嗜热酶溶解法促进剩余污泥减量的行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市废水处理量的增加,下水道接管率的提高和活性污泥(AS)系统的扩建,产生大量无法避免的污泥,新生剩余污泥的减量化及资源化的研究成为国际新趋势。根据生物处理工艺中影响剩余污泥产生的可能途径,将污泥减量技术分为降低细菌合成量的解偶联技术、增强微生物利用二次基质进行隐性生长的各种溶胞技术,介绍了各种技术的研究现状,并比较了减量效果和优缺点。基于微生物隐性生长的生物嗜热酶溶解(S-TE)技术,该技术经济高效、安全,而且能耗低、易于运行控制,结合后续工艺不仅可以实现污泥的“零排放”,还可同时实现废水的高效生物降解或沼气产能的增加,应用前景良好。
     研究了S-TE预处理对剩余污泥溶解和各化学组分变化的影响。在剩余污泥中接种含混合嗜热菌的驯化种泥,通过实验运行,考察了不同温度下污泥固体有机物的溶解变化情况。结果表明,接种嗜热菌相对于不接种试验更促进了污泥悬浮固体的溶解。接种最适宜的温度为65℃,该温度下,56h内TSS和VSS溶解率最大可达31.94%和48.04%,而不接种条件下最大溶解率仅为19.69%和28.82%。微曝气条件下接种后的SCOD得到累积,65℃、72h时出现SCOD最大值4699mg/L,有利于厌氧消化。由于接种混合嗜热菌促进了蛋白质的溶解,蛋白质和氨氮含量先升后缓慢降低,说明S-TE过程中蛋白质的溶解和氨氮浓度的变化均为动态平衡的结果。
     本论文研究了含混合嗜热菌的不同种泥/处理污泥比例下的污泥中固体有机物溶解效率的变化,同时监测了在此条件下各个反应器中的酶活性的变化曲线,最后,为了更好的反映在污泥系统中固体有机物受到嗜热菌种泥影响的程度并对污泥固体有机物溶解的动力学进行了初步的探讨。实验结果表明,不同种泥/处理污泥比例下,对污泥中固体有机物溶解的促进程度有所不同,且污泥溶解速率也有所不同。当种泥/处理污泥比例为3时,VSS溶解率达到最大值60.5%。此外,不同种泥/处理污泥比例条件下VSS和TSS溶解过程在初始阶段(t=12h)都符合一级反应动力学模型。
     本文对S-TE污泥溶解受到溶解氧因素的影响也进行了探讨,DO=1mg/L为实验条件下最佳溶解氧浓度,而当DO浓度增大,VSS去除率反而降低。分析其可能的原因,也许是因为单纯的加大曝气量,不仅不能使氧转移效率提高,反而会起到散热的作用,使得系统温度降低,达不到嗜热菌对温度的要求,从而对VSS的去除不利。
With the increase of amount of municipal wastewater and sewer-laid rates and expansion of active sludge (AS) system, it brings about large amount of sludge and generates a new international tendency of sludge minimization and resource utilization. According to production principle of excess activated sludge in biological treatment process, the possible approaches for sludge reduction may be based on there aspects: uncoupling metabolism, cryptic growth enhanced through cell lysis. Relevant research works were reviewed, and characteristics of each technology were compared. Compared with other sludge solubilization technology such as ozone oxidation, chlorine oxidation, thermal hydrolysis, acid, alkali, mechanical, ultrasonic and enzymatic directly pretreatment, solubilization by thermophilic enzyme(S-TE) based on microbial cryptic growth is more cost-effective and safer as well as lower energy cost and easier operation. Combined with the following process, S-TE not only can realize sludge "zero discharge", but simultaneously realize high effective wastewater biodegradation or enhancement of biogas production.
     The influence of S-TE (Solubilization by Thermophilic Enzyme) pretreatment on excess sludge characteristics and changes of chemical components was investigated. The domesticated seed sludge containing mixed thermophilic bacterium was inoculated in excess sludge, and the solubilization of solid organic substance under different temperature was examined by way of batch operation. The results show that thermophilic bacterium promoted the dissolution of sludge, and the optimum temperature for thermophilic enzyme solubilization was 65℃, in which the solubilization rate of total suspended solid (TSS) and volatile suspended solid (VSS) reached 31.94% and 48.04% within 56h, which were improved by 7.57% and 6.87% than that without inoculation. The maximal soluble chemical oxygen demand (SCOD) can be reached at 4699 mg/L at 65℃, 72h, which would be beneficial to the further anaerobic digestion process. On account of the inoculation of mixed thermophilic accelerating dissolve of protein, the protein and ammonia concentration raise a lot and then fall slowness, which make out that homeostasis of protein dissolving and ammonia concentrations was exists in S-TE process.
