钽铌酸钾及相关复合材料的制备和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着激光和红外技术的发展,热释电材料及其应用的研究不断深入,已用作热释电探测器和热摄像管等器件,在工业生产、国防科技以及日常生活中都有广泛的用途。陶瓷聚合物复合材料采用两相复合,可兼具两相材料的优点,因而是热释电材料研究的热点。钽铌酸钾材料具有非凡的电光效应和热释电效应,是一种非常有潜力的材料。
     针对钽铌酸钾(KTN)材料较高的制备温度始终障碍着材料的实用化,本文旨在探索KTN材料新的合成方法:低温水热、溶剂热和混合溶剂热法;并进而探索制备以KTN材料为基的热释电性能优异的复合材料。为此重点从理论上唯象地探讨提高0-3铁电复合材料的热释电性能的可能途径,并从微观上讨论了材料的极化机理,进而预测了不同极化条件下0-3铁电复合材料热释电、压电性能的变化规律。
     鉴于KTN材料的制备温度较高,本文探讨反应条件温和的新的制备工艺。为此我们采用了水热合成技术:水热法、溶剂热法和混合溶剂热法制备KTN粉体,通过系统的大量实验优化工艺最终成功制备了高纯的KTN纳米粉体,并比较深入地探讨了其合成机理。我们发现混合溶剂热法是温和条件下合成铁电KTN纳米材料的一种有效的新途径;并且KOH浓度和溶剂组分对产物影响很大。XRD、SEM和TEM等分析表明混合溶剂热法合成的典型样品结晶度高,且为形状规则、纳米尺寸的单晶颗粒。晶粒尺寸增大时,KTN晶粒发生立方-四方相变。溶剂热法和混合溶剂热法的合成条件更温和,主要是由于溶剂中的异丙醇形成了超临界流体。
     采用热压法制备了KTN/P(VDF-TrFE)0-3复合材料,初步研究了其介电、铁电和热释电性能。XRD和SEM结果表明,材料无杂相,结晶良好,KTN粉体分布比较均匀、无大的团聚。复合材料的介电常数较KTN陶瓷大大降低,室温时约为100。通过涂覆法制备的KTN/P(VDF-TrFE)复合薄膜,KTN粉体分散均匀,界面结合状态比热压工艺制备的块材要好。
     为了寻求提高0-3复合材料的热释电性能的可能途径,考虑组成相电导、测试频率和次级热释电效应,建立了0-3铁电复合材料的热释电性能的新的综合模型。由Maxwell方程和Laplace方程得到了边界条件,推导了初级和次级热释电系数的解析表达式。详细研究了基体电导σm、测试频率f对热释电性能的影响。理论结果与实验吻合较好,因而我们的模型更全面。
     为了更好的理解0-3铁电复合材料内部的极化机理,研究了组成相电导对0-3铁电复合材料的极化的影响。考虑电导后,建立了复合材料的热释电、压电性能与极化条件关系的模型。模拟结果表明,适当增大基体电导σm能提高复合材料中陶瓷夹杂的极化Pi ,使得极化效率更高。与之相反,增大陶瓷夹杂电导σi降低Pi ,因而不利于复合材料的极化。我们预测了不同极化条件下复合材料的热释电、压电性能,理论结果与实验吻合较好。
With the development of laser and infrared detection techniques, research in the field of pyroelectric materials and their application has expanded at a breathtaking pace. Many excellent pyroelectric devices, such as pyroelectric detector and thermal imaging system etc, have been manufactured, which can be used in industry, national defence and daily life. Composites of ferroelectric ceramic inclusions in a polymer matrix have been widely investigated, which combine the advantages of the polymer matrix with those of the ceramic phase. Potassium tantalate niobate (KTN) have extraordinary electro-optic, pyroelectric effects and is a very potential pyroelectric material.
     To solve the problems in the practical application of KTN materials caused by high preparation temperature, the objective of the current work is to explore new synthesis methods: hydrothermal, simplex solvothermal and mixed solvothermal synthesis; then we attempt to explore a composite based on KTN with outstanding pyroelectric property. Therefore the probable approachs to improve the pyroelectric property of 0-3 ferroelectric composites are phenomenologically discussed from the theoretical point of view. Moreover, we have discussed the polarization mechanism of the material and predict the pyroelectric and piezoelectric properties of 0-3 ferroelectric composites under different poling conditions.
