五种木本植物对盐碱胁迫的生理响应及外源物质的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探讨不同树种对盐碱胁迫的反应特性及外源物质对木本植物抗盐性的作用,本文对河南白榆(Ulmus pumila)、新疆大枸杞(Lycium dasystemum)、南蛇藤(Celastrusorhiculatus)、小叶丁香(Syringa microphylla)、樟子松(Pinus sylvestris var.mongolica)等5种不同生活型树种苗木在NaHCO_3胁迫下的生理反应及海藻糖(Trehalose,TR)、精胺(Spermine,Spm)、亚精胺(Spermidine,Spd)、氯化胆碱(Choline Chloride,CC)、抗坏血酸(Ascorbic acid,ASA)等外源物质对参试树种抗盐性的影响进行了研究,一方面分析各生理指标与抗盐碱能力的相关性,探讨各生理指标能否作为评价不同生活型树种抗盐碱能力的有效标准。同时,对参试树种耐盐碱能力进行评估,确定各树种对盐碱胁迫的耐受范围;另一方面,对外源物质提高植物抗盐性的生理机制进行探讨。研究结果可以为抗盐树种的选择、植物抗盐性的提高及大庆盐碱土地区的造林绿化提供理论依据与技术支持。主要研究结论如下:
     (1)随盐碱胁迫强度的增加,5个树种苗木总生物量增量和根、茎、叶干重增量均呈下降趋势,但下降幅度存在差异,总生物量增量下降幅度依次为樟子松>小叶丁香>南蛇藤>河南白榆>新疆大枸杞。就各部位生物量增量下降幅度来说,白榆、丁香、樟子松依次为叶>根>茎;枸杞为叶>茎>根;南蛇藤为根>叶>茎。同时,随胁迫强度的增加,白榆和枸杞根冠比持续上升;南蛇藤根冠比先下降后上升;樟子松根冠比先升高后下降:丁香根冠比变化平缓。
     5个树种苗木抗盐碱能力依次为枸杞>白榆>南蛇藤>丁香>樟子松。
     (2)盐碱胁迫下不同生活型木本植物叶绿素含量一致表现下降。不同胁迫时期,随胁迫强度的增加,不同生活型树种叶绿素a、类胡萝卜素含量、叶绿素a/b值均未表现出统一的规律。长期胁迫下,不同生活型树种总叶绿素和叶绿素b含量随胁迫强度增加的变化才表现出统一的趋势。叶绿素含量不是评价不同生活型木本植物抗盐性的可靠指标。因为,通过叶绿素含量这一指标所得到的抗性排序为枸杞>南蛇藤>白榆>樟子松,而这几个树种的抗性排序应为枸杞>白榆>南蛇藤>樟子松。
     不同生活型木本植物对NaHCO_3胁迫有一致的光合响应,即净光合速率、蒸腾速率、气孔导度等光合参数均呈下降趋势。在低盐胁迫下白榆和枸杞叶片光合下降的原因是气孔限制,在高盐胁迫时,则为非气孔限制;南蛇藤和樟子松为气孔限制因素;丁香为非气孔因素。光合速率可以作为评价不同生活型木本植物抗盐性的可靠指标。因为,通过净光合速率这一指标所得到的抗盐性依次为枸杞>白榆>南蛇藤>丁香>樟子松,与这几个树种的抗性排序一致。
     盐碱胁迫对不同生活型树种苗木PSⅡ的功能产生了抑制,随胁迫强度的增加,Fo呈上升趋势;Fm、Fv、Fv/Fm、φPSⅡ呈下降趋势。Fo、Fv和Fv/Fm可以作为不同生活型木本植物抗盐性可靠的评价指标:Fm、NPO和φ_(PSⅡ)不能作为不同生活型木本植物抗盐性评价的参考指标。
     (3)对于有机渗透调节物质(脯氨酸、可溶性糖、可溶性蛋白)中某一个指标来说,盐碱胁迫对不同生活型树种具有一致的影响趋势,即均总体表现增加。
     脯氨酸含量不是评价不同生活型木本植物抗盐性的可靠指标。因为,长期胁迫下,抗性较强的枸杞和白榆脯氨酸含量上升幅度小于抗性较弱的樟子松,而抗性较强的白榆和南蛇藤上升幅度却又大于抗性较弱的丁香,脯氨酸含量变化与抗盐性既不成正相关又不成负相关。
     将可溶性糖积累作为不同生活型木本植物抗盐性评价标准还需慎重。因为,中期胁迫下,随胁迫强度的增加,各树种苗木可溶性糖含量均逐渐上升,上升幅度依次为枸杞>白榆>樟子松>丁香>南蛇藤,而这几个树种抗性排序为枸杞>白榆>南蛇藤>丁香>樟子松,可溶性糖含量上升幅度可以在一定程度上反映不同生活型树种的抗性差异,但抗性较弱的丁香和樟子松可溶性糖含量上升幅度却大于抗性较强的南蛇藤,表明可溶性糖积累与抗盐性之间不存在普遍必然的联系。
     可溶性蛋白积累也不可以作为不同生活型木本植物抗盐性的评价标准。因为,中期胁迫下,随胁迫强度的增加,各树种苗木可溶性蛋白含量总体表现升高,升高幅度依次为樟子松>南蛇藤>白榆>枸杞>丁香,而这几个树种的抗性依次为枸杞>白榆>南蛇藤>丁香>樟子松,表明可溶性蛋白积累与抗盐性之间没有必然的联系。
     地上部分Na~+含量可以作为评价不同生活型木本植物的有效指标,但对于非盐生植物与盐生植物需区别对待,即非盐生植物地上部分Na~+含量与抗盐性负相关,大多数盐生植物地上部分Na~+含量与抗盐性正相关。
     地上部分Na~+/K~+不能作为不同生活型木本植物抗盐性评价标准。由于,中、重度胁迫下,5个树种苗木地上部分Na~+/K~+含量依次为樟子松>南蛇藤>丁香>枸杞>白榆,而这5个树种抗性排序为枸杞>白榆>南蛇藤>丁香>樟子松,可见,地上部分Na~+/K~+与抗盐性没有普遍联系。
     (4)SOD、CAT、GR可以作为不同生活型树种抗盐性评价标准,其中SOD、CAT更为有效。因为,各胁迫时期抗盐性较强的枸杞和白榆SOD活性随胁迫强度的增加逐渐升高,而抗盐性较弱的丁香和樟子松SOD活性却不断下降:长期胁迫下抗盐性较强的枸杞和白榆CAT活性随胁迫强度的增加逐渐升高,而抗性相对较弱的南蛇藤、丁香和樟子松CAT活性轻度胁迫下升高,较重胁迫下却降低。除南蛇藤外,其它树种叶中GR活性均随胁迫强度的增加逐渐降低,抗盐性较弱的丁香和樟子松下降幅度明显大于抗盐性较强的枸杞和白榆。
     POD、APX、AsA、GSH不是评价不同生活型树种抗盐性的可靠指标。POD活性增加是一种胁迫症状,而不是一种抗性表现。因为,随胁迫强度的增加,抗盐碱性较弱的丁香和樟子松POD活性增加,而抗盐碱性较强的枸杞和白榆POD活性却降低。
     (5)外源海藻糖处理使NaHCO_3胁迫下南蛇藤叶中活性氧O_2~-和H_2O_2产生、MDA含量以及电解质外渗率显著降低(P<0.05)。同时,海藻糖处理明显提高了SOD、CAT、POD、APX和GR活性以及AsA和GSH含量。
     外源亚精胺和精胺处理使NaHCO_3胁迫下南蛇藤叶中O_2~-产生速率、H_2O_2、MDA含量和电解质外渗率显著降低(P<0.05)。亚精胺处理明显提高盐胁迫下SOD、CAT、POD和APX等抗氧化酶的活性以及GSH、CAR和Pro等抗氧化剂的含量,但对AsA含量没有作用;精胺处理明显提高NaHCO_3胁迫下POD和APX的活性以及GSH、CAR和Pro的含量,但对SOD和AsA含量影响不显著,甚至引起CAT活性明显降低。
     ASA处理可以有效地抑制了丁香叶中CAT、APX、GR等抗氧化酶活性的下降,提高了SOD活性和ASA含量,延缓了H_2O_2、丙二醛含量及膜透性的增加,但抑制了GSH含量的增加。
     外源氯化胆碱未能有效抑制樟子松叶中H_2O_2的产生和电解质外渗率的增大,反而增加了MDA含量。外源氯化胆碱抑制了APX活性的增加,加剧了CAT活性的下降,对SOD活性的促进作用也不明显。
In this paper,the responses of seedlings of Ulmus pumila,Lycium dasystemum.Celastrus orbiculatus,Syringa microphylla and Pinus sylvestris var.mongolica under NaHCO_3 stress and the effects of trehalose,spermine,spermidine,choline chloride and ascorbic acid on saline and alkaline stress tolerance of the above woody plants were studied.Through this program,the relationship of the physiological index determined in this reserch and saline and alkaline stress tolerance and the reliability of these indices as saline and alkaline tolerance selection criteria was analysed and discussed,at the same time.the tolerance scopes of woody plants refered in this research against saline and alkaline stress and the effets of exogenous substances on saline and alkaline tolerance were tested and discussed for the purpose of providing theoretical basis and technique reference for chosing salt-tolerant trees,improving salt tolerance of plants as well as afforesting and gardening successfully and effectively in Daqing saline and alkaline area.The main results were as follows:
     (1) With the increasing stress intensity,the dry weight increments of roots,shoots and leaves of seedlings of the five woody species expressed decresing trends as well as total biomass increments,but different species had different decresing scales.The order in decreasing scale of biomass increment of the five species followed P.sylvestris var.mongolica> S.microphylla>C. orbiculatus>U.pumila>L.dasystemum.As far as decreasing scale of biomass increment of different part of different species.U.pumila.S.microphylla and P.sylvestris var.mongolica followed leaf>root>stem;L.barbarum followed leaf>stem>root;and C.orbiculatus followed root>leaf>stem.Under different NaHCO_3 stress intensity,the root/shoot ratio of U.pumila and L. barbarum rose continuously;the ratio of C.orbiculatus under mild NaHCO_3 stress declined,and then increased;the ratio of P.sylvestris var.mongolica under mild NaHCO_3 stress increased. and then declined:the ratio of S.microphvlla changed slightly.
