical Fibers. Phys. Rev. Lett., 1988,61,21,2445-2448.
    [34] Y. Kodama. Optical solitons in a monomode fiber. J. Stat. Phys., 1985, 39, 5/6, 597-614.
    [35] Y. Kodama and A. Hasegawa. Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron., 1987, 23, 5, 510-524.
    [36] E. Bourkoff, W. Zhao, R. I. Joseph and D. N. Christodoulides. Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion. Opt. Lett., 1987,12,4,272-274.
    [37] Y. Kodama, M. Romagnoli, S. Wabnitz and M. Midrio. Role of third-order dispersion on soliton instabilities and interactions in optical fibers. Opt. Lett., 1994, 19,3,165-167.
    [38] T. Brabec and E. Krausz. Nonlinear Optical Pulse Propagation in the Single-Cycle Regime. Phys. Rev. Lett., 1997,78, 17, 3282-3285.
    [39] F. M. Mitschke and L. E. Moilenauer. Discovery of the soliton self-frequency shift. Opt. Lett., 1986, 11, 10,659-661.
    [40] A. Hasegawa, Y. Kodama and A. Maruta. Recent Progress in Dispersion-Managed Soliton Transmission Technologies. Opt. Fiber Tech., 1997,3, 3,197-213.
    [41] I. R. Gabitov and P. M. Lushnikov. Nonlinearity management in a dispersion-managed system. Opt. Lett., 2002, 27,2, 113-115.
    [42] I. Nasieva, J. D. Ania-Castanon and S. K. Tuitsyn. Nonlinearity management in fiber links with distributed amplification . Electron. Lett., 2003, 39, 11,856-857.
    [43] Rodislav Driben, Boris A. Malomed and Uri Mahlab. Integration of nonlinearity-management and dispersion-management for pulses in fiber-optic links. Opt. Comm., 2004,232, 1-6,129-138.
    [44] F. Abdullaeev, Theory of Solitons in Inhomogeneous Media, New York, Wiley, 1994.
    [45] J. D. Moores. Nonlinear compression of chirped solitary waves with and without phase modulation. Opt. Lett., 1996,21, 8, 555-557.
    [46] K. J. Nakkeeran. Exact soliton solutions for a family of N coupled nonlinear Schrodinger equations in optical fiber media. Phys. Rev. E, 2000, 62,1,1313-1321.
    [47] Y.-T. Gao and B. Tian. Computer algebra, Painleve analysis and the time-dependent-coefficient nonlinear Schrodinger equation. Comput. Math. Appl., 2000,40,8-9,1107-1108.
    [48] J. Garnier and F. K. Abdullaev. Modulational instability induced by randomly varying coefficients for the nonlinear Schrodinger equation. Physica D, 2000, 145, 1-2, 65-83.
    [49] V. N. Serkin and A. Hasegawa. Novel Soliton Solutions of the Nonlinear Schrodinger Equation Model. Phys. Rev. Lett., 2000, 85, 21, 4502-4505; Soliton Management in the Nonlinear Schrodinger Equation Model with Varying Dispersion, Nonlinearity, and Gain. JETP Lett., 2000, 72, 2, 89-92; Exactly Integrable Nonlinear Schrodinger Equation Models With Varying Dispersion, Nonlinearity and Gain: Application for Soliton Dispersion Managements. IEEE Journal of Selected Topics In Quantum Electronics, 2002, 8, 3, 418-431.
    [50] V. N. Serkin and T. L. Belyaeva. High-Energy Optical Schrodinger Solitons. JETP Lett., 2001, 74, 12, 573-577; Optimal control of optical soliton parameters: Part 1.The Lax representation in the problem of soliton management. Quantum Electron., 2001,31,11, 1007-1015.
    [51] H. J. Shin. Darboux covariant soliton equations of inhomogeneous type. Phys. Lett. A, 2002, 294, 3-4, 199-209.
    [52] V. I. Kruglov, A.C. Peacock and J. D. Harvey. Exact Self-Similar Solutions of the Generalized Nonlinear Schrodinger Equation with Distributed Coefficients. Phys. Rev. Lett., 2003,90,11,113902(1-4).
    [53] E. Papaioannou, D. J. Frantzeskakis and K. Hizanidis. An analytical treatment of the effect of axial inhomogeneity on femtosecond solitary waves near the zero dispersion point. IEEE J. Quantum Electron., 1996,32, 1,145-154.
    [54] Ruiyu Hao, Lu Li, Zhonghao Li, and Guosheng Zhou. Exact multisoliton solutions of the higher-order nonlinear Schrodinger equation with variable coefficients. Physical Review E, 2004, 70, 6, 066603.
    [55] Ruiyu Hao, Lu Li, Zhonghao Li, Wenrui Xue, Guosheng Zhou. A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrodinger equation with variable coefficients. Opt. Commun., 2004,236, 79-86.
    [56] Rongcao Yang, Ruiyu Hao, Lu Li , Zhonghao Li, Guosheng Zhou. Dark soliton solution for higher-order nonlinear Schrodinger equation with variable coefficients. Opt. Commun., 2004, 242, 285-293.
    [57] Rongcao Yang, Ruiyu Hao, Lu Li, Xiaojuan Shi, Zhonghao Li, Guosheng Zhou. Exact gray multi-soliton solutions for nonlinear Schrodinger equation with variable coefficients. Opt. Commun., 2005,253,177-185.
    [58] Rongcao Yang, Lu Li, Ruiyu Hao, Zhonghao Li and Guosheng Zhou. Combined solitary wave solutions for the inhomogeneous higher-order nonlinear Schrodinger equation. Phys. Rev. E, 2005, 71, 036616.
    [59] Luyun Wang, Lu Li, Zhonghao Li, Guosheng Guo, and D. Mihalache. Generation, compression, and propagation of pulse trains in the nonlinear Schrodinger equation with distributed coefficients. Phys. Rev. E, 2005, 72, 036614.
    [60] Guangye Yang, Ruiyu Hao, Lu Li, Zhonghao Li and Guosheng Zhou. Cascade Compression Induced by Nonlinear Barriers in Propagation of Optical Solitons. Opt. Commun. 2006,260, 282-287.
    [61] A. Hasegawa, Y. Kodama. Signal transmission by optical solitons in monomode fiber. Proc. IEEE, 1981,69,1145-1150.
    [62] K. Fukuchi, et al, OFC' 2001, PaperPD24.
    [63] G I. Stegeman and M. Segev. Optical Spatial Solitons and Their Interactions: University and Diversity. Science, 1999,286, 1518-1523.
    [64] Askar'yan G A. Effects of the gradient of a strong electromagnetic beam on electrons and atoms. Sov Phys JETP, 1962,15, 1088-1090.
    [65] G. I. Stegeman and M. Segev. Optical Spatial Solitons and Their Interactions: Universality and Diversity. Science, 1999, 286, 5444, 1518-1523.
    [66] R. Y. Chiao, E. Garmire and C. H. Townes. Self-Trapping of Optical Beams. Phys. Rev. Lett., 1964, 13,15,479-482.
    