     In view of the obstacle of the practical application of KTN material, novel preparation methods with the advantage of mild reaction condition are explored. We employ the hydrothermal processing route including hydrothermal, simplex solvothermal and mixed solvothermal method to prepare the KTN powders. Finally high-purity KTN powders have been successfully synthesized by systematic abundant experiments. The synthesis mechanism is discussed thoroughly. The present mixed solvothermal method provides a new potential route for synthesizing ferroelectric potassium tantalate niobate material. The KOH concentration and the solvent composition have important effects on the final products. XRD, SEM and TEM investigations exhibit that the typical samples solvothermally synthesized are nanosized, well-crystallized and single crystalline. The KTN particle shows the pseudo-cubic to tetragonal transition with increasing crystallite size. It is believed that supercritical isopropanol in the solvent plays an important role in synthesizing KTN nanoparticles under milder conditions than hydrothermal route.
     0-3 KTN/P(VDF-TrFE) bulk composites has been fabricated by hot-pressing method. Dielectric, ferroelectric and pyroelectric properties have been investigated primarily. XRD and SEM results indicate that the product is well crystallized without any other impurity phase, and KTN powders is dispersed uniformly in a P(VDF-TrFE) matrix. The dielectric constant of the composite decreases greatly relative to that of ceramic and is about 100 at room temperature. KTN/ P(VDF-TrFE) 0-3 composite thin films have been fabricated using the spin-coating method. It shows that the film is quite homogeneous and shows better interfacial integration than bulk composites.
     In order to explore the possible methods for improving the pyroelectric effect of 0-3 ferroelectric composites, a new comprehensive model has been developed for the pyroelectric activity of 0-3 ferroelectric composites which includes additional contributions from the electrical conductivity of the constituents and the frequency of measurement when the secondary pyroelectric effect resulting from the coupled thermoelectroelastic behavior is considered. The boundary conditions are obtained in terms of the Laplace equation and Maxwell’s equations. The analytical expressions have been derived for primary and secondary pyroelectric coefficients. The effects of the electrical conductivity of the matrix and the measuring frequency on the pyroelectric property have been investigated in detail. Our model can reflect comprehensively the pyroelectric property of the material and shows reasonably good agreement with experimental data.
     To better understand the physical process behind poling of 0-3 composite, we have investigated the effect of electrical conductivity of the constituents on the poling behavior of the ceramic inclusions in 0-3 ferroelectric composites. A new model for the pyroelectric and piezoelectric properties in terms of the poling conditions (poling field and poling time) has been developed to include the electrical conductivity. Simulated results show that conductivity plays an important role in the poling process. Properly increasing conductivity of the matrixσm can enhance the polarization in the ceramic inclusion of the composite Pi , therefore make the poling of the composite more efficient. On the contrary, higher conductivity of the ceramic inclusionσiresults in lower polarization Pi , which is unfavorable to the poling of the composite. The model predicts the pyroelectric and piezoelectric properties under different poling conditions, which agrees well with the corresponding experimental data.
引文
[1] Lang S B. Pyroelectricity: A 2300-year history, Ferroelectrics, 1974, 7(1-4): 231~235
    [2]钟维烈.铁电体物理学.科学出版社出版,新华书店北京发行所发行,1996,6,528-532
    [3] Whatmore R.W., Patel A., Shorrocks N.M. et al, Ferroelectric materials for thermal IR sensors-State of the art and perspectives, Proc. Seventh international meeting on ferroelectricity, Ferroelectrics, 1990, 104: 269-283.
    [4] Zhang P.L., Zhong W.L., Fang C.S., low-temperature pyroelectric properties of modified TGS single-crystals, Ferroelectrics, 1990, 101: 179-183.
    [5] Muralt P., Micromachined infrared detectors based on pyroelectric thin films. Rep. Prog. Phys., 2001, 64: 1339-1388
    [6] Bhalla A.S., Fang C.S., Yao X., et al, Pyroelectric properties of the alanine and arsenic-doped triglycine sulfate single crystals, Appl. Phys. Lett., 1983, 43: 932-935.
    [7] Gallo M.A., Willits D.S., Lubke R.A., et al, Low-cost uncooled IR sensor for battlefield surveillance, Proceedings of SPIE, Infrared Technology XIX, 1993, 2020: 351-362.