     The saline and alkaline stress tolerance of the five woody species followed L. dasystemum>U.pumila>C,orbiculatus> S.microphylla>P,sylvestris var.mongolica.
     (2) Under saline and alkaline stress,chlorophyll contents in the leaves of woody plants with different life forms decreased identically.At any stress stage,with the increasing stress intensity,chl.a.carotenoid contents and chl.a/b did not express identical trends.Under longtime stress stage,total chlorophyll and chl.a contents had identical trends.Chlorophyll content was not a reliable indicator for appraising salt tolerance of woody plants belonging to different living forms,because the tolerance rank judged by chlorophyll content followed L. dasystemum>C.orbiculatus>U,pumila> S.microphylla>P,sylvestris var.mongolica.But the tolerance rank of these plants should follow L.dasystemum>U.pumila>C.orbiculatus>P. sylvestris var.mongolica.
     These woody plants belonging to different living responsed identically to NaHCO_3 stress. that is,net photosynthetic rate,transpiration rate and stomatal conductance all declined obviously.According to the changes of photosynthesis parameters of the five seedlings,it was concluded that under lower stress intensity,the main factor leading to decreasing in photosynthesis rate of U.pumila and L.dasystemum was stomatal lilnitation,while nonstomatal limitation under higher stress intensity.The main factor leading to decreasing in photosynthesis rate of C.orbiculatus and P.sylvestris var.mongolica was stomatal limitation. Non-stomatal limitation was the main factor leading to decreasing in photosynthesis rate of S. microphylla.
     Photosynthesis rate could be a reliable indicator for appraising salt tolerance of woody plants with different life forms,because the tolerance rank judged by chlorophyll content followed L.dasystemum>U,pumila>C,orbiculatus> S.microphylla>P.sylvestris var. mongolica,which was identical with their salt tolerance degrees.
     Under saline and alkaline stress,Fm、Fv、Fv/Fm、ΦPSⅡof the five seedlings deceased gradually with the increasing stress intensity.Fo and NPQ,however,expressed increasing trends.Fo、Fv and Fv/Fm could serve as an effective index for salt tolerance assessment of woody plants with different life forms,while Fm、NPQ andΦ_(PSII) could not.
     (3) For any indicator of proline,soluble sugar and soluble protein,the five woody plants with different life forms had identical trends.
     Proline content was not a reliable indicator for appraising salt tolerance of woody plants with different life forms,because salt-tolerant L.dasystemum and U.pumila had a less increasing scale of proline than non-salt-tolerant U.pumila and L.dasystemum,while salttolerant U.pumila and C.orbiculatus had a larger increasing scale of proline than non-salttolerant S.microphylla.Soluble sugar and soluble protein content could not served as a reliable indicator for appraising salt tolerance of woody,plants with different life forms,too.
     Shoot Na~+ content could be an effective indicator for salt tolerance assessment of woody plants with different life forms.But glycophyte and halophyte had different relationship of shoot Na~+ content and salt tolerance.For glycophyte the relationship was negative,while it was positive for halophyte.Shoot Na~+/K~+ was not a good selction criterion.
     (4) SOD,CAT and GR could serve as a reliable indicator for appraising salt tolerance of woody plants with different life forms,and SOD and CAT were more effective.
     POD,APX,AsA and GSH were not reliable selction criteria.Increase in POD activity did not seem to be a tolerance component,but a stress symptom.
     (5) The production rate of O_2~-,H_2O_2 and MDA contents and electrolyte leakage in leaves of Celastrus ofbiculatus seedlings treated with exogenous trehalose under NaHCO_3 stress decreased significantly(P<0.05),while the activities of SOD,CAT,POD,APX,GR.and the contents of ASC and GSH increased obviously.
     Significant decreases in the production of reactive oxygen species(O_2~- and H_2O_2).MDA content as well as electrolyte leakage in leaves were observed with Spd and Spm treatments(P<0.05).The results showed that Spd application increased the activities of SOD, CAT.POD and APX as well as the contents of GSH,CAR and Pro in leaves of stressed plants. but had no obvious effect on AsA content.Under NaHCO_3 stress,Spin spraying also increased the activities of POD and APX as well as the contents of GSH,CAR and Pro,but had no effect on SOD and AsA.Unexpectedly,it caused a obviously decrease in the activity of CAT.