    [67] P. L. Kelly. Self-Focusing of Optical Beams. Phys. Rev. Lett., 1965, 15, 1005-1008.
    [68] A. Barthelemy, S. Maneuf, and G Froehly. Propagation soliton et auto-confinement de faisceaux laser par non linearite optique de kerr. Opt. Commun., 1985, 55, 3, 201-206.
    [69] E. L. Dawes, and J. H. Marburger. Computer studies in self-focusing. Phys. Rev., 1969,179,862-868.
    [70] J. Z. Wilcox, and T. J. Wilcox. Stability of Localized Plasma Model in Two and Three Dimensions. Phys. Rev. Lett., 1975, 34, 1160-1163.
    [71] P. K. Kaw, K. Nishikawa, Y. Yoshida, and A. Hasegawa. Two-Dimensional and Three-Dimensional Envelope Solitons. Phys. Rev. Lett., 1975, 35,2, 88-91.
    [72] K. I. Pushkarov, D. I. Pushkarov, and I. V. Tomoy. Self-action of light beams in nonlinear media: soliton solutions. Opt. Quantum. Electron., 1979, 11,6,471-478.
    [73] J. E. Bjorkholm, and A. Ashkin. Cw self-focusing and self-trapping of light in sodium vapor. Phys. Rev. Lett., 1974, 32,4, 129-132.
    [74] R. W. Boyd. Nonlinear Optics. CA, San Diego, Academic Press, 1992.
    [75] M. Karlsson, D. Anderson, M. Desaix. Dynamics of self-focusing and self-phase modulation in a parabolic index optical fiber. Opt. Lett., 1992, 17, 1,22-24.
    [76] J. Manassah. Collapse of the two-dimensional spatial soliton in a parabolic-index material. Opt. Lett, 1992,17,18,1259-1261.
    [77] S. A. Ponomarenko and G. P.Agrawal. Do Solitonlike Self-Similar Waves Exist in Nonlinear Optical Media? Phys. Rev. Lett, 2006, 97, 013901.
    [78] S. A. Ponomarenko and G. P.Agrawal. Optical similaritons in nonlinear waveguides. Opt. Lett, 2007, 32, 12, 1659-1661.
    [79] F. W. Dabby, and J. R. Whinnery. Thermal self-focusing of laser beams in lead galsses. Appl. Phys. Lett, 1968, 13, 8, 284-286.
    [80] M. D. Iturbe Castillo, J. J. Sanchez-Mondragon, and S. Stepanov. Formation of steady-state cylindrical thermal lenses in dark stripes. Opt. Lett, 1996, 21, 20, 1622-1624.
    [81] S. J. Bentley, R. W. Boyd, W. E. Butler, and A. C. Melissi-nos. Measurement of the thermal contribution to the nonlinear refractive index of air at 1064nm. Opt. Lett., 2000,25,16,1192-1194.
    [82] C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmen. Solitons in Nonlinear Media with an Infinite Range of Nonlocality: First Observation of Coherent Elliptic Solitons and of Vortex-Ring Solitons. Phys. Rev. Lett., 2005, 95,213904.
    [83] C. Rotschild, M. Segev, Z. Y. Xu, Y. V. Kartashov, L. Torner, and O. Cohen. Two-dimensional multipole solitons in nonlocal nonlinear media. Opt. Lett., 2006, 31,22,3312-3314.
    [84] C. Rotschild, B. Alfassi, O. Cohen, and M. Segev. Long-range interactions between optical solitons. Nature. Phys., 2006, 2, 769-774.
    [85] B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N.Christodoulides. Saturated Optical Absorption by Slow Molecules in Hollow-Core Photonic Band-Gap Fibers. Phys. Rev. Lett,, 2007, 98,213902.
    [86] E. Braun, L. P. Faucheux, and A. Libchaber. Strong self-focusing in nematic liquid crystals. Phys. Rev. A, 1993, 48,1, 611-622.
    [87] D. W. Mclaughlin, D. J. Muraki, M. J. Shelley, and X.Wang. A paraxial model for optical self-focussing in a nematic liquid crystal. Physica D, 1995, 88,1,55-81.
    [88] D. W. Mclaughlin, D. J. Muraki, and M. J. Shelley. Self-focussed optical structures in a nematic liquid crystal. Physica D, 1996, 97, 4, 471-497.
    [89] M. A. Karpierz, M. Sierakowski, M. Swillo, and T. Wolinski. Self-focusing in Liquid Crystalline Waveguides. Mol. Cryst. Liq. Cryst., 1998, 320, 157-163.
    [90] M. Peccianti, A. De Luca. Signal readdressing by steering of spatial solitons in bulk nematic liquid crystals. Opt. Lett., 2001, 26,21, 1690-1692.
    [91] M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo. Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells. Appl. Phys. Lett., 2000, 77, 1, 7-9.