    [8] Stafsudd O.M., Pines M.Y., Characteristics of KTN pyroelectric detectors, Journal of the Optical Society of America, 1972, 62(10): 1153-1155.
    [9] Butler N.R., Iwasa S., Solid state pyroelectric imager, proceeding of SPIE, infrared detectors and focal plane arraysⅡ, 1992,1685: 146-154.
    [10] Flannery R.E., Miller J.E., Status of uncooled infrared imagers, proceedings of SPIE, infrared imaging systems: design, analysis, modeling and testingⅢ, 1992, 1689: 379-395.
    [11] Whatmore R.W., Pyroelectric materials and devices, Reports on progress in physics, 1986, 49: 1335-1386.
    [12] Whatmore R.W., Osbond P.C., Shorrocks N.M., Ferroelctric Material for Thermal IR Detectors. Ferroelectrics, 1987, 76: 351-367.
    [13]陈实,张海波,姜胜林,曾亦可,刘梅冬,热释电非制冷红外焦平面现状及发展,红外与激光工程,2006,35(4):419-436
    [14]王龙海,王世敏,黄桂玉等,电光、热释电材料KTa1-xNbxO3的制备、性能及应用,压电与声光,1995,17(5): 36-44.
    [15] Shorrocks N.M., Whatmore R.W., Osbond P.C., Lead scandium tantalite for thermal detector applications, Proc. Seventh international meeting on ferroelectricity, Ferroelectrics, 1990, 106: 387-392.
    [16] Iijima K, Tomita Y, Takayama R, et al. Preparation of c-axis oriented PbTiO3 thin films and their crystallographic, dielectric, and pyroelectric properties, J. Appl. Phys. 1986, 60: 361–367.
    [17] Kohli M., Muralt P., Setter N., Removal of 90?-domain pinning in (100) PZT15/85 thin films by pulsed operation, Appl. Phys. Lett., 1998, 72: 3217–3219.
    [18] Shorrocks N.M., Patel A., Walker M.J., Integrated thin film PZT pyroelectric detector arrays, Microelectron. Eng., 1995, 29: 59–66.
    [19] Iijima K, Nagao N, Takeuchi T, et al, Sputtering of lead-based ferroelectrics, MRS Symp. Proc, 1993, 310: 455–465.
    [20] Iijima K, Tomita Y, Takayama R, et al, Preparation of c-axis oriented PbTiO3 thin films and their crystallographic, dielectric, and pyroelectric properties, J. Appl. Phys. 1986 60: 361–367.
    [21] Seifrt A., Muralt P., Setter N., High figure of merit porous (Pb, Ca)TiO3 thin films for pyroelectric applications, Appl. Phys. Lett., 1998, 72: 2409-2411.
    [22] Shuichi K., Ferroelectric properties in epitaxially grown Ba1-xSrxTiO3 thin films, J. Appl. Phys., 1995, 77(12): 6461-6465.
    [23] Hartleyn P., Maksimov E.G., Epitaxially grown pyroelectric infrared sensor array for human body detection, Integrated ferroelectrics, 1995, 6(2): 241-251.
    [24] Watton R., Todd M.A., Induced pyroelectricity in sputtered lead scandium tantalate films and their merit for IR detector arrays, Ferroelectrics, 1991, 118: 279–95.
    [25] Kroon A.P.D., Dunn S.C., Whatmore R.W., Piezo and pyroelectric properties of lead scandium tantalate thin films, Integr. Ferroelect., 2001, 35: 209–18.
    [26] Fuflyigin V, Salley E, Vakhutinsky P, et al. Free-standing films of PST for uncooled infrared detectors, Appl. Phys. Lett., 2001, 78: 365–367
    [27] Liu D, Payne D, Lower temperature crystallization and ordering in sol-gel derivedPST powders and thin layers, J. Appl. Phys. 1995, 77: 3361–3364.
    [28] Watton R., Ferroelectric materials and IR bolometer arrays from hybrid arrays towards integration. Integrated ferroelectrics, 1994, 4: 175-186.
    [29] Coutures J. L, Lemaitre R, Pourquier E, et al. Uncooled infrared monolithic imaging sensor using pyroelectric polymer, SPIE, 1995, 2552: 748–54.