     ASA treatment could inhibit the decrease in the activities of CAT、APX、GR,increase SOD activity and ASA content,and prohibit the increase in H_2O_2 and MDA content and electrolyte leakage.But it prohibited the increase in GSH content.
     Exogenous choline chloride could not effectively inhibit the increase in H_2O_2 content and electrolyte leakage.In addition,it enhanced the increase in MDA content.Choline chloride treatment prohibited the increase in APX and enhanced the decrease in CAT.It also could not effectively increase the activity of SOD.
引文
[1]贾恢先,孙学刚.中国西北内陆盐地植物图谱.北京:中国林业出版社,2005
    [2]姚荣江,杨劲松等.东北地区盐碱土特征及其农业生物治理.土壤,2006,38(3):256.262
    [3]赵可夫,范海.盐生植物及其对盐渍生境的适应生理.北京:科学出版社,2005
    [4]Taiz L,Zeiger E.Plant Physiology.Sunderland,Massachusetts:Sinauer Associates,Inc.,Publisher,1998
    [5]赵可夫.植物抗盐生理.北京:中国科学技术出版社,1993
    [6]孙广玉.盐碱土上马蔺的渗透调节和光合适应性研究.中国农业大学博士论文,2005
    [7]Levitt DG.Kinetics of movements in narrow channels.Current Topics In Membranes And Transport,1984,21:181-197
    [8]曹礼..早稻对盐胁迫的生理响应.兰州大学硕士论文,2006
    [9]张新春,庄炳昌,李自超.植物耐盐性研究进展.玉米科学,2002,10(1):50-56
    [10]尹尚军,石德成,颜红.Na_2CO_3胁迫下星星草胁变反应部位的差异.草业学报,2001,10(4):101-106
    [11]Chaudhuri K,Choudhuri MA.Effect of short-term NaCl stress on water relations and gas exchange of two jute species.Biol.Plant,1997,40:373-380
    [12]李付广,李凤莲,李秀兰.盐胁迫对棉花幼苗不同组织水分含量的影响.河北农业大学学报,1994,4:5-7
    [13]Hasegawa PM,Bressan RA,Handa AK.Cell mechanisms of salinity tolerance.HortScience,1986,21:1317-1324
    [14]杨晓慧,蒋卫杰,魏珉,余宏军.植物对盐胁迫的反应及其抗盐机理研究进展.山东农业大学学报(自然科学版),2006,37(2):302-305
    [15]Munns R.Physiological processes limiting plant growth in saline soil:Some dogmas and hypothesis.Plant Cell Environment,1993,16:15-18
    [16]赵可夫,李法曾.中国盐生植物.北京:科学出版社,1999
    [17]朱新广,张其德,匡廷云.NaCl对小麦光合功能的伤害主要是由离子效应造成的.植物学通报,2000,17(4):360-365
    [18]潘瑞炽.植物生理学.第五版.北京:高等教育出版社,2004
    [19]白文波,李品芳.盐胁迫对马蔺生长及K~+、Na~+吸收与运输的影响.土壤,2005,37(4):415-420
    [20]Rathert G.Influence of extreme K/Na ratios and high substrate salinity on plant metabolism of crops differing in salt tolerance.J.Plant Nutr,1982,5:183-193
    [21]Bernstein L,Francoism LE,Clark RA.Interactive effects of saliniy and salinity and fertility on yields of grains and vegetables.Agron.1974,66:412-421
    [22]Gadallah MAA.Effects of proline and glycinebetaine on Vicia faba response to salt stress.Biol.Plant,1999,42:249-257
    [23]Lee TM,Liu CH.Correlation of decreases calcium contents with proline accumulation in the marine green macroalga Ulva fasciata exposed to elevated NaCl contents in seawater.J.Exp.Bot,1999,50:1855-1862
    [24]Cramer RC,Lauchli A,Polito VS.Displacement of Ca~(2+) by Na~+ from the plasmalemma of root cells.A primary response to salt stress? Plant Physiol,1985,79:207-211
    [25]魏海霞,孙明高,夏阳,等.NaCl胁迫对苦楝细胞膜透性和有机渗透调节物质含量的影响.甘肃农业大学学报,2005,5(40):599-603
    [26]Stadelmann EJ,Lee-Stadelmann OY.Passive permeability.Methods Enzymol,1989,174:246-266
    [27]赵险飞.盐胁迫和干旱胁迫下杨树细胞内Ca~(2+)和Ca~(2+)-ATPase变化.北京:北京林业大学,2005
    [28]王宝山,赵可夫.NaCl胁迫下玉米黄化苗质外体和共质体Na~+与Ca~(2+)浓度的变化.作物学报,1997,23(1):27-33
    [29]Brown DJ,DuPont FM.Lipid composition of plasma membranes and endomembranes prepared from roots of barley(Hordeum vulgaris L.).Eff.Salt Plant Physiol,1989,90:472-478
    [30]Blits KC,Gallagher JL.Effect of NaCl on lipid content of plasma membranes isolated from roots and cell suspension cultures of the dicot halophyte Kosteletzkya virginical L.Presl.Plant Cell Rep,1990,9:156-159
    [31]Mansour MMF,Salama,K.H.A.,Al-Mutawa,M.M.,Abou Hadid,A.F.Effect of NaCl and polyamines on plasma membrane lipids of wheat roots.Biol.Plant,2002,45:235-239
    [32]Wu J,Seliskar DM,Gallagher JL.Stress tolerance in the march plant Spartina patens:impact of NaCl on growth and root plasma membrane lipid composition.Physiol.Plant,1998,102:307-317
    [33]Kerkeb L,Donaire JP,Venema K,Fodriguez-Rosales MP.Tolerance to NaCl induces changes in plasma membrane lipid composition,fluidity and H~+-ATPase activity of tomato calli.Physiol.Plant,2001,113:217-224
    [34]武维华.植物生理学.北京:科学出版社,2003
    [35]Surjus A,Durand M.Lipid changes in soybean root membranes in response to salt treatment.J.Exp.Bot,1996,47:17-23
    [36]Hurkman WJ,Tanaka CK,DuPont FM.The effects of salt stress on polypeptides in membrane fractions from barley roots.Plant Physiol,1988,88:1263-1273
    [37]Mansour MMF.Nitrogen containing compounds and adaptation of plants to salinity stress.Biol.Plant,2000,43:491-500
    [38]Zhang JS,Xie C,Li ZY,Chen SY.Expression of the plasma membrane H~+-ATPase gene in response to salt stress in a rice salt-tolerant mutant and its original variety.Theor.Appl.Genet,1999,99:1006-1011
    [39]陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学出版社,2002
    [40]Waker RR,Blackmore DH,Sun Q.Carbon diocide assimlation and folar ion concentration in leaves of lemon(Citrus Limon L.) trees irrigated with NaCl or Na_2SO_4.J.Plant Physiol,1993,20:173-185
    [41]Brugnoli E,Bjorkman O.Growth of cotton under continuous salinity stress:influence on allocation pattern,stomatal and nonstomatal components of photosynthesis and dissipation of excess light energy.Planta,1992,187:335-347
    [42]Zhu XG,Zhang QD.Advance in the research on the effects of NaCl on photosynthesis.Chinese Bulletin of Botany,1999,16(4):332-338
    [43]陈俊.碱地肤幼苗抗氧化酶系统对盐碱混合胁迫的生理响应特点.东北师范大学硕士学位论文,2006
    [44]钱琼秋,朱祝军,何勇.硅对盐胁迫下黄瓜根系线粒体呼吸作用及脂质过氧化的影响.植物营养与肥料学报,2006,12(6):875-880