     The influence of different DS/FS(DS:digested sludge; FS:feed sludge) ratio was also investigated in this study.The impact of the ration was evaluated with respect to its capability for removal of the total suspended solids(TSS) and volatile suspended solids(VSS). The DS/FS ratio 3 results in the maximum VSS 60.5%. The increase of the DS/FS ratio associated with increased in VSS and TSS destruction, respectively. The protease activity was caculated to suggest the ability of thermophilic bacteria in the sludge treatment to degradation of organic solids. Assuming pseudo-first-order kinetics, it was shown that while organic solid destruction rate constants (k) are inversely related to DS/FS ratio.
     The effect of the dissolve of dissolved oxygen (DO) on the excess sludge solubilization by the S-TE technology is studied in this paper. The optimical DO is 1mg/L for the sludge solubilization in the experiment. And the removal rate of the VSS is decrease when the DO increased. The most capable reason for this is, the simply increase of the aeration, not only can not improve the excharge of the dissolved oxygen (DO), but also push the heat into the air. This process leads to a decrease of the temperature. Thus, the temperature can’t meet the need of the thermophilic bacteria and as a result of the solids solution rate decrease.
引文
[1] 中华人民共和国国家统计局.中国统计年鉴 2006[M].北京:中国统计出版社,2006:73-92.
    [2] 梁鹏,黄霞,钱易.污泥减量化技术的研究进展[J].环境污染治理技术与设备, 2003, 4(1): 44-52.
    [3] 张全, 陆鲁.剩余污泥微氧消解工艺研究[J].上海环境科学,1995, 14(11):15-16.
    [4] Low E W.Chase H A. Reducing production of excess biomass during wastewater treatment [J]. Water Research, 1999, 33(5):1119-1132.
    [5] 周少奇.城市污泥处理处置与资源化[M].广州:华南理工大学出版社, 2002: 38-41.
    [6] 何品晶,顾国维,李笃中等.城市污泥处理与利用[M]. 北京:科学出版社, 2003:91-99.
    [7] 魏源送,樊耀波.污泥减量技术的研究及其应用[J].中国给水排水, 2001, 17(7): 23-26.
    [8] Strand S E, Harem G H, Stensel H D. Activated-sludgeyield reduction using chemical uncouplers [J]. Water Environment Research, 1999, 71(4):454-458.
    [9] 金城英夫.長崎市小江原処理場の改造に伴う特徵一発生污泥量の極あて少ない腐植活性污泥法[M]. 腐植活性污泥文獻集. 國土館大學工學部, 2000: 49-63.
    [10] 金城英夫.腐植質を用いだ活性污泥法[M]. 腐植活性污泥文獻集. 國土館大學工學部, 2000:108-121.
    [11] 金城英夫. 山之內町水質凈化セン夕一の污水処理機能について[M].腐植活性污泥文獻集. 國土館大學工學部, 2000:214-223.
    [12] Cabrero A, Ferandez A, Mirada F, et al. Effects of copper and zinc on the activated sludge bacteria growth kinetics [J]. Wat Res, 1998, 32(5):1355-1362.
    [13] Liu Y. Effect of chemical uncoupler on the observed growth yield in batch culture of activated sludge [J]. WatRes, 2000, 34(7):2025-2030.
    [14] Mayhew M, Stephenson T.Biomass yield reduction: is biochemical manipulation possible without affecting activated sludge process efficiency [J]. Wat Sci Technol, 1998, 38(8-9):137-144.
    [15] P.Mitchell. Chemiosmotic Coupling and Energy Transduction [J]. Theoretical and Experimental Biophysics, 1967, 32(3):338-351.
    [16] Zheng J, Graff R.A., Rinard I. Incorporation of rapid thermal conditioning into awastewater treatment plant [J].Fuel Proceeding Technology, 1998, 56(3):183-200.