    [92] G. Assanto, M. Peccianti, A. De Luca, C. Conti. Optical spatial solitons in nematic liquid crystals. Optics & Phonics News, 2003, 14,2, 45-48.
    [93] M. A. Karpierz, Q. V. Nguyen. Spatial solitons interaction in liquid crystalline waveguides. Opto-electronics Review, 2002, 10, 1, 59-62.
    [94]M.Peccianti,K.A.Brzdakiewicz,G.Assanto.Noniocai spatial soliton interactions in nematic liquid crystals.Opt.Lett.,2002,27,16,1460-1462.
    [95]M.Peccianti,G.Assanto,A.De Luca,C.Umeton,and I.C.Khoo.All-optical switching and logic gating with spatial solitons in liquid crystals.Appl.Phys.Lett.,2002,81,18,3335-3337.
    [96]展开云,裴延波,侯春风。物理学进展。2005,25,166-173。
    [97]刘思敏,郭儒,许京军。光折变非线性光学及其应用。北京,科学出版社,2004。
    [98]M.Segev,B.Crosignani,A.Yariv,and B.Fischer.Spatial solitons in photorefractive media.Phys.Rev.Lett.,1992,68,7,923-926.
    [99]G.C.Duree,J.L.Shultz,G.J.Salamo,M.Segev,A.Yariv,B.Crosignani,P.Di Porto,E.J.Sharp,and R.R.Neur-gaonkar.Observation of self-trapping of an optical beam due to the photorefractive media.Phys.Rev.Lett.,1993,71,4,533-536.
    [100]侯春风。光束自陷-空间光孤子。现代物理知识。2007,12,21-26。
    [101]Y.N.Karamzin,and A.P.Sukhorukov.Mutual focusing of high-power light beams in media with quadratic nonlinearity.Sov.Phys.JETP.,1976,41,414-420.
    [102]W.E.Torruellas,Z.Wang,D.J.Hagan,E.W.VanStryland,G.I.Stegeman,L.Torner,and C.R.Menyuk.Observation of two-dimensional spatial solitary waves in a quadratic medium.Phys.Rev.Lett.,1995,74,25,5036-5039.
    [103]R.Schiek,Y.Baek,and G.I.Stegeman.One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in planar waveguides.Phys.Rev.E,1996,53,1138-1141.
    [104]C.Etrich,U.Peschel,and F.Lederer.Solitary Waves in Quadratically Nonlinear Resonators.Phys.Rev.Lett.,1997,79,13,2454-2457.
    [105]G.Leo,G.Assanto,and W.E.Torruella.Beam pointing control with spatial solitary waves in quadratic nonlinear media.Opt.Commun.,1997,134,223-226.
    [106]G.Leo,G.Assanto,and W.E.Torruella.Bidimensional spatial solitary waves in quadratically nonlinear bulk media.J.Opt.Soc.Am.B,1997,14,11,3134-3142.
    [107]R.A.Fuerst,B.L.Lawrence,W.E.Torruellas,and G.I.Stegeman.Beam reshaping by use of spatial solitons in the quadratic nonlinear medium KTP.Opt.Lett.,1997,22,1,19-21.
    [108] R. A. Fuerst, D. M. Baboiu, B. L. Lawrence, W. E. Torruellas, G. I. Stegeman, S. Trillo, and S. Wabnitz. Spatial Modulational Instability and Multisolitonlike Generation in a Quadratically Nonlinear Optical Medium. Phys. Rev. Lett., 1997, 78, 14,2756-2759.
    [109] D. M. Baboiu, and G. T. Stegeman. Modulational instability of a strip beam in a bulk type I quadratic medium. Opt. Lett., 1998,23, 1, 31-33.
    [110] A. De Rossi, S. Trillo, A. V. Buryak, and Y. S. Kivshar. Snake instability of one-dimensional parametric spatial solitons. Opt. Lett., 1997,22,12, 868-870.
    [111] A. D. Boardman, P. Bontemps, and K. Xie. Transverse modulation instability of vector optical beams in quadratic nonlinear media. J. Opt. Soc. Am. B, 1997, 14, 11, 3119-3126.
    [112] A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo. Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications. Phys. Rep., 2002, 370, 63-235.
    [113] Boris A Malomed, Dumitru Mihalache, Frank Wise and Lluis Torner. Spatiotemporal optical solitons. J. Opt. B: Quantum Semiclass. Opt., 2005, 7, 5, R53-R72.
    [114] Y. Silberberg. Collapse of optical pulses. Opt. Lett., 1990, 15, 22, 1282-1284.
    [1] V. E. Zakharov, A. B. Shabat. Exact theory of two dimentional self focusing and one dimentional self modulation of nonlinear waves in nonlinear media. Sov. Phys. JETP, 1972, 34,1, 62-69; V.E. Zakharov, A.B. Shabat. Interaction between solitons in stable medium. Sov. Phys. JETP, 1973, 37, 5, 823-828.
    