    [45]闫先喜.盐胁迫下对大麦胚根细胞膜系统的影响.植物学报,1994,36(增刊):33-36
    [46]陈月艳,孙国荣,李景信.1997.Na_2CO_3胁迫对星星草种子萌发过程中水分吸收及膜透性的影响.草业科学,14(2):27-30
    [47]孙国荣,陈月艳,关旸.阎秀峰盐碱胁迫下星星草种子萌发过程中有机物、呼吸作用及其几种酶活性的变化.植物研究,1999,19(4):445-451
    [48]Hasegawa PM,Bressan RA,Zhu JK,Bohnert HJ.Plant cellular and molecular responses to high salinity.Annu.Rev.Plant Physiol.Plant Mol.Biol.2000,51,463-499
    [49]Wang Y,Nil N.Changes in chlorophyll,ribulose biphosphate carboxylase-oxygenase,glycine betaine content,photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress.J.Hortic.Sci.Biotechnol,2000,75:623-627
    [50]Hemandez JA,Olmos E,Corpas FJ,Sevilla F,Del Rio LA.Salt-induced oxidative stress in chloroplast of pea plants.Plant Sci,1995,105:5151-5167
    [51]AliDinar HM,Ebert G,Ludders P.Growth,chlorophyll content,photosynthesis and water relations in guava(Psidium guajava L.) under salinity and different nitrogen supply.Gartenbauwissenschaft,1999,64:54-59
    [52]Chartzoulakis K,Klapaki G.Response of two green house pepper hybrids to NaCl salinity during different growth stages.Sci.Hortic,2000,86:247-260
    [53]Mohammad M,Shibli R,Ajouni M,Nimri L.Tomato root and shoot responses to salt stress under different levels of phosphorus nutrition.J.Plant Nutr,1998,21:1667-1680
    [54]Meloni DA,Oliva MA,Ruiz HA,Martinez CA.Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress.J.Plant Nutr,2001,24:599-612
    [55]李树林,曲泽洲,王永蕙.枣(Zizyphus jujuba Mill)品种资源的花粉学研究.河北农业大学学报,1987,10(3):1-9
    [56]Ashraf M.Breeding for salinity tolerance in plants.Crit.Rev.Plant Sci,1994,13:17-42
    [57]Greenway H,Munns R.Mechanisms of salt tolerance in nonhalophytes.Annual Review of Plant Physiology,1980,31:149-190
    [58]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究.植物学报,1998,40(1):56-57
    [59]Ashraf M.Organic substances responsible for salt tolerance in Eruca sativa.Biol.Plant,1994,36:255-259
    [60]Rabe B.Stress physiology:the functional significance of the accumulation of nitrogen containingcompounds.J.Hort.Sci,1990,65:231-243
    [61]Ashraf M,Fatima H.Responses of some salt tolerant and salt sensitive lines of safflower (Carthamus tinctorius L.),Acta Physiol.Plant,1995,17:61-71
    [62]Ashraf M,Tufail M.Variation in salinity tolerance in sunflower(Helianthus annuus L.),J.Agron.Soil Sci,1995,174:351-362
    [63]Hurkman WJ,Rao HP,Tanaka CK.Germin-like polypeptides increase in barley roots during salt stress.Plant Physiol,1991,97:366-374
    [64]Abraham E,Rigo G,Szekely G,Nagy R,Koncz C,Szabados L.Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis,Plant Mol.Biol,2003,51:363-372
    [65]All G,Srivastava PS,Iqbal M.Proline accumulation,protein pattern and photosynthesis in regenerants grown under NaCl stress.Biol.Plant,1999,42:89-95
    [66]汪良驹,王业进,刘友良.盐逆境中无花果叶片蛋白质合成与脱落酸及脯氨酸积累的关系.江苏农业学报,1991,7(1):38-44
    [67]杨凯,昌小平,胡荣海等.干旱胁迫下小麦脯氨酸积累相关基因的染色体定位.作物学报,2001,27(3):363-366
    [68]赵锁劳,窦延玲.小麦耐盐性鉴定指标及其分析评价.西北农业大学学报,1998,26(6):80-85
    [69]Khatkar D,Kuhad MS.Short-term salinity induced changes in two wheat cultivars at different growth stages.Biol.Plant,2000,43:629-632
    [70]Singh SK,Sharma HC,Goswami AM,Datta SP,Singh SP.In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride.Biol.Plant,2000,43:283-286
    [71]Girousse C,Bournoville R,Bonnemain JL.Water deficit-induced changes in concentration in praline and some other amino acids in the phloem sap of alfalfa.Plant Physiol,1996,111:109-113
    [72]Hare PD,Cress WA.Metabolic implications of stress-induced proline accumulation in plants.Plant Growth Regulation,1997,21:79-102
    [73]Lansac AR,Sullivan CY,Jonson BE.Accumulation of free praline in sorghum(Sorghum bicolor) pollen.Can.J.Bot.1996,74:40-45
    [74]Liu JP,Zhu JK.Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of arabidopsis.Plant Physiol,1997,114:591-596
    [75]Rentsch D,Himer B,Sclunelzer E,Fronuner WB.Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases permease-targeting mutant.The Plant Cell,1996,8:1437-1446
    [76]Rudolph AS,Crowe JH,Crowe LM.Effect of three stabilizing agents-proline,betaine and trehalose,on membrane phospholipids.Arch.Biochem.Biophys,1986,245:134-143
    [77]Lone MI,Kueh JSH,Wyn Jones RG,Bright SWJ.Influence of proline and glycinebetaine on salt tolerance of cultured barley embryos.J.Exp.Bot,1987,38:479-490
    [78]Mansour MMF.Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress.Plant Physiol.Biochem,1998,36:767-772
    [79]Petrusa LM,Winicov I.Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl.Plant Physiol.Biochem,1997,35:303-310
    [80]傅秀云.冬小麦耐盐力与脯氨酸含量的关系.山东农业科学,1988,(2):5-7
    [81]Ahmad I,Wainwright SJ,Stewart GR.The solute and water relations of Agrostis stolonifera ecotypes differing in their salt tolerance,New Phytol,1981,87:615-629
    [82]Jain S,Nainawatee HS,Jain RK,Chowdhury JB.Proline status of genetically stable salttolerant Brassica juncea L.somaclones and their parent cv.'Parkash'.Plant Cell Rep,1991,9:684-687
    [83]Lutts S,Kinet JM,Bouharmont J.Effects of salt stress on growth,mineral nutrition and proline accumulation in relation to osmotic adjustment in rice(Oryza sativa L.) cultivars differing in salinity tolerance.Plant Growth Regul,1996,19:207-218
    [84]孙金月,赵玉田.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究.中国农业科学,1997,30(4):9-12
