特殊矩阵数值分析和鞍点问题迭代求解预处理技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学与工程的很多领域如高阶微分方程求解,计算电磁学,流体力学,油藏模拟和最优化问题等都离不开大型线性代数方程组的求解.大型线性代数方程组的求解研究是大规模科学与工程计算的核心,具有重要的理论价值和应用价值.本文对与大型线性代数方程组迭代求解有关的特殊矩阵和数值特征进行了深入的研究,特别系统地研究了矩阵分裂迭代法的收敛性和比较理论及鞍点问题迭代求解预处理技术.全文共六章,分四个部分:
     第一部分(第二章)研究了两类特殊矩阵:非奇H-矩阵和广义H-矩阵.论文基于矩阵α-对角占优给出了非奇H-矩阵简捷判据,为非奇H-矩阵判据研究提供了新的思路.还得到了广义H-矩阵若干等价命题,充分或必要条件,对广义H-矩阵进行了进一步推广,该推广部分回答了著名计算数学专家Nabben提出的公开问题.
     第二部分(第三章)给出了矩阵数值特征估计.论文给出了一类包含C-矩阵的非奇异矩阵(MC-矩阵),利用该类矩阵性质得到了实矩阵实特征值的排除区间,进而得到了随机矩阵实特征值的界.同时也得到了实矩阵特征值实部的包含区间,具有非负非对角元的实矩阵的实特征值的简单上下界.还获得了矩阵数值半径新的等价公式,并由此得到了矩阵数值半径新下界.最后给出了非奇M-矩阵和逆M-矩阵Hadamard积最小特征值下界,其中一些下界仅依赖于矩阵元素.本部分得到的结果优于近期的相关结果.
     第三部分(第四章)研究了矩阵分裂的收敛性和比较理论.得到了非Hermitian正定矩阵单分裂的收敛条件.利用Hermitian正定矩阵和非负矩阵理论得到了Hermitian正定矩阵和单调矩阵双分裂的收敛性理论,基于该理论获得了非奇H-矩阵Jacobi和Gauss-Seidel双SOR方法的收敛区域.首次研究了矩阵双分裂的比较理论,得到了并行混沌多分裂的比较理论,这些理论为迭代法的选择提供了一些理论依据.
     第四部分(第五章)研究了鞍点问题迭代求解预处理技术.首先给出使得非对称鞍点矩阵具有实正特征值且可对角化的充分条件,该条件比已有著名条件更弱.其次,深入研究PBP预处理子特别是正则化预处理子的谱性质,给出了预处理矩阵实特征值和非实特征值的包含区域,指出若满足一定条件,PBP预处理矩阵仅有正实特征值,可使用非标准的共轭梯度算法,用Stokes方程和Maxwell方程做数值试验测试了正则化预处理子的性能.还研究了广义鞍点问题PSS预处理子的谱性质,克服了已有的研究只针对(2,2)块是0的鞍点问题的缺陷,证明了当迭代因子趋于0时,PSS预处理矩阵的特征值聚集在(0,0)和(2,0)附近,从而理论上说明了最优迭代因子应比较小,并用Stokes方程和Oseen方程做数值试验表明迭代因子一般选择在0到1之间.最后对混合型时谐Maxwell方程,首次提出了免增广和免Schur余块三角预处理技术,理论分析说明其构造及应用代价和已有的免增广和免Schur余块对角预处理子相当,但有更好的特征值聚集性质,数值试验也说明其性能大大优于免增广和免Schur余块对角预处理技术.
Large-scale linear systems arise widely in domains of science and engineering such as solutions of PDEs with high orders, computational electromagnetics, fluid mechanics, reservoir modeling and optimization problems. Solving large-scale linear systems plays a key role in scientific and engineering computing. Some special matrices and numerical characteristics related to iteration solutions of linear systems, convergence and comparison theorems of matrix splittings, preconditioning techniques for iteration solutions of saddle point problems are deeply studied in this thesis. This thesis consists of four parts with six chapters.
     Part one (Chapter two) is to study two classes of special matrices: nonsingular H-matrices and generalized H-matrices. Based onα-diagonal dominance of matrices, we derive a new brief criterion for nonsingular H-matrices, which gives a new way to study the new criteria in future. Several equivalent propositions, sufficient or necessary conditions for generalized .H-matrices are obtained. Meanwhile, we give a new construction of generalized .H-matrices, which partly answers Nabben's open problem.
     Part two (Chapter three) contributes to estimates of numerical characteristics of matrices. We first present a new class of real nonsingular matrix (MC-matrices) containing C-matrices. As an application of M C-matrices, we obtain an exclusion interval of real eigenvalues of a real matrix, which, furthermore, is used to localize the real eigenvalues of stochastic matrices precisely. Moreover, we achieve inclusion intervals for real parts of eigenvalues of real matrices and brief bounds of real eigenvalues of matrices whose off-diagonal elements are all nonnegative. Then, some lower bounds of numerical radius of matrices and the smallest eigenvalues of the Hadamard product of nonsingular M-matrices and inverse M-matrices are derived. All results presented in this part are tighter than the corresponding existing ones.