    [30] Neumann N, Kohler R, Hofmann G, Infrared sensors based on the monolithic structure Si-(VDF/TrFE), Ferroelectrics, 1995, 133: 41–45.
    [31]甘国友,严继康,孙加林等.压电复合材料的现状和展望.功能材料,2000, 31(5),:456-459
    [32] Newnham R.E., Skinner D.P., Cross L.E., Connectivity and piezoelectric pyroelectric composites, Mat.Res.Bull, 1978(13):525-536
    [33] Ce-Wen Nan. Product property between thermal expansion and piezoelectricity in piezoelectric composites: pyroelectricity. J.Mater Sci Lett, 1994(13): 1392-1394
    [34]徐林芳,1-3型PZT5 /epoxy resin压电复合材料的制备、结构与性能研究,武汉理工大学博士学位论文,2006,9-10
    [35]杨凤霞,张端明,研究混合连通型压电复合材料的模型及方法,压电与声光,2003, 25(5): 414-417.
    [36] Yamada T., Ueda T., Kitayama T., Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J.Appl.Phys, 1982, 53(6): 4328-4332
    [37] Furukawa T., Ishida K., Fukada E., Piezoelectric properties in the composite systems of polymers and PZT ceramics, J.Appl.Phys, 1979, 50(7): 4904-4912
    [38] Wang Y. G, Zhong W. L., Zhang P. L., Pyroelectric properties of ferroelectric-polymer composite, J.Appl.Phys, 1993, 74(1):521-524
    [39] Nan C.W, Weng G. J., Influence of polarization orientation on the effective properties of piezoelectric composites, Journal of Applied Physics, 2000, 88(1): 416-23.
    [40] Wong C.K., Poon Y.M., Shin F.G., Explicit formulas for effective piezoelectric coefficients of ferroelectric 0-3 composites based on effective medium theory, Journal of Applied Physics, 2003, 93(1), 487-496.
    [41] Nan C.W. Multiple-scattering approach of effective properties of piezoelectriccomposites, Phys.Rev B, 1993, 48(12): 8578-8582.
    [42] Banno H., Theoretical equations for dielectric, piezoelectric and elastic properties of flexible composite consisting of polymer and ceramic powder of two different materials, Ferroelectrics, 1989, 95:111-115.
    [43] Gomez T.E., Montero F., New constitutive relations for piezoelectric composites and porous piezoelectric ceramics, J. Acoust. Soc. Am, 1996, 100(5): 3104-3114.
    [44] Gomez T. E., Montero F., Piezocomposites of complex microstructure: theory and experimental assessment of the coupling between phases, IEEE Trans UFFC, 1997, 44(1): 208-217.
    [45] Jayasundere N., Smith B.V., Dielectric constant for binary piezoelectric 0-3 composites, J.Appl.Phys, 1993, 73(5): 2462-2466.
    [46] Jayasundere N. , Smith B.V., Dunn J.R., Piezoelectric constant for binary piezoelectric 0-3 connectivity composites and the effect of mixed connectivity, J. Appl. Phys, 1994, 76(5): 2993-2998.
    [47] Yang F.X., Zhang D.M, Yu P.M., et al. Pyroelectric properties of ferroelectric ceramic/ferroelectric polymer 0-3 composites. J.Appl.Phys, 2003, 94(4): 2553-2558
    [48] Dias C.J., Igreja R., Mendes R.M, Inacio P., et al, Recent advances in ceramic-polymer composite electrets, IEEE transactions on dielectrics and electrical insulation, 2004, 11(1): 35-40
    [49] Peng Z.F, Chen Y., Preparation of BaTiO3 nanoparticles in aqueous solutions, Microelectronic Engineering, 2003, 66(1-4): 102~106
    [50] Qi J.Q., Li L.T, Preparation of nanoscaled BaTiO3 powders by DSS method near room temperature under normal pressure, 2004, 260(3-4): 551-556
    [51]李青莲,陈维,陈寿田等,纳米晶钛酸钡粉体制备及陶瓷烧结性能的研究,压电与声光, 2000, 1:37-39
    [52] Xu H.R, Gao L., Guo J.K, Preparation and characterizations of tetragonal barium titanate powders by hydrothermal method. Journal of the European Ceramic Society, 2002, 22(7):1163-1170
    [53] Deng Y., Liu L., Cheng Y., et al. Hydrothermal synthesis and characterization of nanocrystalline PZT powders. Materials Letter, 2003, 57: 1675-1678
    [54]李小兵,田莳,张跃,0-3型压电陶瓷/聚合物复合材料的制备工艺新进展,功能材料,2001,32(4): 356-358.