    [2] J. R. Taylor. Optical Solitons: Theory and Experiment. Cambridge, Cambridge University Press, 1992.
    
    [3] G. P. Agrawal. Nonlinear Fiber Optics. New York, Academic Press, 1995.
    [4] A. Hasegawa, Y. Kodama. Solitons in Optical Communications. Oxford University Press, Oxford, 1995.
    [5] N. N. Akhmediev, A. Ankiewicz. Solitons: Nonlinear Pulses and Beams. London, Chapman and Hall, 1997.
    [6] N.-C. Panoiu, D. Mihalache, D. Mazilu, L.-C. Crasovan, I.V. Mel' nikov, F. Lederer. Soliton dynamics of symmetry-endowed two-soliton solutions of the nonlinear Schrodinger equation. Chaos, 2000,10, 3, 625-640.
    [7] N.-C. Panoiu, I. V. Mel' nikov, D. Mihalache, C. Etrich, F. Lederer. Soliton generation from a multi-frequency optical signal. J. Opt. B: Quantum Semiclass. Opt., 2002,4, R53-R68.
    [8] W. Zhao, E. Bourkoff. Propagation properties of dark solitons. Opt. Lett., 1989, 14, 3, 703-705.
    [9] W. Zhao, E. Bourkoff. Interactions between dark solitons. Opt. Lett., 1989, 14, 24 1371-1373.
    [10] P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, A. Bartheiemy. Picosecond steps and dark pulses through nonlinear single mode fibers. Opt. Commun., 1987, 62, 374-379.
    
    [11] D. Krokel, N. J. Halas, G. Giuliani, D. Grischkowsky. Dark-pulse propagation in optical fibers. Phys. Rev. Lett., 1988, 60,1,29-32.
    
    [12] A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, Kirschner, D. E. Leaird, W. J. Tomlinson. Experimental observation of the fundamental dark soliton in optical fibers. Phys. Rev. Lett., 1988, 61,2445-2448.
    [13] W. J. Tomlinson, R. J. Hawkins, A. M. Weiner, J. P. Heritage, R. N. Thurston. Dark optical solitons with finite-width background pulses. J. Opt. Soc. Am. B, 1989, 6, 3, 329-334.
    [14] K. J. Blow, N. J. Doran, Multiple Dark Soliton Solutions of the Nonlinear Schrodinger Equation. Phys. Lett. A, 1985, 107, 55-58.
    [15] V. E. Vekslerchik. Dark soliton of the generalized nonlinear Schrodinger equation. Phys. Lett. A, 1991,153, 195-198.
    [16] J. P. Hamaide, P. Emplit, M. Haelterman. Dark-soliton jitter in amplified optical transmission systems. Opt. Lett., 1991,16, 20,1578-1580.
    [17] J. E. Rothenberg, H. K. Heinrich. Observation of the formation of dark-soliton trains in optical fibers. Opt. Lett., 1992,17,4,261-263.
    [18] D. Mihalache, N. C. Panoiu. Exact solutions of the nonlinear Schrodinger Equation for the normal-dispersion regime in optical fibers. Phys. Rev. A, 1992, 45, 9, 6730-6734.
    [19] D. Mihalache, N. C. Panoiu. Exact solutions of the nonlinear Schrodinger Equation for positive group velocity dispersion. J. Math. Phys., 1992, 33, 6, 2323-2328.
    [20] Ph. Emplit, M. Haelterman, J.-P. Hamaide. Picosecond dark soliton over a 1-km fiber at 850 nm. Opt. Lett., 1993,18, 13, 1047-1049.
    [21] Y. S. Kivshar, M. Haelterman, Ph. Emplit, J.-P. Hamaide. Gordon-Haus effect on dark solitons. Opt. Lett., 1994,19,1,19-21.
    [22] J. A. R. Williams, K. M. Allen, N. J. Doran, Ph. Emplit. The generation of quasi-continuous trains of dark soliton-like pulses. Opt. Commun., 1994, 112, 333-338.
    [23] M. Nakazawa, K. Suzuki. Generation of a pseudorandom dark soliton data train and its coherent detection by one-bit-shifting with a Mach-Zehnder interferometer. Electron. Lett., 1995, 31,13,1084-1085.
    [24] Y. S. Kivshar, B. Luther-Davies. Dark optical solitons: physics and applications. Phys. Rep. 1998,298, 81-197.
    [25] L. Li, Z. H. Li, Z. Y. Xu, G S. Zhou, K. H. Spatschek. Gray optical dips in the subpicosecond regime. Phys. Rev. E, 2002, 66, 046616.
    
    [26] M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, A. Sahara. Recent progress in soliton transmission technology. Chaos, 2002, 10, 3,486-514.
    [27] V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, et al.. A single-mode fiber with chromatic dispersion varying along the length. IEEE J. Lightwave Technol., 1991, 9, 561-566.
    [28] B. A. Malomed. in: E. Wolf (Ed.), Progress in Optics, vol. 43, North-Holland, Amsterdam, 2002, p. 71.
    [29] B. A. Malomed. Soliton Management in Periodic Systems. New York, Springer, 2006.
    
    [30] F. Abdullaeev. Theory of solitons in inhomogeneous media. New York, Wiley, 1994.
    [31] S.Wabnitz. Stabilization of sliding-filtered soliton wavelength division multiplexing transmissions by dispersion-compensating fibers. Opt. Lett., 1996, 21,9, 638-640.
    [32] N. J Smith and N. J Doran. Modulational instabilities in fibers with periodic dispersion management. Opt. Lett., 1996,21, 8, 570-572.
    [33] M. Nakazawa, H. Kubota, K. Suzuki and E. Yamada. Recent progress in soliton transmission technology. Chaos, 2000, 10, 3, 486-514.
    [34] A. Hasegawa. Quasi-soliton for ultra-high speed communications. Physica D (Amsterdam), 1998, 123, 1-4,267-270.
    [35] T. I. Lakoba and D. J. Kaup. Hermite-Gaussian expansion for pulse propagation in strongly dispersion managed fibers. Phys. Rev. E, 1998, 58, 5, 6728-6741.
    [36] V. N. Serkin, A. Hasegawa. Novel Soliton Solutions of the Nonlinear Schrodinger Equation Model. Phys. Rev. Lett., 2000, 85, 21, 4502-4505; V. N. Serkin, A. Hasegawa. Soliton Management in the Nonlinear Schrodinger Equation Model with Varying Dispersion, Nonlinearity, and Gain. JETP Lett., 2000, 72, 2, 89-92; V. N. Serkin, A. Hasegawa. Exactly integrable nonlinear Schrodinger equation models with varying dispersion, nonlinearity and gain: application for soliton dispersion managements. IEEE J. Select. Top. Quantum Electron., 2002, 8, 3,418-430.
    [37] V. N. Serkin, M. Matsumoto, T. L. Belyaeva. Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton laser. Opt. Commun., 2001,196,159-171.
    [38] V. N. Serkin, T. L. Belyaeva. High-energy optical Schrodinger solitons. JETP Lett., 2001, 74, 12, 573-577; V. N. Serkin, T. L. Belyaeva. Optimal control of optical soliton parameters: Part 1. The Lax representation in the problem of soliton management. Quantum Electron., 2001, 31,11,1007-1015.
    [39] V. I. Kruglov, A. C. Peacock, J. D. Harvey. Exact self-Similar solutions of the generalized nonlinear Schrodinger equation with distributed coefficients. Phys. Rev. Lett., 2003, 90, 11, 113902; V. I. Kruglov, A. C. Peacock, J. D. Harvey. Exact solutions of the generalized nonlinear Schrodinger equation with distributed coefficients. Phys. Rev. E, 2005,71, 056619.
    [40] R.Y. Hao, L. Li, Z. H. Li, G. S. Zhou. A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrodinger equation with variable coefficients. Opt. Commun., 2004, 236, 79-86; R.Y. Hao, L. Li, Z. H. Li, G. S. Zhou. Exact multisoliton solutions of the higher-order nonlinear Schrodinger equation with variable coefficients. Phys. Rev. E, 2004, 70,066603.
    