     Part three (Chapter four) is devoted to investigating convergence and comparison theorems of splittings of matrices. We firstly give some sufficient conditions for the convergence of single splittings of non-Hermitian positive definite matrices. Secondly, with the help of nonnegative matrix and Hermitian positive definite matrix theories, convergence theorems of double splittings of Hermitian positive definite matrices and monotone matrices are presented. Furthermore, convergence regions of Jcaobi and Gauss-Seidel double SOR methods for a nonsingular H-matrix are established. Finally, comparison theorems for double splittings and parallel chaotic multisplittings of matrices are also obtained, which provide theoretical base for the choice of iteration methods.
     Part four (Chapter five) contributes to preconditioning techniques for iteration solutions of saddle point problems. A sufficient condition is firstly established such that a nonsymmetric saddle point matrix is diagonalizable with real and positive eigenvalues. This condition is weaker than the corresponding earlier conditions. Secondly, we deeply study the PBP preconditioners, in particular, the regularized preconditioners. The regions containing real and non-real eigenvalues of the PBP preconditioned matrix are obtained. All eigenvalues of the PBP preconditioned matrix are real positive and the non-standard Conjugate Gradient algorithm can be used if certain conditions are satisfied. The model problems of Stokes equations and Maxwell equations show that regularized preconditioners are robust. Thirdly, we give some spectral properties of PSS preconditioners for generalized saddle point problems, which overcome the defect that the earlier results are only concerned with the saddle point problems with zero (2,2) blocks. It is shown that all eigenvalues of the PSS preconditioned matrix form two tight clusters, one is near (0,0) and the other is near (2,0) when the iteration parameter approaches to zero from above. The model problems of Stokes equations and Oseen equations show that the 'optimal' iteration parameter is usually between 0 and 1. Finally, we present block triangular augmentation-free and Schur complement-free preconditioners for the discretization of time-harmonic Maxwell equations in mixed form. The cost of their construction and application is almost the same to that of block diagonal augmentation-free and Schur complement-free preconditioners. However, theoretical analysis and numerical experiments show that the quality of the presented block triangular preconditioners is better than that of the corresponding block diagonal preconditioners.
引文
[1] M. Alanelli, A. Hadjidimos. A new iterative criterion for H-matrices. SIAM J. Matrix Anal. Appl., 2006, 29:160-176
    [2] M. Alanelli, A. Hadjidimos. On iterative criteria for H-and non-H-matrices. Appl. Math. Comput., 2007,188:19-30
    [3] K. Arrow, L. Hurwicz, H. Uzawa. A studies in linear and nonliner programming. Stanford, CA: Stanford University Press, 1958
    [4] O. Axelsson. Preconditioning of indefinite problems by regularization. SIAM J. Numer. Anal., 1979,16:58-69
    [5] O. Axelsson, M. Neytcheva. Preconditioning methods for linear systems arising in constrained optimization problems. Numer. Linear Algebra Appl., 2003,10:3-31
    