    [85]Sabu A,Sheeja TE.Comparison of proline accumulation in callus and seedlings of two cultivation of Oryza sativa L.differing in salt tolerance.Indian Journal of Expermential Biology,1995,33(2):139-141
    [86]Moftah AB,Michel BB.The effect of sodium chloride on solute potential and proline accumulation in soybean leaves.Plant Physiol,1987,83:283-286
    [87]Rhodes D,Hanson AD.Quaternary ammonium and tertiary sulfonium compounds in higher plants.Annu.Rev.Plant Physiol.Plant Mol.Biol,1993,44:357-384
    [88]侯彩霞,汤章城.细胞相容性物质的生理功能及其作用机理.植物生理学通讯,1999,35(1):1-7
    [89]Gibon Y,Bessieres MA,Larher F.Is glycinebetaine a non-compatible solute in higher plants that do not accumulate it? Plant Cell and Environment,1997,20:329-340
    [90]Hanson AD,Roger W.Biosynthesis,Translocation,and accumulation of betaine in sugar beet and its progenitors in relation to salinity.Plant Physiol,1982,70:1191-1198
    [91]邱念伟,杨洪兵,王宝山.Na~+/H~+逆向转运蛋白及其与植物耐盐性的关系.植物生理学通讯,2001,37(3):260-264
    [92]Schachtman DP,Rana Munns.Sodium accumulation in leaves of Ttiticum species that differ in salt tolerance.J.Plant Physiol,1992,19:331-340
    [93]Papageogious G C,Murata N.The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem Ⅱ complex.Photosynth Res,1995,44:243-252
    [94]Robinson SP,Jones JP.Accumulation of Glycinebetaine in chloroplasts provides osmotic adjustment during salt stress.J.Plant Physiol.1986,13:659-668
    [95]Genard H,Le Saos J,Hillard J,Tremolieres A.Boucaud J.Effect of salinity on lipid composition,glycinebetaine content and photosynthetic activity in chloroplasts of Suaeda maritime.Plant Physiol.Biochem,1991,29:421-427
    [96]赵可夫.植物对盐渍逆境的适应.生物学通报,2002,37(6):7-9
    [97]赵利辉,罗庆云,章文华等.大麦幼苗根系液泡膜质子泵对苗的发育和盐胁迫的响应.植物生理学通讯,2001,37(2):95-97
    [98]Khan MA,Ungar IA,Showalter AM.Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum.Commun.Soil Sci.Plant Anal,2000,31:2763-2774
    [99]Muthukumarasamy M,Gupta SD,Pannerselvam R.Enhancement of peroxidase,polyphenol oxidase and superoxide dismutage activities by triadimefon in NaCl stressed Raphanus sativus L.Biol.Plant,2000,43:317-320
    [100]Grieve CM,Maas EM.Betaine accumulation in salt stressed sorghum.Physiol.Plant,1984,61:167-171
    [101]Rhodes DP,Rich J,Myers AC,Rueter CC,Jamieson GC.Determination of betaines by fast atom bombardment mass spectrometry:Identification of glycinebetaine deficient genotypes of Zea mays.Plant Physiol,1987,84:781-788
    [102]Saneoka H,Nagasaka C,Hahn DT,Yang WJ,Premachandra GS,Joly RJ,Rhodes D.Salt tolerance of glycinebetaine-deficient and -containing maize lines.Plant Physiol,1995,107:631-1638
    [103]Colmer TD,Epstein E,Dvorak J.Differential solute regulation in leaf blades of various ages in salt sensitive wheat and a salt-tolerant wheat x Lophopyrum elongatum(Host.) A.Love amphiploid.Plant Physiol,1995,108:1715-1724
    [104]Varshney KA,Gangwar LP,Goel N.Choline and betaine accumulation in Trifolium alexandrinum L.during salt stress.Egyptian J.Bot,1988,31:81-86
    [105]Wyn Jones RG,Gorham J,McDonnell E.Organic and inorganic solute contents as selection criteria for salt tolerance in the Triticeae,in:R.Staples,G.H.Toennissen(Eds.),Salinity Tolerance in Plants:Strategies for Crop Improvement,Wiley,New York,1984,189-203
    [106]Mansour MMF,Salama,K.H.A.Al-Mutawa,M.M.Transport proteins and salt tolerance in plants.Plant Sci,2003,164:891-900
    [107]邱念伟.不同类型盐生植物叶片Na~+区域化作用机理的比较研究.山东师范大学硕士论文,2001
    [108]Blumwald E,Poole RJ.Na~+/H~+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris.Plant Physiol.1985,78:163-167
    [109]李艳艳.盐胁迫下盐地碱蓬叶片V-H+-ATPase H亚基的克隆与表达分析.济南:山东师范大学,2006
    [110]Sarafian V,Poole RJ.Purification of a H~+ translocating inorganic pyrophosphatase from vacuole membranes of red beet.Plant Physiol,1989,91:34-38
    [111]陈观平,王慧中,施农农等.Na~+/H~+逆向转运蛋白与植物耐盐性关系研究进展.中国生物工程杂志,2006,26(5):101-106
    [112]Blumwald E,Aharon GS,Apse MP.Sodium transport in plant ceils.Biochim Biophys Acta,2000,1465:140-151
    [113]Ohta M,Hayashi Y,Nakashima A,Hamada A,Tanaka A,Nakamura T,Hayakawa T.Introduction of a Na~+/H~+ antiporter gene from Atriplex gmelini confers salt tolerance to rice.FEBS Lett,2002,532(3):279-282
    [114]刘友良.植物耐盐性的研究进展.植物生理学通讯,1987,(6):72-81
    [115]Tyerman SD,Skerett IM.Root ion channels and saliaity.Scientia Horticulture,1999,78:175-325
    [116]吕慧颖,李银心,孔凡江,等.植物Na~+/H~+逆向转运蛋白研究进展.植物学通报, 2003,20(3):363-369
    [117]杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制.生物工程学报,2001,17(2):121-125
    [118]Thompson JE,Ledge RL,Barber RF.The role of free radicals in senescence and wounding.New Phytol,1987,105:317-344
    [119]Bowler C,Van CW,Montagu M,Inze D.Superoxide dismutase in Plants and salt stress toleranee.Annu.Rev.Plant Physiol.and Plant Mol,1992,43:83-116
    [120]Scandalios JG.Oxygen stress and superoxide dismutase.Plant Physiol,1993,101:7-12
    [121]Foyer CH,Halliwell B.The presence of glutathione and glutathione reductase in chloroplasts:aproposed rolein ascorbic acid metabolism.Planta,1976,133:21-25
    [122]Perl A,Perl-Treves R,Galili S,Aviv D,Shalgi E,Malkin S,Galun E.Enhanced oxidative stress defence in transgenic potato expressing tomato Cu,Zn superoxide dismutases.Theoretical and Applied Genetics,1993,85:568-576
    [123]Gossett DR,Millhollon EP,Lucas MC.Antioxidant response to NaCl stress in salttolerant and salt-sensitive cultivars of cotton.Crop Sci,1994,34:706-714