    [17] Russel J B, Cook G M. Energetics of bacterial growth: balance of anabolic and catabolic reactions [J]. Microbiol Rev, 1995, 59 (1):48-62.
    [18] Stouthammer A, Bettenhaussen C. Utilisation of energy for growth and main- tenance in continuous and batch cultures [J]. Biochim-Biophys,1973, 30(1):53-70
    [19] 曹秀芹,陈君等.剩余污泥的超声处理实验研究[J].中国给水排水,2003, 19(2): 58-60.
    [20] Low E W. Chase H A, Milner M G, et al. Uncoupling of metabolism to reduce biomass production in the activated sludge process [J]. Wat Res, 2000, 34(12):3204- 3212.
    [21] 王琳,王宝贞. 污泥减量技术[J]. 给水排水, 2000, 26(10):28-31.
    [22] Yu Liu, et al. Strategy for minimization of excess sludge production from the activated sludge process [J]. Biotechnology Advances, 2001, (19):97-107.
    [23] Liu Y. A kinetic model for energy spilling-associated product formation in substrate-sufficient continuous culture [J].Journal of Applied Microbiology, 2000, 88(3):663-668.
    [24] Sakai Y, Fukase T, Yasui H, et al.An activated sludge process without excess sludge process [J]. Wat.Sci. Tech., 1997, 36(11):163-170.
    [25] Lim H. N., Choi H. Hwang T. M., Kang J.W. Characterization of ozone decomposition in soil slurry: kinetics, mechanism [J]. Wat. Res., 2002, 36(1):219-229.
    [26] 金成英夫. 臭氧の発生しない下水処理法[M]. 腐植活性污泥文獻集. 國土館大學工學部. 2000.
    [27] 黄汉生译.用超声波减少污水中污泥量[J].工业用水与废水,2001.32(1):39-46.
    [28] Harrison S. L. Bacterial cell disruption: a key unit operation in the recovery of intracellular products [J]. Biotechnol. Adv. 1991. (9):217-240.
    [29] Portenlanger G. Mechanical and radical effects of ultrasound [J]. Ultrasound in Environmental Engineering TU Hamburg-harburg Reports on Sanitary Engineering, 1999.
    [30] Rocher M, Goma G, Begue A P. Towards a reduction in excess sludge production in an actived sludge process: biomass physicochemical treatment and biode- gradation [J]. Applied Microbiotechnol, 1999, 51(4):883-890.
    [31] 村上定瞭,谷口稔,清水英男. 水热反応を用いる污泥削減型生物法(水热·生物法) にする研究[J]. 环境技术,1999,28 (8):567-570.
    [32] 村上定瞭,谷口稔,竹内正美. 高温高压水利用による水処理技术[J]. 环境技术, 2000, 29 (2): 109-112.
    [33] 奥田友章,古崎康哲,村上定瞭. 水热反応を利用した污泥削減化氵ステにする基础研究[J].土木学会论文集, 2001,21 (7) :21-30.
    [34] 長古川 進.好熱性細菌による汚泥減量化技術エステプロセス[J]. 地球環境, 2000,11(1):132-133.
    [35] 赤司昭,塩田憲明,長谷川 進等.余剰汚泥の発生しない新しい活性汚泥法紹介[J]. 神鋼パンテツク技報. 2000, 43(2):2-9.
    [36] 山下哲生.エステプロセス/農業集落排水への適用[J].神鋼パンテツク技報. 2003, 47(1):35-40.
    [37] Hasegawa S, Shiota N, Katsura K, et al. Solubilization of organic sludge by thermophilic aerobic bacteria as a pretreatment for anaerobic digestion[J]. Water Science and Technology. 2000, 41(3):163-169.
    [38] Mart A.G, Growth rate of Escherichia coli[J]. Microbiol, Rev. 1991, 55(2):316-333
    [39] Mason C.A. and Hamer G. Cryptic growth in Klebsietla pneumoniae[J]. Appi Microbiol Biotech.1987,25:577-584
    [40] Young-Kee K.,Jin-Hye B. Enhancement of proteolytic enzyme activity excreted from Bacillus stearothermophilus for a thermophilic aerobic digestion process[J]. Bioresource Techmology, 2002, (82): 157-164.
    [41] SonnleitnerB., FiechterA, Bacterial diversity in thermophilic aerobic sewage sludge И Types of organisms and their capacity[J]. Eur J. Appl Microbiol Biotechnol, 1983, 18: 174-180.