    [6] O. Axelsson, H. Lu, B. Polman. On the numerical radius of matrices and its application to iteration methods. Linear Multilinear Algebra, 1994, 37:225-238
    [7] Z.Z. Bai, G.H. Golub, L.Z. Lu, J.F. Yin. Block-Triangular and skew-Hermitian splitting methods for positive definite linear systems. SIAM J. Sci. Comput., 2005, 26:844-863
    [8] Z.Z. Bai, G.H. Golub, M.K. Ng. Hermitian and skew-Hermitian splitting methods for non- Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl., 2003, 24:603-626
    [9] Z.Z. Bai, G.H. Golub, M.K. Ng. On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. Linear Algebra Appl., 2008,428:413-440
    [10] Z.Z. Bai, G.H. Golub, M.K. Ng. On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iteration, available online at http://wwwsccm. stanford.edu/wrap/pub- tech.html
    
    [11] Z.Z. Bai, B.N. Parlett, Z.Q. Wang. On generalized successive overrelaxation methods for augmented linear systems. Numer. Math., 2005, 102:1-38
    [12] R.E. Bank, B.D. Welfert, H. Yserentant. A class of iterative methods for sloving saddle point problems. Numer. Math., 1990, 56:645-666
    [13] M. Benzi, M.J. Gander, G.H. Golub. Optimization of the Hermitian and skew-Hermitian splitting iteration for saddle-point problems. BIT, 2003,43:881-900
    [14] M. Benzi, G.H. Golub. A preconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl., 2004,26:20-41
    [15] M. Benzi, G.H. Golub, J. Liesen. Numerical solution of saddle point problems. Acta Numerica, 2005,14:1-137
    
    [16] M. Benzi, J. Liu. An efficient solver for the incompressible Navier-Stokes equation in rotation form. SIAM J. Sci. Comput., 2007, 29:1959-1981
    
    [17] M. Benzi, J. Liu. Block preconditioning for saddle point systems with indefinite (1,1) block. Inter. J. Comput. Math., 2007, 84:1117-1129
    
    [18] M. Benzi, M.K. Ng. Preconditioned iterative methods for weighted Toeplitz least squares problems. SIAM J. Matrix Anal. Appl., 2006,27:1106-1124
    
    [19] M. Benzi, M.A. Olshanskii. An augmented lagrangian-based approach to the Oseen problem.SIAM J. Sci. Comput., 2006, 28:2095-2113
    
    [20] M. Benzi, V. Simoncini. On the eigenvalues of a class of saddle point matrices. Numer. Math., 2006,103:173-196
    
    [21] M. Benzi, D. B. Szyld. Existence and uniqueness of splittings for stationary iterative methods with applications to alternating methods. Numer. Math., 1997,76:309-321
    
    [22] A. Berman, R.J. Plemmons. Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979
    
    [23] J.H. Bramble, I.E. Pasciak, A.T. Vassilev. Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal., 1997, 34:1072 - 1092
    
    [24] J.H. Bramble, I.E. Pasciak, A.T. Vassilev. Uzawa type algorithms for non-symmetric saddle point problems. Math. Comput., 2000,69:667-689
    
    [25] A. Brauer. Limits for the characteristic roots of a matrix. II. Duke Math. J., 1947, 14:21-26
    
    [26] A. Brauer, I.C. Gentry. Bounds for the greatest characteristic root of an irreducible nonnegative matrix. Linear Algebra Appl., 1974, 8:105-107
    
    [27] R. Brauldi. Matrices, eigenvalues and directed graphs. Linear Multilinear Algebra, 1982,11:143- 165
    [28] S.C. Brenner, L.R. Scott. The mathematical theory of finite element methods, Springer, 2002
    
    [29] R. Bru, L. Eisner, M. Neumann. Models of parallel chaotic iteration methods. Linear Algebra Appl., 1988,103:175-192
    
    [30] Z.H. Cao. Fast Uzawa algorithm for generalized saddle point problems. Appl. Numer. Math., 2003,46:157-171
    [31] Z.H. Cao. Positive stable block triangular preconditioners for symmetric saddle point problems. Appl. Numer. Math., 2007,57:899-910
    [32] S.C. Chen. A lower bound for the minimum eigenvalue of the Hadamard product of matrices. Linear Algebra Appl., 2004,378: 159-166
    [33] Z.M. Chen, Q. Du, J. Zou. Finite element methods with matching and nonmathching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal., 2000, 37:1542-1570
    
    [34] J. J. Climent, C. Perea. Some comparison theorems for weak nonnegative splittings of bounded operators. Linear Algebra Appl., 1998, 275/276:77-106
    
    [35] J. J. Climent, C. Perea. Convergence and comparison theorems for multisplittings. Numer. Linear Algebra Appl., 1999, 6:93-107
    
    [36] J. J. Climent, C. Perea, L. Tortosa. A. Zamora. Convergence theorems for parallel alternating iterative methods. Appl. Math. Comput., 2004, 148:497-517
    