    [41] R. C. Yang, R. Y. Hao, L. Li, X. J. Shi, Z. H. Li, G. S. Zhou. Exact gray multi-soliton solutions for nonlinear Schrodinger equation with variable coefficients. Opt. Commun., 2005, 253, 177-185.
    [42] L. Y. Wang, L. Li, Z. H. Li, G. S. Zhou, D. Mihalache. Generation, compression, and propagation of pulse trains in the nonlinear Schrodinger equation with distributed coefficients. Phys. Rev. E, 2005, 72, 036614.
    [43] G. Y. Yang, R. Y. Hao, L. Li, Z. H. Li, G. S. Zhou. Cascade compression induced by nonlinear barriers in propagation of optical solitons. Opt. Commun., 2006, 260, 282-287.
    [44] C. Q. Dai, J. F. Zhang. New solitons for the Hirota equation and generalized higher-order nonlinear Schrodinger equation with variable coefficients. J. Phys. A: Math. Gen., 2006, 39, 723-737.
    [45] J. D. Moores. Nonlinear compression of chirped solitary waves with and without phase modulation. Opt. Lett., 1996, 21,8, 555-557.
    [46] S. Kumar, A. Hasegawa. Quasi-soliton propagation in dispersion-managed optical fibers. Opt. Lett., 1997,22, 6,372-374.
    [47] M. N. Vinoj, V. C. Kuriakose, K. Porsezian. Optical soliton with damping and frequency chirping in fibre media. Chaos Solitons Fractals, 2001, 12, 2569-2575.
    [48] Y. Xiao, Z. Y. Xu, L. Li, Z. H. Li, G. S. Zhou. Soliton propagation in nonuniform optical fibers. J. Nonlinear Opt. Phys. Mater., 2003, 12, 3, 341-348.
    [49] L. Li, Z. H. Li, S. Q. Li, G. S. Zhou. Modulation instability and solitons on a cw background in inhomogeneous optical fiber media. Opt. Commun., 2004, 234, 169-176.
    [50] A. Mahalingam, K. Porsezian. Propagation of dark solitons with higher-order effects in optical fibers. Phys. Rev. E, 2001, 64,046608.
    [51] Junfen Wang, Lu Li, Suotang Jia. Exact chirped gray soliton solutions of the nonlinear Schrodinger equation with variable coefficients. Opt. Commun., 2007, 274 223-230.
    [52] K. Tajima. Compensation of soliton broadening in nonlinear optical fibers with loss. Opt. Lett., 1987, 12, 1, 54-56; H. H. Kuehl. Solitons on an axially nonuniform optical fiber. J. Opt. Soc. Am. B, 1988, 5, 3, 709-713.
    [53] S. V. Chernikov, E. M. Dianov, D. J. Richardson, D. N. Payne. Soliton pulse compression in dispersion-decreasing fiber. Opt, Lett., 1993, 18, 7,476-478.
    [1] Y. Kodama. Optical solitons in a monomode fiber. J. Stat. Phys., 1985, 39, 5/6, 597-614.
    
    [2] Y. Kodama and A. Hasegawa. Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron., 1987,23, 5, 510-524.
    [3] N.-C. Panoiu, D. Mihalache, D. Mazilu, I. V. Mel'nikov, J. S. Aitchison, F. Lederer, R. M. Osgood. Dynamics of dualfrequency solitons under the influence of frequency-sliding filters, third-order dispersion,and intrapulse raman scattering. IEEE J. Select. Top. Quantum Electron., 2004,10, 5, 885-892.
    [4] R. Hirota. Exact envelope-soliton solutions of nonlinear wave equation. J. Math. Phys., 1973, 14, 7, 805-809.
    [5] N. Sasa, J. Satsuma. New-type of soliton solutions for a High-order nonlinear Schrodinger equation. J. Phys. Soc. Jpn., 1991, 60, 2,409-417.
    [6] D. Mihalache; L. Torner, F. Moldoveanu, N.-C. Panoiu, N. Truta. Inverse-scattering approach to femtosecond solitons in monomode optical letters. Phys. Rev. E, 1993, 48, 6,4699-4709.
    [7] D. Mihalache, N.-C. Panoiu, F. Moldoveanu, D.-M. Baboiu. The Riemann problem method for solving a perturbed nonlinear Schrodinger equation describing pulse propagation in optic fibres. J. Phys. A: Math. Gen., 1994,27,6177-6189.
    [8] K. Porsezian, K. Nakkeeran. Optical solitons in presence of kerr dispersion and self-frecrency shift. Phys. Rev. Lett., 1996, 76,21, 3955-3958.
    [9] M. Gedalin, T. C. Scott, Y. B. Band. Optical solitary waves in the high order nonlinear Schrodinger equation. Phys. Rev. Lett., 1997, 78, 3, 448-451.
    [10] D. Mihalache, N. Truta, L. -C. Crasovan. Painleve analysis and bright solitary waves of the high-order nonlinear Schrodinger equation containing third-order dispersion and self-steepening term. Phys. Rev. E, 1997, 56,1,1064-1070.
    