    [124]Gossett DR,Banks SW,Millhollon EP,Lucas MC.Antioxidant response to NaCl stress in a control and an NaCl-tolerant cotton cell line grown in the presence of paraquat,buthionine sulfoximine,and exogenous glutathione.Plant Physiol,1996,112:803-809
    [125]Willekens H,Chamnogopol S,Davey M,Schraudner M,Langebartels C.Catalase is a sink for H2O2 and is indispensable for stress defense in C_3 plants.EMBO J.,1997,16:4806-4816
    [126]许长成,程丙嵩,邹琦.植物水分胁迫与活性氧代谢.山东农业大学学报,1993,24(3):113-116
    [127]Wittsuwannakul R,ittswwannakul D,Sattaysevana B,Pasitkul P.Peroxidase from Hevea Brasiliensis Bark:purification and properties.Phytochemistry,1997,44(2):23-241
    [128]Willekens H,Langebartels C,Tire C,et al.Differential expression of catalase genes in nicotiana plumbaginifolia.Proc NatlAcad Sci USA,1994,91:10450-10454
    [129]Mittova V,Volokita M,Guy M,Tal M.Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii.Physiol.Plant,2000,110:42-51
    [130]Shalata A,Tal M.The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii.Physiol.Plant,1998,104:169-174
    [131]Gueta-Dahan Y,Yaniv Z,Zilinskas BA,Ben-Hayyim G.Salt and oxidative stress:similar and specific responses and their relation to salt tolerance in citrus.Planta,1997,203,460- 469
    [132]Tsugane K,Kobayashi K,Niwa Y,Ohba Y,Wada K,Kobayashi H.A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification.Plant Cell,1999,11:1195-1206
    [133]Edwards EA,Rawsthorne SR,Mullineaux PM.Subcellular distribution of multiple forms of glutathione reductase in leaves of pea(Pisum sativum L.).Planta,1990,180,278-284
    [134]Mallick N,Mohn FH.Reactive oxygen species:response of algal cells.J Plant Physiol,2000,157:183-193
    [135]Alscher RG,Donahue JL,Cramer CL.Reactive oxygen species and antioxidants:Relationships in green cells.Physiol Plant,1997,100:224-233
    [136]Chinta Sudhakar,Lakshmi A,Giridarakumar S.Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry(Morus alba L.) under NaCl salinity.Plant Science,2001,161:613-619
    [137]Garratt LC,Janagoudar BS,Lowe KC,Anthony P,Power JB,Davey MR.Salinity tolerance and antioxidant status in cotton cultures.Free Radic.Biol.Med,2002,33:502-511
    [138]Noctor G,Foyer CH.Ascorbate and glutathione:Keeping active oxygen under control.Annu.Rev.Plant Physiol.Plant Mol.Biol.1998,49,249-279
    [139]Halliwell B.Oxidative damage,lipid peroxidation,and antioxidant protection in chloroplasts.Chem.Phys.Lipids,1987,44:327-340
    [140]Cushman JC,Meyer G,Michalowski CB,Schmitt JM,Bohnert HJ.Salt stress leads to differential expression of two isogenes of PEP Case during CAM induction in the common Ice plant.Plant Cell,1989,1:715-725
    [141]丁顺华,李艳艳,王宝山.外源海藻糖对小麦幼苗耐盐性的影响.西北植物学报,2005,25(3):513-518
    [142]华春,王仁雷,刘友良.外源AsA对盐胁迫下水稻叶绿体活性氧清除系统的影响.作物学报,2004,30(7):692-696
    [143]毛桂莲,许兴,谢亚军.外源ABA对NaCl胁迫下枸杞幼苗生长和叶绿素荧光特性的影响.江苏农业科学,2005,6:111-114
    [144]白桦,王玉国.外源脯氨酸对盐胁迫下大豆愈伤组织SOD和POD活性的影响.华北农学报,2002,17(3):37-40
    [145]王弋博,李勃等.外源甜菜碱对两种玉米耐盐性影响的研究.兰州大学学报(自然科学版),2005,41(2):34-37
    [146]Tijen Demiral,Ismail Tu rkan.Does exogenous glycinebetaine affect antioxidativesystem of rice seedlings under NaCl treatment? Journal of Plant Physiology, 2004,161:1089-1100
    [147]张润花,郭世荣,樊怀福,李娟.外源亚精胺对盐胁迫下黄瓜幼苗体内抗氧化酶活性的影响.生态学杂志,2006,25(11):1333-1337
    [148]魏爱丽,陈云昭.IAA对盐胁迫下大豆幼苗膜伤害及抗盐力的影响.西北植物学报2000,20(3):410-414
    [149]张士功,高吉寅,宋景芝.水杨酸和阿斯匹林对小麦盐害的缓解作用.植物生理学报,1999,25(2):159-164
    [150]阮海华,沈文飚,刘开力,徐朗莱.外源一氧化氮供体对盐胁迫下小麦幼苗叶片谷胱甘肽抗氧化酶系统的影响.作物学报.2005,31(9):1144-1149
    [151]刘家尧,衣艳君,白克智,梁峥.CO_2倍增环境生长的小麦幼苗对盐胁迫的生理反应.生态学报,1998,18(4):74-78
    [152]张兰,孙建设,刘国荣.NaN_3在苹果砧木组培苗诱变耐盐筛选中的应用.河北农业大学学报,2002,25增刊:108-110
    [153]李振国,倪君蒂,余叔文.乙烯消减盐渍胁迫对首蓓种子萌发的抑制作用.植物生理学报,1995,21(1):50-56
    [154]安国勇,董发才,胡楠,宋纯鹏.盐胁迫条件下钙对小麦根细胞膜电位和钾离子吸收的影响.河南大学学报,2002,32(3):25-28
    [155]冯文新,张宝红.钙处理对盐胁迫下大豆种子萌发及其生理生化指标的影响.大豆科学,1997,16(1):48-53
    [156]郭洪海,孔令安,董晓霞.盐胁迫下外源Se对杂交酸模耐盐性的影响.草业学报,2001,10(1):20-25
    [157]Liang YC,Chen Q,Liu Q,et al.Exogenous silicon(Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley(Hordeum vulgare L.).Plant Physiol,2003,160:1157-1164
    [158]Bohra JS,Doerffiing K.Potassium nutrition of rice oryza sativa L.Varieties under sodium chloride salinity.Plant and Soi1,1993,152(2):299-303
    [159]冯长根,任玉华,李华.盐胁迫下“霞多丽”葡萄幼苗接种地表球囊霉效应初探.园艺学报,2004,31(1):84-86
    [160]姚艳玲,冯固,白灯沙·买买提艾力.NaCl胁迫下VA菌根对玉米耐盐能力的影响.新疆农业科学,1999,1:20-22
    [161]韩志平,郭世荣,冯吉庆,高新昊.盐胁迫对西瓜幼苗生长、叶片光合色素和脯氨酸含量的影响.南京农业大学学报,2008,31(2):32-36
    [162]Rao GG,Rao GR.Pigment composition and chlorophyllase activity in pigment pea and gingelley under NaCl salinity.Indian J Exp Biol,1981,19:768-770
    [163]Kumar SG,Lakshmi A,Madhusudhan KV,Ramanjulu S,Sudhakar C.Photosynthesis parameters in two cultivars of mulberry differing in salt tolerance,photosynthetica,1999,36(4):611-616
    [164]杜中军,翟衡,潘志勇,解秀芹.盐胁迫下苹果砧木光合能力及光合色素的变化.果树学报,2001,18(4):200-1203
    [165]王仁雷,华春,刘友良.盐胁迫对水稻光合特性的影响.南京农业大学学报,2002,25(4):11-14
    [166]Lakshmi A,Ramanjulu S,Veeranjaneyulu K,Sudhakar C.Effect of NaCl on photosynthesis parameters in two cultivars of mulberry.Photosynthetica,1996,32:285-289
    [167]Ashraf M.Some important physiological selection criteria for salt tolerance in plants.Flora,2004,199:361-376
    [168]Corney HJ,Sasse JM,Ades PK.Assessment of salt tolerance in eucalypts using chlorophyll fluorescence attributes.New Forests,2003,26:233-246