    [37] L. J. Cvetkovic. Two-sweep iterative methods. Nonlinear Analysis, 1997, 30:25-30
    [38] L. Cvetkovic, V. Kostic. New criteria for identifying H-matrices. J. Comput. Appl. Math., 2005, 180:265-278
    
    [39] L. Cvetkovic, V. Kostic, R.S. Varga. A new Gerschgorin-type eigenvalues inclusion set. Electron. Trans. Numer. Anal., 2004, 18:73-80
    
    [40] E. Dick, J. Linden. A multigrid flux-difference splitting method for steady incompressible Navier-Stokes equations, in:Proceedings of the GAMM Conference on Numerical Methods in Fluid Mechanics, Delft, 1989
    
    [41] L. Dieci, J. Lorenz. Block M-matrices and computation of invariant tori. SIAM J. Sci. Stat. Comput., 1992, 13:885-903
    
    [42] C.R. Dohrmann, R.B. Lehoucq. A primal-based penalty preconditioner for elliptic saddle point systems. SIAM J. Numer. Anal., 2006,44:270-282
    
    [43] H.S. Dollar. Constraint-style preconditioners for regularized saddle point problems. SIAM J. Matrix Anal. Appl., 2007, 29:672-684
    
    [44] H.S. Dollar, A.J. Wathen. Approximate factorization constraint preconditioners for saddle-point matrices. SIAM J. Sci. Comput., 27:1555-1572
    
    [45] M. Eiermann. Fields of values and iterative methods. Linear Algebra Appl., 1993, 180:167-197
    
    [46] H.C. Elman, J. Silvester. Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations. SIAM J. Sci. Comput., 1996, 17:33-46
    [47]L.Elsner.Comparisons of weak regular splittings and multisplitting methods.Numer.Math.,1989,56:283-289
    [48]L.Elsner,A.Frommer,R.Nabben,H.Schneider,D.B.Szyld.Conditions for strict inequality in comparisons of spectral radii of splittings of different matrices.Linear Algebra Appl.,2003,263:65-80
    [49]L.Elsner,V.Mehrmann.Convergence of block iterative methods for linear systems arising in the numerical solution of Euler equations.Numer.Math.,1991,59:541-559
    [50]M.Fiedler,C.R.Johnson,T.L.Markham,M.Neumann.A trace inequality for M-matrices and the symmetrizability of a real matrix by a positive diagonal matrix.Linear Algebra Appl.,1985,71:81-94
    [51]M.Fiedler,T.L.Markham.An inequality for the Hadamard product of an M-matrix and an inverse M-matrix.Linear Algebra Appl.,1988,101:1-8
    [52]B.Fischer,A.Ramage,D.J.Silvester,A.J.wathen.Minimum residual methods for augmented systems.BIT,1998,38:527-543
    [53]A.Forsgren.On linear least-squares problems with diagonally dominant weight matrices.SIAM J.Matrix Anal.Appl.,1996,17:763-788
    [54]S.Friedland,L.Gurvits.An upper bound for the real part of nonmaximal eigenvalues of nonnegative irreducible matrices.SIAM J.Matrix Anal.Appl.,1994,15:1015 - 1017
    [55]A.Frommer,B.Pohl.A comparison result for multisplittings and waveform relaxation methods.Numer.Linear Algebra Appl.,1995,2:335-346
    [56]A.Frommer,G.Mayer.Convergence of relaxed parallel multisplitting methods.Linear Algebra Appl.,1989,119:141-152
    [57]T.B.Gan,T.Z.Huang.Simple criteria for nonsingular H-matrices.Linear Algebra Appl.,2003,374:317-326
    [58]干泰彬,黄廷祝.非奇日.矩阵的实用充分条件.计算数学,2004,1:109-116
    [59]Y.M.Gao.Criteria of the generalized diagonally dominant and nonsingular matrices.Northeast Normal Univ.,1982,3:23-28
    [60]F.S Gao.Judgement of generalized diagonal dominance matrix.Proceedings of the second China matrix theory and its applications conference,Changchun:Jilin university press,1996,189
    [61]高福顺,孙玉祥.M-矩阵的判定.应用数学学报,1998,21:535-538
    [62] Y.M. Gao, X.H. Wang. Criteria for generalized diagonally dominant matrices and M-matrices. Linear Algebra Appl., 1992,169:257-268
    [63] Y.M. Gao, X.H. Wang. Criteria for generalized diagonally dominant matrices and M-matrices. II. Linear Algebra Appl., 1996,248:339-353
    [64] D.K. Gartling, C.R. Dohrmann. Quadratic finite elements and incompressiblc viscous flows. Comput. Methods Appl. Mech. Engrg., 2006,195:1692-1708
    [65] S. Gerschgorin. Uber die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR Ser. Mat., 1931,7:749-754
    