    [11] Z. Y. Xu, L. Li, Z. H. Li, G. S. Zhou. Soliton interaction under the infulence of high-order effects. Opt. Commun., 2002, 210, 375-384; Modulation instability and solitons on a cw background in an optical fiber with high-order effects. Phys. Rev. E 2003, 67, 026603.
    [12] Lu Li, Wenrui Xue, Zhiyong Xu, Zhonghao Li, Guosheng Zhuo. Direct method for the periodic amplification of a soliton in an optical fibre link with loss. J. Phys. A: Math. Gen., 2003, 36, 817-828.
    [13] Y. S. Kivshar, V. V. Afanasjev. Dark optical solitons with reverse-sign amplitude. Phys. Rev. A, 1991,44, 3, R1446-R1449.
    [14] S. L. Palacios, A. Guinea, J. M. Fernandez-Diaz, R. D. Crespo. Dark solitary waves in the nonlinear Schrodinger equation with third order dispersion, self-steepening, and self-frequency shift. Phys. Rev. E, 1999, 60,1, R45- R47.
    [15] A. Mahalingam, K. Porsezian. Propagation of dark solitons with higher-order effects in optical fibers. Phys. Rev. E, 2001, 64,046608.
    [16] Lu Li, Zhonghao Li, Zhiyong Xu, Guosheng Zhou, K. H. Spatschek. Gray optical dips in the subpicosecond regime. Phys. Rev. E, 2002, 66, 046616.
    [17] Z. H. Li, L. Li, H. P. Tian, G. S. Zhou. New types of solitary wave solutions for the higher order nonlinear Schrodinger equation. Phys. Rev. Lett., 2000, 84, 18, 4096-4099.
    [18] W. P. Hong. Optical solitary wave solutions for the high order nonlinear Schrodinger equation with cubic-quintic non-kerr terms. Opt. Commun., 2001, 194, 217-223.
    [19] Q. H. Park, H. J. Shin. Parametric control of soliton light traffic by cw traffic light. Phys. Rev. Lett., 1999, 82, 22,4432-4435.
    [20] L. Li, Z. H. Li, S. Q. Li, G. S. Zhou. Modulation instability and solitons on a cw background in inhomogeneous optical fiber media. Opt. Commun., 2004, 234, 169-176.
    [21] S. Q. Li, L. Li, Z. H. Li, G. S. Zhou. Properties of soliton solutions on a cw background in optical fibers with higher-order effects. J. Opt. Soc. Am. B, 2004, 21, 12, 2089-2094.
    [22] K. Tajima. Compensation of soliton broadening in nonlinear optical fibers with loss. Opt. Lett., 1987, 12, 1, 54-56; H. Kuehl. Solitons on an axially nonuniform optical fiber. J. Opt. Soc. Am. B, 1988, 5, 3, 709-713.
    [23] V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysolyatin, S.V.Chernikov,A.N.Guryanov,G.G.Devyatykh,S.I.Miroshnichenko.Single mode fiber with chromatic dispersion varying along the length.IEEE J.Lightwave Technol.,1991,9,5,561-566;S.V.Chernikov,E.M.Dianov,D.J.Richardson,D.N.Payne.Soliton pulse compression in dispersion-decreasing fiber.Opt.Lett.,1993,18,7,476-478.
    [24]R.Y.Hao,L.Li,Z.H.Li,G.S.Zhou.Exact muitisoliton solutions of the higher-order nonlinear Schr(o|¨)dinger equation with variable coefficients.Phys.Rev.E,2004,70,066603.
    [25]R.C.Yang,R.Y.Hao,L.Li,Z.H.Li,G.S.Zhou.Dark soliton solution for higher-order nonlinear Schr(o|¨)dinger equation with variable coefficients.Opt.Commun.,2004,242,285-293;R.C.Yang,L.Li,R.Y.Hao,Z.H.Li,G.S.Zhou.Combined solitary wave solutions for the inhomogeneous higher-order nonlinear Schr(o|¨)dinger equation.Phys.Rev.E,2005,71,036616.
    [26]P.V.Mamyshev,S.V.Chernikov,E.M.Dianov.Generation of fundamental soliton train for high-bit-rate optical communication lines.IEEE J.Quantum Electron.,1991,27,10,2347-2355.
    [27]S.V.Chernikov,J.R.Taylor,P.V.Mamyshev,E.M.Dianov.Generation ofsoliton pulse train in optical fiber using two CW singlemode diode lasers.Electron.Lett.,1992,28,10,931-932;S.V.Chernikov,J.R.Taylor,R.Kashyap.Integrated all optical fibre source of multigigahertz solitons in dispersion decreasing fibers.Electron.Lett.,1993,29,20,1788-1789;Experimental demonstration of step-like dispersion profiling in optical fiber for soliton generation and compress.Electron.Lett.,1994,30,5,433-435;K.I.M.McKinnon,N.F.Smyth,A.L.Worthy.Optimization of soliton amplitude in dispersiondecreasing nonlinear optical fibers.J.Opt.Soc.Am.B,1999,16,3,441-447.
    [28]V.B.Matveev and M.A.Salli.Darboux Transformation and Solitons.berlin,Springer Series in Nonlinear Dynamics,Springer-Verlag,1991.
    [29]谷超豪,胡和生,周子翔.孤立子理论中的达布变换及几何应用.上海,上海科学技术出版社,1999.
    [30]郝瑞宇.可变参量光纤系统中光脉冲的传输特性研究.1.太原,山西大学博士研究生学位论文,2006,27。
    [31] G. Darboux, Surune proposition relative aux equation lineaires. Compts Rendus Hebdomadaires des Seances de l'Academie des Sciences, Paries, 1882, 94, 1456-1459.
    