    [55] Satish B, Sridevi K, Vijaya M S. Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press techniques. J. Phys.D: Applied Phys, 2002, 35: 2048-2050.
    [56] M.P. Wenger, P. Blanas, C.J. Dias, R.J. Shuford, D.K. Das-Gupta, Ferroelectric ceramic/polymer composites and their applications, Ferroelectrics, 1996, 187(1-4): 75-86.
    [57] Q.Q. Zhang, H.L.W. Chan, C.L. Choy, Dielectric and pyroelectric properties of P(VDF-TrFE) and PCLT-P(VDF-TrFE) 0-3 nanocomposite films, Composites Part A Applied Science and Manufacturing, 1999, 30A(2), 163-7.
    [58] Toshinobu Y., Hiroyuki U., Wataru S., et al, Synthesis of PbTiO3/organic hybrid from metalorganic compounds, J. Mater. Res., 1999, 14(8): 3275-3280.
    [59] Kwonhoon H., Safari A., Riman R.E., Colloidal processing for improved piezoelectric properties of flexible 0-3 ceramic-polymer composites, Journal of the American Ceramic Society, 1991, 74(7): 1699-702.
    [60]王庭慰,陈逸范,高介电性能的陶瓷-聚合物复合材料初探,高分子材料科学与工程,1996, 5:77-82
    [61] Chilton J.A. Electroactive composites, GEC Review, 1991, 6(3): 156-64
    [62] Sherrit S., Wiederick H.D., Mukherjee B.K., et al. 0-3 piezoelectric-glass composites, Ferroelectrics, 1992, 134(1-4): 65-9.
    [63] Waller D., Iqbal T., Safari A., Poling of lead zirconate titanate ceramics and flexible piezoelectric composites by the corona discharge technique. Journal of the American Ceramic Society, 1989, 72(2): 322-4.
    [64]朱嘉林,王丽坤,李万忠等,0-3型压电复合材料的电晕放电极化,电子元件与材料,1994,17(4):34-36
    [65]张冶文,陈永健,陈王丽华等,PT/P(VDF-TrFE)中聚合物基体对压电效应的贡献,压电与声光,1998,20(6):397-401
    [66] Chan H.L.W., Chan W.K, Zhang Y., et al. Pyroelectric and piezoelectric properties oflead titanate/polycinylidence fluoride/trifluoroethylene 0-3 composites. IEEE Transactions on Dielectric and Electrical Insulation, 1998, 5(4): 505-512.
    [67] Williams M. A, Hall D.A, Wood A.K, 0-3 piezoceramic-polymer composites prepared using thermoplastics and elastomers, Applications of ferroelectrics, 1992. ISAF’92, Proceedings of the Eighth IEEE International Symposium, 1992, 508-511.
    [68] Sa-Gong G.., Safari A., Jang S.J., et al. Poling flexible piezoelectric composites, Ferroelectrics Letters Section, 1986, 5(5): 131-142.
    [69] Sakamoto W.K., Marin-Franch P, Das-Gupta D F. Characterization and application of PZT/PU and graphite doped PZT/PU composite. Sensors and Actuators A, 2002, 100: 165-174
    [70] Yamazaki H., Kitayama T., Pyroelectric properties of polymer-ferroelectric composites, Ferroelectrics, 1981, 33: 147-153.
    [71] Wang Y.G., Zhong W.L., Zhang P.L., Pyroelectric properties of ferroelectric-polymer composite. J. Appl. Phys. 1993, 53: 521-524.
    [72] Nan C.W., Theoretical approach to the coupled thermal-electrical-mechanical properties of inhomogeneous media. Phys. Rev. B, 1994, 49: 12619-12624.
    [73] Levin V.M., Luchaninov A.G., On the effective properties of thermo-piezoelectric matrix composites, J. Phys. D: Applied Physics, 2001, 34: 3058-3063.
    [74] Chew K.H., Shin F.G., Ploss B., et al. Primary and secondary pyroelectric effects of ferroelectric 0-3 composites. J.Appl.Phys. 2003, 94: 1134-1145.