    [66] M. Goldberg, E. Tadmor, G. Zwas. Numerical radius of positive matrices. Linear Algebra Appl., 1975,12:209-214
    
    [67] M. Goldberg, E. Tadmor. On numerical radius and its applications. Linear Algebra Appl., 1982, 42:263-284
    
    [68] G.H. Golub, C. Greif. On solving block-structured indefinite linear systems. SIAM J. Sci. Com-put., 2003,24:2076-2092
    
    [69] G.H. Golub, C. Greif, J.M. Varan. An algebraic analysis of a block diagonal preconditioner for sadle point systems. SIAM J. Matrix Anal. Appl., 2006, 27:779-792
    
    [70] G. H. Golub, R. S. Varga. Chebyshev semi-iterative methods, successive overrrelaxation iterative methods, and second order Richardson iterative methods. I. Numer. Math., 1961, 3:147-168
    [71] G.H. Golub, X. Wu, J.Y. Yuan. SOR-Like methods for augmented systems. BIT, 2001,41:71-85
    
    [72] J. Gopalakrishnan, J.E. Pasciak, L.F. Demkowicz. Analysis of a multigrid algorithm for time harmonic Maxwell equations. SIAM J. Numer. Anal., 2004,42:90-108
    [73] M.V. Gorelova, E.V. Chizhonkov. Preconditioning saddle point problems with the help of saddle point operators. Comput. Math. Math. Phys., 2004,44:1445-1455
    [74] C. Greif, D. Schotzau. Preconditioners for saddle point linear systems with highly singular (1,1) blocks. Electron. Trans. Numer. Anal., 2006, 22:114-121
    [75] C. Greif, D. Schotzau. Preconditioners for the discretized time-harmonic Maxwell equaitons in mixed form. Numer. Linear Algebra Appl., 2007,14:281-297
    
    [76] E. Haber, U.M. Ascher, D. Oldenburg. On optimization techniques for solving nonlinear inverse problems. Inverse Problems, 2000, 16:1263-1280
    
    [77] P.W. Hemker, S.P. Spekreijse. Multiple grid and Osher's Scheme for the efficient solution of the steady Euler equations. Appl. Numer. Math., 1986, 2:475-493
    [78]M.K.Ho,M.K.Ng.Splitting iterations for circulant-plus-diagonal systems.Numer.Linear Algebra Appl.,2005,12:779-792
    [79]R.A.Horn,C.A.Johnson.Matrix analysis.Cambridge University Press,Cambridge,1985
    [80]R.A.Horn,C.R.Johnson.Topics in matrix analysis,Cambridge University Press,Cambridge,England,1991
    [81]J.G.Hu.The estimation of‖M~(-1)N‖_∞ and the optimally scaled matrix.J.Comput.Math.,1984,2:122-129
    [82]胡家赣.线性代数方程组迭代解法.科学出版社,北京,1997
    [83]Q.Hu,J.Zou.Substructuring preconditioners for saddle-point problems arising from Maxwell's equations in three dimensions.Math.Comput.,2004,73:35-61
    [84]黄廷祝.非奇H-矩阵的简捷判据.计算数学,1993,3:318-327
    [85]黄廷祝.Ostrowski定理的推广与非奇H矩阵的条件.计算数学,1994,1:19-24
    [86]T.Z.Huang,J.Leng,E.Wachspress,Y.Tang.Characterization of H-matrices.Comput.Math.Appl.,2004,48:1587-1601
    [87]黄荣,刘建州.非奇异H-矩阵一类新的实用判据.高等学校计算数学学报,2006,28:337-345
    [88]T.Z.Huang,S.Q.Shen,H.B.Li.On generalized H-matrices.Linear Algebra Appl.,2005,81-90
    [89]C.Keller,N.I.M.Gould,A.J.Wathen.Constraint preconditioning for indefinite linear systems.SIAM J.Matrix Anal.,2000,21:1300-1317
    [90]A.Klawonn.Block-triangular preconditioners for saddle point problems with a penalty term.SIAM J.Sci.Comput.,1998,19:172-184
    [91]T.Kohno,H.Niki,H.Sawami,Y.M.Gao.An iterative test for H-matrix.J.Comput.Appl.Math.,2000,115:349-355
    [92]P.J.Lanzkron,D.J.Rose,D.B.Szyld.Convergence of nested classical iterative methods for linear systems,Numer.Math.,1991,58:685-702
    [93]L.L.Li.An improvement on Ky Fan's theorem of matrix eigenvalues.Linear Algebra Appl.,1998,279:111-117
    [94]W.Li.On Nekrasov matrices.Linear Algebra Appl.,1998,281:87-96
    [95]L.Li.On the iterative criterion for generalized diagonally dominant matrices,SIAM J.Matrix Anal.Appl.,2002,24:17-24
    [96]W.Li,L.Eisner,L.Z.Lu.Comparisons of spectral radii and the theorem of Stein-Rosenberg.Linear Algebra Appl.,2002,348:283-287
    [97] 李继成,黄廷祝,雷光耀.H-矩阵的实用判定.应用数学学报,2003,3:413-419
    