    [32] R. Y. Hao, L. Li, Z. H. Li, G. S. Zhou. A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrodinger equation with variable coefficients. Opt. Commun., 2004, 236, 79-86; R. C. Yang, R. Y. Hao, L. Li, X. J. Shi, Z. H. Li, G. S. Zhou. Exact gray multi-soliton solutions for nonlinear Schrodinger equation with variable coefficients. Opt. Commun., 2005, 253, 177-185.
    
    [33] V. I. Kruglov, A. C. Peacock, J. D. Harvey. Exact Self-Similar Solutions of the Generalized Nonlinear Schrodinger Equation with Distributed Coefficients. Phys. Rev. Lett., 2003, 90, 11, 113902; Exact solutions of the generalized nonlinear Schrodinger equation with distributed coefficients. Phys. Rev. E, 2005, 71, 056619.
    
    [34] Luyun Wang, Lu Li, Zhonghao Li, Guosheng Guo, D. Mihalache. Generation, compression, and propagation of pulse trains in the nonlinear Schrodinger equation with distributed coefficients. Phys. Rev. E, 2005, 72, 3, 036614.
    
    [35] T. B. Benjamin, J. E. Feir. The disintegration of wave trains on deep water. J. Fluid Mech, 1967,27,5,417-430.
    
    [36] L. A. Ostrovskii. Propagation of wave packets and space-time self-focusing in a nonlinear medium. Sov. Phys. JETP, 1967, 24, 797-800; K. Tai, A. Hasegawa, A. Tomita. Observation of modulational Instability in optical fibers. Phys. Rev. Lett., 1986, 56, 2, 135-138; G. P. Agrawal. Modulation instability induced by cross-phase modulation. Phys. Rev. Lett., 1987, 59, 8, 880-883.
    
    [37] T. Taniuti, H. Washimi. Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma. Phys. Rev. Lett., 1968, 21, 4, 209-212; A. Hasegawa. Observation of self-trapping instability for a plasma cyclotron wave in a computer experiment. Phys. Rev. Lett., 1970, 24, 21,1165-1168.
    
    [38] A. Smerzi, A. Trombettoni, P. G. Kevrekidis, A. R. Bishop. Dynamical Superfluid-Insulator Transition in a Chain of Weakly Coupled Bose-Einstein Condensates. Phys. Rev. Lett., 2002, 89, 17, 170402; L. Salasnich, A. Parola, L. Reatto. Modulational Instability and Complex Dynamics of Confined Matter-Wave Solitons. Phys. Rev. Lett., 2003, 91, 8,080405.
    
    [39] H. F. Zhang, J. F. Wang, L. Lu, S. T. Jia and G. S. Zhou. Generation and propagation of subpicosecond pulse train. Chinese Physics, 2007,16,2,449-455.
    [1]冯杰,徐文成,张巧芬,宋方,莫杰雄,刘颂豪.光纤中自相似脉冲研究进展.激光与光电子学进展,2006,43,10,26-36.
    [2]G.I.Barenblatt.Scaling,Self-Similarity and 'Intermediate Asymtotics.England.Cambridge University Press,1996.
    [3]D.Anderson,M.Desaix,M.Karlsson,M.Lisak,and M.L.Quiroga-Teixeiro.Wave-breaking-free pulses in nonlinear-optical fibers.J.Opt.Soc.Am.B 10,1185-1190(1993).
    [4]M.E.Fermann,V.I.Kruglov,B.C.Thomsen,J.M.Dudley,J.D.Harvey.Self-similar propagation and amplification of parabolic pulses in optical fibers.Phys.Rev.Lett.84,6010-6013(2000).
    [5]V.I.Kruglov,A.C.Peacock,J.D.Harvey,and J.M.Dudley.Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers.J.Opt.Soc.Am.BI9,461-469(2002).
    [6]F.(O|¨).Ilday,J.R.Buckley,W.G.Clark,F.W.Wise.Self-similar Evolution of parabolic pulses in a laser.Phys.Rev.Lett.92,213902(2004).
    [7]V.N.Serkin and A.Hasegawa.Novel soliton solutions of the nonlinear Schr(o|¨)dinger equation model.Phys.Rev.Lett.85,4502-4505(2000);Exactly integrable nonlinear Schr6dinger equation models with varying dispersion,nonlinearity and gain:application for soliton dispersion managements.IEEE J.Sel.Top.Quantum Electron.8,418-431(2002).
    [8]V.N.Serkin,M.Matsumoto,and T.L.Belyaeva.Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers.Opt.Commun.196,159-171(2001).
    [9]V.I.Kruglov,A.C.Reacock,and J.D.Harvey.Exact self-similar solutions of the generalized nonlinear Schr(o|¨)dinger equation with distributed coefficients.Phys.Rev.Lett.90,113902(2003);V.I.Kruglov,A.C.Reacock,and J.D.Harvey.Exact solutions of the generalized nonlinear Schr(o|¨)dinger equation with distributed coefficients.Phys.Rev.E 71,056619(2005).
    [10]L.Y.Wang,L.Li,Z.H.Li,G.S.Zhou,and D.Mihalache.Generation,compression, and propagation of pulse trains in the nonlinear Schrodinger equation with distributed coefficients. Phys. Rev. E 72, 036614 (2005).
    [11] J. F. Wang, L Li, Z. H. Li, G. S. Zhou, D. Mihalache, B. A. Malomed. Generation, compression, and propagation of pulse trains under higher-order effects. Opt. Commun. 263, 328-336 (2006).
    [12] H. F. Zhang, J. F. Wang, L. Li, S. T. Jia, and G S. Zhou. Generation and propagation of subpicosecond pulse train. Chin. Phys. 16,449-455 (2007).
    [13] S. A. Ponomarenko and G. P. Agrawal. Interactions of chirped and chirp-free similaritons in optical fiber amplifiers. Opt. Express 15,2963-2973 (2007).
    [14] S. A. Ponomarenko and G P. Agrawal. Do solitonlike self-similar waves exist in nonlinear optical media? Phys. Rev. Lett. 97, 013901 (2006).
    [15] S. A. Ponomarenko and G. P. Agrawal. Optical similaritons in nonlinear waveguides. Opt. Lett. 32, 1659-1661 (2007).
    [16] J. Manassah. Collapse of the two-dimensional spatial soliton in a parabolic-index material. Opt. Lett. 17, 1259-1261 (1992).
    [17] H. M. Li, F. Q. Song. Novel exact self-similar solitary waves in graded-index media with Kerr nonlinearity. Opt. Commun. 277, 174-180 (2007).
    [18] G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed.(Academic Press, 2001).
    [19] A. C. Newell, Nonlinear tunneling. J. Math. Phys. 19,1126 (1978).
    [20] V. N. Serkin, V. M. Chapela, J. Persino, T. L. Belyaeva. Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides. Opt. Commun. 192,237 (2001).
    [21] V. N. Serkin, T. L. Belyaeva. High-Energy optical Schrodinger solitons. JETP Lett. 74,573-577(2001).
    [22] G. Y. Yang, R. Y. Hao, L. Li, Z. H. Li, G S. Zhou. Cascade compression induced by nonlinear barriers in propagation of optical solitons. Opt. Commun. 260, 282-287 (2006).
    [1] A. Ciattoni, B. Crosrgnani, P. Di Porto. Vector free-space optical propagation: a simple approach for generating all-order nonparaxial corrections. Opt. Commun. 2000,177,9-13.
    