    [169]Sixto H,Aranda I,Grau JM.Assessment of salt tolerance in Populus alba clones using chlorophyll fluorescence.Photosynthetica,2006,44(2):169-173
    [170]Tal M,Katz A,Heiken H,Dehan K.Salt tolerance in the wild relatives of the cultivated tomato:proline accumulation in Lycopersicon esculentum Mill.,L.peruvianum Mill,and Solanum pennellii Cor.treated with NaCl and polyethylene glycol,New Phytol.,1979,82:349-360
    [171]Uma S,Prasad TG,Kumar MU.Genetic variability in recovery growth and synthesis of stress proteins in response to polyethylene glycol and salt stress in finger millet.Ann.Bot.1995,76:43-49
    [172]Ashraf M,O'Leary JW.Changes in soluble proteins in spring wheat stressed with sodium chloride,Biol.Plant,1999,42:113-117
    [173]Haq TU,Akhtar J,Haq AU,Hussain M.Effect of soil salinity on the concentration of Na~+,K~+ and Cl~- in the leaf sap of the four Brassica species.Int.J.Agric.Biol.,2002,4:385-388
    [174]Wenxue W,Bilsborrow PE,Hooley P,Fincham DA,Lombi E,Forster BP.Salinity induced differences in growth,ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise.Plant Soil,2003,250:183-191
    [175]Carden DE Walker DJ,Flowers TJ,Miller AJ.Single cell measurement of the contributions of cytosolic Na~+ and K~+ to salt tolerance.Plant Physiol.,2003,131:676-683
    [176]Van Steveninck,RFM,Van Steveninck ME,Stelzer R,Lauchli A.Studies on the distribution of Na and Cl in two species of lupin(Lupinus luteus and Lupinus angustifolius) differing in salt tolerance.Physiol.Plant.,1982,56:465-473
    [177]Ashraf M,Waheed A.Responses of some local/exotic accessions of lentil(Lens culinaris Medic.) to salt stress.J.Agron.Soil Sci.1993,170:103-112
    [178]Alfocea FP,Estan MP,Caro MT,Bolarin MC.Response of tomato cultivars to salinity.Plant Soil,1993,150:203-211
    [179]Taha R,Mills D,Heimer Y,Tal M.The relation between low K~+/Na~+ ratio and salt-tolerance in the wild tomato species Lycopersicon pennellii.J Plant Physiol,2000,157:59-64
    [180]Munns R,James RA.Screening methods for salinity tolerance:a case study with tetraploid wheat.Plant Soil,2003,253:201-218
    [181]Sairam RK,Srivastava GC,Agarwal S,Meena RC.Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes.Biol Plant,2005,49:85-91
    [182]Athar HR,Khan A,Ashraf M.Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat.Env Exp Bot 2008,63:224-231
    [183]Neto ADA,Prisco JT,Eneas-Filho J,Abreu CEB,Gomez-Filho E.Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes.Env Exp Bot,2006,56:87-94
    [184]Khan MH,Panda SK.Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress.Acta Physiol Plant,2008,30:81-89
    [185]Ashraf M,Ali Q.Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola(Brassica napus L.).Env Exp Bot,2008,63:266-273
    [186]Davenport SB,Gallego SM,Benavides MP,Tomaro ML.Behavior of antioxidant defence system in the adaptive response to salt stress in Helianthus annuus L.cells.Plant Growth Regul,2003,40:81-88
    [187]Shalata A,Mittova V,Volokita M,Guy M,Tal M.Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress:the root antioxidative system.Physiol Plant,2001,112:487-494
    [188]Mandhania S,Madan S,Sawhney V.Antioxidant defense mechanism under salt stress in wheat seedlings.Biol Plant,2006,50:227-231
    [189]许丙军,施国新,徐勤松等.外源抗坏血酸对镉胁迫下黑藻抗氧化系统的保护作用.应用生态学报,2006,17(9):1768-1770
    [190]关洪斌,智艳阳,王晓兰.海藻糖对花生植物抗性的影响.特产研究,2006(3):38-40
    [191]李璟,胡晓辉,郭世荣.外源亚精胺对根际低氧胁迫下黄瓜幼苗根系多胺含量和抗 氧化酶活性的影响.植物生态学报,2006,30(1):118-123
    [192]徐仰仓,王静,刘华,王根轩.外源精胺对小麦幼苗抗氧化酶活性的促进作用.植物生理学报,2001,27(4):349-352
    [193]Ndayiragije A,Lutts S.Do exogenous polyamines have an impact on the response of a salt-sensitive rice cultivar to NaCl? Journal of Plant Physiology,2006,163:506-516
    [194]段九菊,郭世荣,康云艳.外源亚精胺对盐胁迫下黄瓜幼苗活性氧水平和抗氧化酶活性的影响.园艺学报,2006,33(3):639-634
    [195]Takemura T,Hanagata N,Sugihara K,Baba S,Karube I,Dubinsky Z.Physiological and biochemical responses to salt stress in the mangrove,Bruguiera gymnorrhiza.Aquat.Bot,2000,68:15-28
    [196]Gorham J,Mcdonnel E,Budrewicz E,Wyn Jones RG.Salt tolerance in the Triticeae:Growth and solute accumulation in leaves of Thinopyrum bessarabicum.J.Exp.Bot.1985,36:1021-1031
    [197]Munns,R.Comparative physiology of salt and water stress.Plant Cell Environ.2002,25,239-250
    [198]Winicov,I.New molecular approaches to improving salt tolerance in crop plants.Ann.Bot.1998,82:703-710
    [199]Tester M,Davenport R.Na~+ tolerance and Na~+ transport in higher plants.Ann.Bot.2003,91:503-507
    [200]Niknam SR,Mccomb J.Salt tolerance screening of selected Australian woody species-a review.Forest Ecol Manage,2000,139:1-19
    [201]Utriainen J,Holopainen T.Influence of nitrogen and phosphorus availability and ozone stress on Norway spruce seedlings.Tree Physiol,2001,21:447- 456
    [202]潘保原,宫伟光,张子峰,刘畅.大庆苏打盐渍土壤的分类与评价.东北林业大学学报,2006,34(2):57-59
    [203]Kao WY,Tsai TT,Tsai HC,Shih CN.Response of three Glycine species to salt stress.Environmental and Experimental Botany,2006,56:120-125
    [204]Gouia H,Ghorbal MH,Touraine B.Effects of NaCl on flows of N and mineral ions and on NO_3 reduction rate within whole plants of salt sensitive bean and salt-tolerant cotton.Plant Physiol.1994,105,1409-1418
    [205]丁丽娜,金华,殷鸣放,朱学静,赵允鹏,姜国斌.盐胁迫对杨树幼苗叶片光合色素及气体交换特征的影响.西北植物学报,2006,26(12):2523-2527
    [206]杜军华,冯桂莲,高榕.盐胁迫对蚕豆(Vicia faba L.)叶绿素a和b含量的影响.青海师范大学学报,2000,4:36-38,64
    [207]刘志华,时丽冉,白丽荣,赵可夫.盐胁迫对獐毛叶绿素和有机溶质含量的影响.植 物生理与分子生物学学报,2007,33(2):165-172