    [98] H.B. Li, T.Z. Huang, H. Li. On some subclasses of P-matrices. Numer. Linear Algebra Appl., 2007,14:391-405
    [99] H.B. Li, T.Z. Huang, S.Q. Shen, H. Li. Lower bounds for the minimum eigenvalue of Hadamard product of an M-matrix and its inverse. Linear Algebra Appl., 2007,420: 235-247
    [100] B. Li, L. Li, M. Harada, H. Niki, M.J. Tsatsomeros. An iterative criterion for H-matrices. Linear Algebra Appl., 1998,271:179-190
    [101] W. Li, W. Sun. Comparison results for parallel multisplitting methods with applications to AOR methods. Linear Algebra Appl., 2001, 331:131-144
    [102] Y.Q. Lin, Y.H. Cao. A new nonlinear Uzawa algorithm for generalized saddle point problems. Appl. Math. Comput., 2006, 175:1432-1454
    [103] J. Liesen. A note on the eigenvalues of saddle point matrices, Technical Report 10-2006. TU Berlin, Institute of Mathematics, 2006
    [104] J. Liesen, Z. Strakos. On optimal short recurrences for generating orthogonal Krylov subspace bases. SIAM Review, 2008, in press
    [105] J.Z. Liu, A.Q. He. A new algorithmic characterization of H-matrices. Appl. Math. Comput., 2006, 183:603-609
    
    [106] H. Lu. Stair matrices and their generalizations with applications to iterative mehtods I:A generalization of the successive overrelaxation method. SIAM J. Numer. Anal., 1999, 37:1-17
    [107] M.M. Martins. On the convergence of the modified overrelaxation method. Linear Algebra Appl., 1986, 81:55-73
    [108] M.M. Martins. Some new results on the convergence of the SSOR and USSOR mehtods. Linear Algebra Appl., 1988, 106:185-193
    [109] J.K. Merikoski, R. Kumar. Lower bounds for the numerical radius. Linear Algebra Appl., 2005, 410:135-142
    
    [110] J.J.H. Miller. On the location of zeros of certain classes of polynomials with applications to numerical analysis. J. Inst. Math. Appl., 1971, 8:397-406
    [111] V.A. Miller, M. Neumann. A note on comparison theorems for nonnegative matrices. Numer. Math., 1985,47:427 - 434
    
    [112] H. Minc. Nonnegative matrices. New York:John Wiley & Sons, 1988
    [113] P. Monk. Finite element methods for Maxwell's equations, Oxford University Press, New York, 2003
    [114] M.F. Murphy, G.H. Golub, A.J. Wathen. A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput, 2000, 21:1969-1972
    [115] R. Nabben. On a class of matrices which arise in the numerical solution of Euler equations. Numer. Math., 1992, 63:411-431
    
    [116] R. Nabben. A note on comparison theorems for splittings and multisplittings of Hermitian positive definite matrices. Linear Algebra Appl., 1996, 233:67-80
    
    [117] R. Nabben. Improved upper bounds for the real part of nonmaximal eigenvlues of nonnegative matrices. SIAM J. Matrix Anal. Appl., 2000,22:574-579
    
    [118] J.C. Nedelec. Mixed finite elements in R~3. Numer. Math., 1980, 35:315-341
    
    [119] M. Neumann, R. J. Plemmons. Convergence of parallel multisplitting iterative methods for M-matrices. Linear Algebra Appl., 1987, 88/89:559-573
    