    [75] Or Y.T., Wong C.K., Ploss B.,et al. Modeling of poling, piezoelectric, and pyroelectric properties of ferroelectric 0-3 composites. J. Appl. Phys. 2003, 94: 3319-3325.
    [76] Furukawa T., Piezoelectricity and pyroelectricity in polymers, IEEE Trans. Electr. Insul., 1989, 24(3): 375-394.
    [77] Wong C.K., Shin F.G., Electrical conductivity enhanced dielectric and piezoelectric properties of ferroelectric 0-3 composites. J. Appl. Phys., 2005, 97: 064111-064119.
    [78] Dunn M. L., Micromechanics of coupled electroelastic composites: effective thermal expansion and pyroelectric coefficients. J. Appl. Phys. 1993, 73: 5131-5140.
    [79] Dias C.J., Das-Gupta D.K., Inorganic ceramic/polymer ferroelectric compositeelectrets, IEEE Transactions on dielectrics and electrical insulation, 1996, 3(5): 706-734.
    [80] Tripathi A.K., Goel T.C., Pillai P.K.C., Pyroelectric and piezoelectric properties of sol-gel derived BaTiO3 polymer composites, 7th Int.Symp. on Electrets, Berlin, IEEE Dielectrics and Electr. Insul.Soc., 1991, 415-420.
    [81] Murphy C.E., Dobson P.J, Pyroelectric properties of fine barium titanate/70:30 mol% poly(vinylidene fluoride:trifluoroethylene) thin-film composites, Ferroelectrics, 1994, 152(1-4): 127–132
    [82] Murphy C.E., Richardson T., Roberts G.G., Thin film Pyroelectric Inorganic/organic Composites, Ferroelectrics, 1992, 134: 189-194.
    [83] Wang X.X., Lam K.H., Tang X.G., et al. Dielectric characteristics and polarization response of lead-free ferroelectric (Bi0.5Na0.5)0.94Ba0.06TiO3-P(VDF-TrFE) 0-3 composites. Solid state communication, 2004, 130: 695-699.
    [84] Samara G.A., From ferroelectric to quantum paraelectric: KTa1-xNbxO3 (KTN), a model system, AIP Conference Proceedings, 2004, 706: 176-179.
    [85] Knauss L.A., Pattnaik R., Toulouse J., Polarization dynamics in the mixed ferroelectric KTa1-xNbxO3, Physical Review B, 1997, 55: 3472-3479.
    [86]王世敏,张刚升,李佐宜等,KTa0.55Nb0.45O3薄膜的铁电及热释电性能研究,硅酸盐学报,1999,27(6): 678-683.
    [87]王世敏,王龙海,张刚升等,SrTiO3(111)衬底上KTa0.65Nb0.35O3薄膜的取向生长研究.无机材料学报,1997,12(6): 819-824.
    [88]王世敏,赵建洪,王龙海等,热处理工艺对KTa0.65Nb0.35O3薄膜结晶学性能的影响.科学通报,1997,42(1):99-102.
    [89] Zhang D.M., Li Z.H., Zhang M.J., et al, Preparation of KTN films on single crystal quartz substrates, American Ceramic Society Bulletin, 2001, 80(2): 57-61.
    [90] Whipps P.W., Growth of high-quality crystals of KTN, Journal of Crystal Growth, 1972, 12(2): 120-124.
    [91] Khemakhem H., Ravez J., Daoud A., Phase transitions, piezoelectric and pyroelectric properties of KTa1-xNbxO3 ceramics (x = 0.3 and 0.4), Ferroelectrics, 1996, 188(1-4): 85-93.
    [92] Wang S.M, Li Z.Y., Zhang D.M., et al. Dielectric, ferroelectric properties of KTa0.65Nb0.35O3 thin films prepared by sol-gel process on Pt(111)/Ti/MgO(100) substrates, Journal of Sol-Gel Science and Technology, 2000, 17(2): 159-162.
    [93] Venkatesh J., Sherman V., Setter N., Synthesis and dielectric characterization of potassium niobate tantalate ceramics, Journal of the American Ceramic Society, 2005, 88(12): 3397-404.
    [94] Wang S.M., Zhou T.S, Wang L.H, et al, Preparation of highly oriented KTN/SrTiO3(111), KTN/SrTiO3(100) thin films by sol-gel method, Ferroelectrics, 1997, 195(1-4), 259-63.