    [42] Hensel R., DemharterW, Hilpert R. The microflora inwolwed in aerobic- thermophilic sludge stabilization System [J]. Appl Microbiol, 1989, 11:312-319.
    [43] 塩田憲明, 宮本武等. 三菱化學(株)黑崎事業所殿向エステプロセスの運転狀況[J]. 神鋼パンテツク技報. 2002, 46(1):8-13.
    [44] Poll C, Thiede A, Wermbrer N. Micro-scale distribution of microorganisms and microbial enzyme activities in a soil with long-term organic amendment[J]. Euro- pean Journal of Soil Science, 2003, 54(4): 715-720.
    [45] Miah M S, Tada C, Yingnan Y. Aerobic thermophilic bacteria enhance biogas production [J].J Mater Cycles Waste Manag. 2005,7(4):48-54.
    [46] Kambourova N, Kirilova R, Mandeva A,et al. Purification and properties of thermostable lipase from a thermophilic Bacillus stearothermophilus MC[J].Journal of Molecular Catalysis B: Enzymatic,.2003, 22(1):307-313.
    [47] Li J Z, Mavinic D S, Kelly H G. Determining the volatile fatty acid equivalent in thermophilic aerobically digested sludge supernatant[J]. Journal of Environmental Engineering, 2004, 130(4):397-407.
    [48] 尹军,谭学强.污水污泥处理处置与资源化利用[M].北京:化学工业出版社,2004:120-135.
    [49] Frost, Heather Lynn. Land application biological decontamination and speciation of Metal-laden sewage sludge[M]. Dissertation Abstracts International, 2001:62-63.
    [50] Rocher M, et al. Excess sludge reduction in activated sludge processes by integrating biomass alkaline heat treatment [J]. Water Sci. Technol, 2001, 44(1): 437-444.
    [51] Sakai Y,Aoyagi T, Shiota N, et al.Complete decomposition of biological waste sludge by thermophilic aerobic bacteria[J]. Water Science and Technology, 2000, 42(9): 81-88.
    [52] Hamer A , Mason C A, Hamer G. 1994 .Death and lysis during aerobic thermo- philic sludge treatment: characterization of recalcitrant products[J].Water Research, 1994,28 (4):863-869.
    [53] Muller J A.Prospects and problems of sludge pretreatment process [J].Water Science and Technology, 2001,44(10):121-128.
    [54] R·E·布坎南, N·E·吉本斯.伯杰细菌鉴定手册(第八版)[M],北京:科学出版社, 1984:729-731,743-744.
    [55] Snaidr N,Amann R,Huber I. Phylogenetic analysis and in situ identification of bacteria in activated sludge[J].Applied and Environmental Microbiology, 1997, 63(7):2884-2896.
    [56] Blackall L L, Burrell P C, Gwilliam H. The use of 16S r DNA clone libraries to describe the microbial diversity of activated sludge communities[J]. Water Science and Technology, 1998, 37(4-5): 451-454.
    [57] Shanableh A, Joma S. Production and transformation of volatile fatty acids from sludge subjected tohydrothermal treatment[J]. Water Science and Technology, 2001, 44(10):129-135.
    [58] 汪慧贞,沈家杰. pH 对剩余污泥好氧消化的影响[J],给水排水,1990,16(2): 14-16
    [59] 王治军,王伟.剩余污泥的热水解实验[J].中国环境科学,2005,25(13): 56-60.
    [60] Yuansong Wei, Renze T. Van Houten, Arjan R. Borger, et al. Minimization of excess sludge production for biological wastewater treatment [J]. Water Research. 2003,(37):4453-4467.
    [61] Mason G, Fundmental aspects of aerobic thermophilic biodegradation A.M. Bruce, F. Colin and P. J. Newman Treatment of Sewage Sludge: Thermophilic Aerobic Digestion and Processing Requirements for Landfilling London[J]. Elsevier Applied Science. 1992, 25(1):113-118.
    [62] Fawzi A. Banat, Stephan Prechtl, Franz Bischof .Aerobic thermophilic treatment of sewage sludge contaminated with 4-nonylphenol[J]. Chemosphere 41 (2000) 297-302
    [63] 王治军.热水解预处理改善污泥的厌氧消化性能[J].环境科学, 2005, 26(1):68-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700