    [120] K. Ojiro, H. Niki, M. Usui. A new criterion for the H-matrix property. J. Comput. Appl. Math., 2003, 150:293-302
    
    [121] D. P. O'Leary, R. E. White. Multisplittings of matrices and parallel solution of linear systems. SIAM J. Algebraic Discrete Methods, 1985,6:630-640
    
    [122] J.M. Ortega, and R.J. Plemmons. Extensions of the Ostrowski-Reich theorem for SOR iterations. Linear Algebra Appl., 1979, 28:177-191
    
    [123] J.Y. Pan, M.K. Ng, Z.Z. Bai. New preconditioners for saddle point problems. Appl. Math. Comput., 2006, 172:762-771
    
    [124] D. Peaceman, H. Rachford. The numerical solutions of parabolic and elliptic differential equations. J. Sco. Indust. Appl. Math., 1955,3:28-41
    
    [125] J.M. Pena. A class of P-matrices with applications to the localization of the eigenvalues of a real matrix. SIAM J. Matrix Anal. Appl., 2001, 22:1027-1037
    
    [126] J.M. Pena. On an altenative to Gerschgorin circles and ovals of Cassini. Numer. Math., 2003, 95:337-345
    
    [127] J.M. Pena. Exclusion and inclusion intervals for the real eigenvalues of positive matrices. SIAM J. Matrix Anal. Appl., 2005,26:908-917
    
    [128] J.M. Pena. Refining Gerschgorin disks through new criteria for nonsingularity. Numer. Linear Algebra Appl., 2007,14:665-671
    
    [129] I. Perugia, D. Schotzau, P. Monk. Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Engrg., 2002,191: 4675-4697
    [130] B. Polman. Incomplete blockwise factorization of (block)H-matrices. Linear Algebra Appl., 1987,90:119-132
    [131] L. Reichel. A matrix problem with application to rapid solution of integral equations. SIAM J. Sci. Statist. Comput., 1990,11:262-280
    [132] F. Robert. Block H-matrices et convergence des methods iterations classques par blocks. Linear Algebra Appl., 1969, 2:223-265
    [133] T. Rusten, R. Winther. A preconditioned iterative method for saddlepoint problems. SIAM J. Matrix Anal. Appl., 13:887-904
    
    [134] Y. Saad. Iterative methods for sparse linear systems, Second edition. SIAM, Philadelphia, PA, 2003
    [135] P.N. Schivakumar, K.H. Chew. A sufficient condition for nonvanishing of determinants. Proc. Amer. Math. Soc., 1974,43:63-66
    [136] J. Schoberl, W. Zulehner. Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems. SIAM J. on Matrix Anal. Appl., 2007, 29:752-773
    [137] P.N. Shivakumar, J.J. Williams, Q. Ye, C.A. Marinov. On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital circuit dynamics. SIAM J. Matrix Anal. Appl., 1996,17:298-312
    [138] C. Siefert, E.D. Sturler. Preconditioners for generalized saddle-point problems. SIAM J. Numer. Anal., 2006,44:1275-1296
    [139] D. Silvester, A. Wathen. Fast iterative solution of stabilised Stokes systems part II:using general block preconditioners. SIAM J. Numer. Anal.,1994,31:1352-1367
    [140] D.J. Silvester, H.C. Elman. A. Ramage, IFISS:Incompressible Flow Iterative Solution Software. http://www.manchester.ac.uk/ifiss
    
    [141] V. Simoncini. Block triangular preconditioners for symmetric saddle-point problems. Appl. Numer. Math., 2004,49: 63-80
    
    [142] V. Simoncini, M. Benzi. Spectral properties of the Hermitian and skew-Hermitian splitting pre- conditioner for saddle point problems. SIAM J. Matrix Anal. Appl., 2004, 6:377-389
    
    [143] Y. Song. Some comparison theorems for nonnegative splittings of matrices. Numer. Math., 1993,65:245 - 252
    
    [144] Y. Z. Song. Comparison theorems for splittings of matrices. Numer. Math., 2002,92:563-591
    [145] Y.Z. Song. On an inequality for the Hadamard product of an M-matrix and its inverse. Linear Algebra Appl., 2000, 305:99-105
    
    [146] G.W. Stewart, J.G. Sun. Matrix perturbation theory. Academic, 1990
    
    [147] E.D. Sturler, J. Liesen. Block-diagonal and constraint preconditioners for nonsymmertic indefinite linear systems. Part I:theory. S1AM J. Sci. Comput., 2005, 26:1598-1619
    
    [148] Y.X. Sun. Improvement of an Ostrowski's theorem. Northeast Math., 1991, 7:497-502
    
    [149] O. Taussky. A recurring theorem on determinants. Amer. Math. Monthly, 1949, 56:672-676.
    