    [95] Zelezny V., Bursik J., Vanek P., Chemical solution deposition and infrared study of K(Ta,Nb)O3 thin films, Ferroelectrics, 2005, 318: 23-28.
    [96] Wang X.D., Peng X.F., Zhang D.M., KTN thin films prepared by pulsed laser deposition on transparent single crystal quartz (100), Science in China, Series G: Physics Astronomy, 2005, 48(1): 33-43.
    [97] Tunaboylu B., Sashital S. R., Harvey P., et al, Synthesis and properties of KTN films by sol-gel deposition and RF-magnetron sputtering, Ferroelectrics, Letters Section, 2001, 28(3-4): 75-84.
    [98] Su B., Button T.W., Ponton C.B., Control of the particle size and morphology of hydrothermally synthesised lead zirconate titanate powders, Journal of Materials Science, 2004, 39(21): 6439-6447.
    [99] Xu H.R., Gao L., Hydrothermal synthesis of high-purity BaTiO3 powders: Control of powder phase and size, sintering density, and dielectric properties, Materials Letters, 2004, 58(10): 1582-1586.
    [100] Lu C.H, Lo S.Y., Lin H.C., Hydrothermal synthesis of nonlinear optical potassium niobate ceramic powder, Materials Letters, 1998, 34: 172–176
    [101] Suyal G., Colla E., Gysel R., Cantoni M., Setter N., Piezoelectric response and polarization switching in small anisotropic perovskite particles, Nano letters, 2004, 4(7): 1339-1342.
    [102] Inoue M., Glycothermal synthesis of metal oxides, J. Phys.: Condens. Matter, 2004, 16: 1291–1303.
    [103] Bae D.S., Lim B., Kim B.I., et al, Synthesis and characterization of ultrafine CeO2particles by glycothermal process, Materials Letters, 2002, 56: 610–613.
    [104] Kongwudthiti S., Praserthdam P., Silveston P., et al, Influence of synthesis conditions on the preparation of zirconia powder by the glycothermal method, Ceramics International, 2003, 29: 807–814.
    [105] Xu D., Liu Z.P, Liang J.B, Qian Y.T., Solvothermal Synthesis of CdS Nanowires in a Mixed Solvent of Ethylenediamine and Dodecanethiol, J. Phys. Chem. B, 2005, 109: 14344-14349.
    [106] Kim B.K., Lim D.Y., A New Glycothermal Process for Barium Titanate Nanoparticle Synthesis, J.Am.Ceram.Soc., 2003, 86(10): 1793-1796.
    [107] Jung Y.J., Lim D.Y., Nho J.S., et al. Glycothermal synthesis and characterization of tetragonal barium titanate, Journal of Crystal Growth, 2005, 274: 638–652
    [108] Lu C.H., Lo S.Y., Wang Y.L., Glycothermal preparation of potassium niobate ceramic particles under supercritical conditions, Materials Letters, 2002, 55: 121– 125.
    [109]张永才,水热与溶剂热合成亚稳相功能材料研究,北京工业大学博士学位论文,2003,2-9.
    [110] Liu J.F., Li X.L., Li Y.D., Synthesis and characterization of nanocrystalline niobates, Journal of Crystal Growth, 2003, 247: 419–424.
    [111]张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2001年2月第一版,302-306.
    [112] Ishikawa K., Yoshikawa K., Okada N., Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles, Phys. Rev. B, 1988, 37: 5852-5855.
    [113] Chattopadhyay S., Ayyub P., Palkar V. R., et al, Size-induced diffuse phase transition in the nanocrystalline ferroelectric PbTiO3, Phys. Rev. B, 1995, 52:13177-13183.
    [114] Kwon S.G., Park B.H., et al. Solvothermally synthesized tetragonal barium titanate powders using H2O/EtOH solvent, Journal of the European Ceramic Society, 2006, 26: 1401-4.
    [115] Hua Z.L., Wang X.M., Xiao P., Shi J.L., Solvent effect on microstructure of yttria-stabilized zirconia (YSZ) particles in solvothermal synthesis, Journal of the European Ceramic Society, 2006, 26: 2257-64.
    [116] Ploss B., Ploss B., Shin F.G., et al, Pyroelectric activity of ferroelectric PT/P(VDF-TrFE), IEEE Transaction and dielectrics and electrical insulation, 2000, 7(4): 517-522.