    [2] M. Lax, W. H. Louisell, and W. B. Mcknight. From Maxwell to paraxial wave optics. Phys.Rev.A, 1975, 11,1365-1370.
    
    [3] L. W. Davis. Theory of electromagnetic beams. Phys. Rev. A, 1979, 19, 1177-1179.
    [4] G P. Agrawal and M. Lax. Free-space wave propagation beyond the paraxial approximation. Phys. Rev. A, 1983,27,1693-1695.
    [5] G P. Agrawal and D. N. Pattanayak. Gaussion beam propagation beyond the paraxial approximation. J. Opt. Soc. Am, 1979,69, 575-578.
    [6] R. Borghi, A. Ciattoni, and M. Santarsiero. Exact axial electromagnetic field for vectorial Gaussian and flattened Gaussion boundary distributions. J. Opt. Soc. Am. A, 2002, 19, 1207-1211.
    [7] D. G Hall. Vector-beam solutions of Maxwells wave equation. Opt. Lett. 1996, 21, 19-11.
    [8] M. Couture and P. A. Belanger. From Gaussian beam to complex-source-point spherical wave. Phys. Rev. A, 1981,24,335-359.
    [9] T. Takenaka, M. Yokota, and O. Fukumitsu. Propagation for light beams beyond the paraxial approximation. J. Opt. Soc. Am. A, 1985, 2, 828-829.
    [10] H. Laabs. Propagation of Hermite-Gaussian beams beyond the paraxial approximation. Opt. Commun. 1998, 147,1-4.
    
    [11] H. Laabs and Ari T. Friberg. Nonparaxial eigenmodes of stable resonators. IEEE J. Quantum Electron. 1999, 35,198-207.
    
    [12] A. Wunsche. Transition from the paraxial approximation to exact solutions of the wave equation and application to Gaussian beams. J. Opt. Soc. Am. A, 1992, 9,765-774.
    
    [13] G. W. Forbes. Validity of the Fresnel approximation in the diffraction of collimated beams. J. Opt. Soc. Am. A, 1996,13, 1816-1826.
    
    [14] G. W. Forbes, D. J. Buther, R. L. Gordon and A. A. Asatryan. Algebraic corrections for paraxiai wave field.J.Opt.Soc.Am.A,1997,14,3300-3315.
    [15]M.A.Alonso,A.A.Asatryan and G.W.Forbes.Beyond the Frensnel approximation for focused waves.J.Opt.Soc.Am.A,1999,16,1986-1989.
    [16]R.Borghi,M.Santarsiero,and M.A.Porras.Nonparaxial Bessel-Gauss beams.J.Opt.Soc.Am.A,2001,18,618-625.
    [17]张玉成.非傍轴光束传输理论及其应用研究.1.成都,四川大学硕士研究生学位论文,2005,1-2。
    [18]A.Ciattoni,B.Crosignani,S.Mookherjea,and A.Yariv.Nonparaxial dark solitons in optical Kerr media.Opt.Lett.,2005,30,5,516-518.
    [19]A.Ciattoni,B.Crosignani,P.Di Porto,and A.Yariv.Azimuthally polarized spatial dark solitons:exact solutions of Maxwell's equations in a kerr medium.Phys.Rev.Lett.,2005,94,073902.
    [20]A.Ciattoni,B.Crosignani,P.Di Porto,and A.Yariv.Perfect optical solitons:spatial kerr solitons as exact solutions of maxwell's equations.J.Opt.Soc.Am.B,2005,22,7,1384-1394.
    [21]H.C.Wang and W.L.She.Circularly polarized spatial solitons in Kerr media beyond paraxial approximation.Opt.Express,2005,13,18,6931-6936.
    [22]H.C.Wang and W.L.She.Nonparaxial optical Kerr vortex solitons with radial polarization.Opt.Express,2006,14,4,1590-1595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700