    [150] R.S. Varga. Matrix iterative analysis. Prentice-Hall:Englewood Cliffs, NJ, 1962
    
    [151] R.S. Varga. On recurring theorems on diagonal dominance. Linear Algebra Appl., 1976, 13:1-9
    
    [152] R.S. Varga, A. Krautstengl. On Gersgorin-type problems and ovals of Cassini. Electron. Trans. Numer. Anal., 1999,8:15-20
    
    [153] R.S. Varga. Gersgorin-type eigenvalues inclusion theorems and their sharpness. Electron. Trans, Numer. Anal., 2001,12:113-133
    
    [154] R.S. Varga. Gersgorin and his circles. Springer-Verlag Berlin Heidelberg, 2004
    
    [155] C.L. Wang, Z.Z. Bai. Sufficient conditions for the convergent splittings of non-Hcrmitian positive definite matrices. Linear Algebra Appl., 2001, 330:215-218
    
    [156] L. Wang, Z.Z. Bai. Convergence conditions for splitting iteration methods for non-Hermitian linear systems. Linear Algebra Appl., 2008,428:453-468
    
    [157] C. L. Wang. T. Z. Huang. New convergence results for alternating methods. J. Comput. Appl. Math., 2001, 135:325-333
    
    [158] C. L. Wang, J. H. Zhao. Further results on regular splittings and multisplittings. Internat. J. Comput. Math., 2005, 82:421-431
    [159] A. Wathen, D. Silvester. Fast iterative solution of stabilised Stokes systems part I:Using simple diagonal preconditioners. SIAM J. Numer. Anal., 1993, 30:630-649
    [160] A. Wathen, D. Silvester. Fast iterative solution of stabilized stokes systems Part II:Using general block diagonal preconditioners. SIAM J. Numer. Anal., 1994, 31:1352-1367
    [161] Z. I. Woznicki. AGA two-sweep iterative methods and their application for the solution of linear equation systems. Linear Algebra Appl., 1989,121:702-710
    [162] Z. I. Woznicki. Estimation of the optimum relaxation factors in partial factorization iterative methods. SIAM. J. Matrix Anal.Appl., 1993,14:59-73
    
    [163] Z. I. Woznicki. Nonnegative splitting theory. Japan J. Indust. Appl. Math., 1994, 11:289-342
    [164] Z. I. Woinicki. Comparison theorems for splittings of monotone matrices. Nonlinear analysis, 1997,30:1251-1262
    [165] Z. I. Woznicki. Basic comparison theorems for weak and weaker matrix splittings. Electron. J. Linear Algebra, 2001,8:53-59
    [166] S.H. Xiang. On an inequality for the Hadamard product of an M-matrix or an H-matrix and its inverse. Linear Algebra Appl., 2003,367:17-27
    
    [167] S.H. Xiang, Z.Y. You. Weak block diagonally dominant matrices, weak block H-matrix and their applications. Linear Algebra Appl., 1998, 282:263-274
    
    [168] Q.M. Xie, A.Q. He, J.Z. Liu. On the iterative method for H-matrices. Appl. Math. Comput., 2007,189:41-48
    
    [169] X.R. Yong. Proof of a conjecture of Fiedler and Markham. Linear Algebra Appl., 2000, 320:167-171
    
    [170] Z.Y. You, C.L. Wang. The further generalization for block H-matrix. Pure and Applied Mathematics, 1995, 11:41-44, in Chinese
    
    [171] D.M. Young. Iterative solution of large linear systems. Academic Press, New York, 1971
    
    [172] J.Y. Yuan. The Ostrowski-Reich theorem for SOR iterations:extensions to the rank deficient case. Linear Algebra Appl., 2000, 315:189-196
    
    [173] W. Zulehner. Analysis of iterative methods for saddle point problems:a unified approach. Math. Comput., 2002,71:479-505

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700