    [117] Furukawa T.,Ishada K., Fokada E., Piezoelectric properties in three composites systems of polymer and PZT ceramics, J. Appl. Phys., 1979, 50(7): 4904-4912.
    [118] Chan H.L.W., Chan W.K., Zhang Y., et al, Pyroelectric and piezoelectric properties of lead titanate/Polyvinylidene fluoride-trifluoroethylene 0-3 composites, IEEE Transaction and dielectrics and electrical insulation, 1998, 5(4): 505-512.
    [119] Dias C.J., Das-Gupta D.K., Piezo- and pyroelectricity in ferroelectric ceramic- polymer composites. Key Engineering Materials, 1994, 92-93: 217-248.
    [120] Zhang Q.Q., Chan H.L.W., Zhou Q.F., et al, Calcium- and lanthanum-modified lead titanate (PCLT) ceramic and PCLT/vinylidene fluoride-trifluoroethylene 0-3 nanocomposites. J.Am.Ceram.Soc, 2000, 83(9): 2227-2230.
    [121] Marin-Franch P., Martin T., Fernandez-Perez O., Tunnicliffe D. L., Das-Gupta D. K., Evaluation of PTCa/PEKK composites for acoustic emission detection. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(1): 50-55.
    [122] Jimenez B., Vicente J.M., Jimenez R., Extrinsic contributions to the low frequency piezoelectric properties of Ca/Sm modified lead titanate ceramics. J.Phys.Chem.Solid, 1996, 57 (4): 389-396.
    [123] Ng W.Y., Ploss B., Chan H.L.W., et al, Pyroelectric Properties of PZT/P(VDF-TrFE) 0-3 Composites, IEEE International Symposium on Applications of Ferroelectrics, 2000, 2: 767-770.
    [124] Zhang D.M., Yang F.X., et al, The coupled thermoelectroelastic behaviors of biphasic piezocomposites, J. Appl. Phys, 2005, 98: 036103-036105.
    [125] Chen X.D., Yang D.B., Jiang Y.D., et al, 0-3 piezoelectric composite film with high d33 coefficient. Sens.Actuators, A. 1998, 65: 194-196.
    [126] Zhang D.M., Wei N., et al, A new comprehensive model for the pyroelectric property of 0-3 ferroelectric composites, J. Phys. D: Appl. Phys. 2006, 39: 1963-1969.
    [127] Or Y.T., Wong C.K., Ploss B., Polarization behavior of ferroelectric multilayered composite structures, J.Appl.Phys., 2003, 93: 4112-4119.
    [128] Miller S.L., Schwank J.R., Nasby R.D., et al, Modelling ferroelectric capacitor switching with asymmetric nonperiodic input signals and arbitrary initial conditions, J.Appl.Phys., 1991, 70: 2849-2860.
    [129] Wong C.K., Wong Y.W., Shin F.G., Effect of interfacial charge on polarization switching of lead zirconate titanate particles in lead zirconate titanate/polyurethane composites, J.Appl.Phys., 2002, 92: 3974-3978.
    [130] Lam K.S., Wong Y.W., Tai L.S., et al, Dielectric and pyroelectric properties of lead zirconate titanate/polyurethane composites, J.Appl.Phys, 2004, 96: 3896-3899.
    [131] Abdullah M.J., Das-Gupta D.K., Electrical properties of Ceramic/Polymer Composites, IEEE Transaction on Electrical Insulation, 1990, 25(3): 605-610.
    [132] Furukawa T., Suzuki K., Date M., Switching process in composite systems of PZT Ceramics and polymers, Ferroelectrics, 1986, 68:33-44.
    [133] Or Y.T., Ploss B., Shin F.G., et al, Poling of ferroelectric PT/P(VDF-TrFE) 0-3 composite, Integrated Ferroelectrics, 2002, 47: 19-28.
    [134] Furukawa T., Ishida K., Fukada E., Piezoelectric properties in the composite system of polymer and PZT ceramics, J. Appl. Phys., 1979, 50(7): 4904-4912.
    [135] Chan H.L.W, Chen Y., Choy C.L., A Poling Study of PZT/P(VDF- TrFE) Copolymer 0-3 Composites, Integrated Ferroelectrics, 1995, 9: 207-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700