    [208]Moroni JS,Briggs KG,Taylor GJ.Chlorophyll content and leaf elongation rate in wheat seedlings as a measure of manganese tolerance.Plant and Soil,1991,136:1-9
    [209]Arunyanark A,Jogloy S,Akkasaeng C,et al.Chlorophyll Stability is an Indicator of Drought Tolerance in Peanut.J.Agronomy & Crop Science,2008,194:113-125
    [210]Kennedy BF,De Fillippis LF.Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria.J.Plant Physiol.1999,155,746-754
    [211]刁丰秋,章文华,刘友良.盐胁迫对大麦叶片类囊体膜脂组成和功能的影响.植物生理学报,1997,23(2):105-110
    [212]Romero AR,Soria T,Cuartero J.Tomato plant-water uptake and plant-water relationships under saline growth conditions.Plant Sci.2001,160,265-272
    [213]郇树乾,刘国道,张绪元,周佳若,刘莹.NaCl胁迫对刚果臂形草种子萌发及幼苗生理效应的研究.中国草地,2004,26(6):45-49
    [214]董晓霞,赵树慧,孔令安,等.苇状羊茅盐胁迫下生理效应的研究.草业科学,1998,15(5):10-13
    [215]冯志红,闫立英,王久兴,等.Na_2SO_4和CaCl_2胁迫对不同黄瓜品种种子萌发和幼苗生长的影响.河北农业科学,2004,8(4):47-51
    [216]王宝增,赵可夫.低浓度NaCl对玉米生长的效应.植物生理学通讯,2006,42(4):628-632
    [217]Winicov I,Button JD.Accumulation of photosynthesis gene transcripts in response to sodium chloride by salt tolerant alfalfa cells.Planta,1991,183:478-483
    [218]Locy RD,Chang CC,Nielsen BL,Singh NK.Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plants.Plant Physiol.1996,110:321-328
    [219]夏阳,孙明高,李国雷,张金凤,胡学俭,徐红兵.盐胁迫对四园林绿化树种叶片中叶绿素含量动态变化的影响.山东农业大学学报(自然科学版),2005,36(1):30-34
    [220]季静,杨晓慧,李然,覃永贵.盐胁迫下金银花叶片叶绿素含量的测定与分析.大连民族学院学报,2007,5:154
    [221]Parida A,Das AB,Das P.NaCl stress causes changes in photosynthetic pigments,proteins and other metabolic components in the leaves of a true mangrove,Bruguiera parviflora,in hydroponic cultures.J.Plant Biol.2002,45,28-36
    [222]廖祥儒,贺普超,朱新产.盐渍对葡萄光合色素含量的影响.园艺学报,1996,23(3):300-302
    [223]Mavrogianopoulos GN,Spanadis J,Tsikalas P.Effect of carbon dioxide enrichment and salinity on photosynthesis and yield in melon.Scientia Horticulture,1999,79:51-63
    [224]Kao WY,Tsai HC,Tsai TT.Effect of NaCl and nitrogen availability on growth and photosynthesis of seedlings of a mangrove species,Kandelia candel(L.) Druce.J.Plant Physiol.2001,158,841-846
    [225]Downton WJS,Grant WJR,Robinson SP.Photosynthetic and stomatal responses of spinach leaves to salt stress.Plant Physiol.,1985,77:85-88
    [226]Steduto P,Albrizio R,Giorio P,Sorrentino G.Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity.Env.Exp.Bot.,2000,44:243-255
    [227]Heuer B,Plaut Z.Carbon dioxide fixation of isolated chloroplasts and intact sugar beet plants grown under saline conditions.Ann.Bot.,1981,48:261-268
    [228]Rajesh A,Arumugam R,Venkatesalu V.Growth and photosynthetic characterics of Ceriops roxburghiana under NaCl stress.Photosynthetica,1998,35:285-287
    [229]Kurban H,Saneoka H,Nehira K,Adilla R,Premachandra GS,Fujita K.Effect of salinity on growth,photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi(Bieb.).Soil Sci.Plant Nutr.,1999,45:851-862
    [230]Brugnoli E,Lauteri M.Effects of salinity on stomatal conductance,photosynthetic capacity and carbon isotope discrimination of salt-tolerant(Gossypium hirsutum L.) and salt-sensitive(Phaseolus vulgaris L.) C_3 non-halophytes.Plant Physiol.1991,95,628-635
    [231]Drew MC,Hole,PC,Picchioni GA.Inhibition by NaCl of net CO_2 fixation and yield of cucumber.Am.Soc.Hort.Sci.1990,115:472-477
    [232]王丽燕,赵可夫.NaCl胁迫对海蓬子(Salicornia biglovii Torr.)离子区室化、光合作用和生长的影响.植物生理与分子生物学学报,2004,30(1):94-98
    [233]王素平,李娟,郭世荣,等.NaCl胁迫对黄瓜幼苗植株生长和光合特性的影响.西北植物学报,2006,26(3):455-461
    [234]Genty B,Brlantais JM,Baker NR.The relationship between quantum yield ofphotosynthetic electron transportand quenching of chlorophyll fluorescence.Biochmi Biophys Acta,1989,990:87-92
    [235]Krause UH,Weis E.Chlorophyll fluorescence and photosynthesis.Plant Physiol.Plant Mol.Biol.,1991,42:313-349
    [236]Ducruet JM,Sixto H,Garc(?)a-Baud(?)n JM.Using chlorophyll fluorescence induction for a quantitative detoxification assay with metribuzin and chlortoluron in excised wheat (Triticum aestivum and Triticum durum) leaves.Pesticide Sci.1993,38:295-301
    [237]冯立田,赵可夫.活体叶绿素荧光与耐盐作物筛选.山东师大学报(自然科学版),1997(4):436-439
    [238]黄有总,张国平.叶绿素荧光测定技术在麦类作物耐盐性鉴定中的应用.麦类作物学 报,2004,24(3):114-116
    [239]李合生.植物生理生化实验原理与技术.北京:高等教育出版,2000,134-137,184-185,195-196,258-259
    [240]Farquhar GD,Sharkey TD.Stomatal conductance and photosynthesis.Ann Rev Plant Physiol,1982,33:317-345
    [241]Rohacek K.Chlorophyll fluorescence parameters:the definitions,photosynthetic meaning and mutual relationships.Photosynthetica,2002,40(1):13-29
    [242]Tezara W,Mitchell V,Driscoll SP,Lawlor DW.Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower.Exp.Bot.2002,53:1781-1791
    [243]Gibberd MR,Turner,NC,Storey R.Influence of saline irrigation on growth,ion accumulation and partitioning,and leaf gas exchange of carrot(Daucus carom L.).Ann.Bot.2002,90:715-724
    [244]Burman U;Garg BK,Kathju S.Water relations,photosynthesis and nitrogen metabolism of Indian mustard(Brassica juncea Czern.& Coss.) grown under salt and water stress.Plant Biol.2003,30:55-60
    [245]Long SP and Baker NK.Saline terestrial environment,In Photosynthesis in contrasting environment(Baker NR and Long SP eds),1986,pp63-102,Elsevier Science Publishers B.V.(Biomedical Divison)
    [246]朱新广,张其德.NaCl对光合作用影响的研究进展.植物学通报,1999,16(4):332-338
    [247]寇伟锋,刘兆普,陈铭达,等.不同浓度海水对油葵幼苗光合作用和叶绿素荧光特性的影响.西北植物学报,2006,26(1):73-77
    [248]郑国琦,许兴,徐兆桢,刘振荣.盐胁迫对枸杞光合作用的气孔与非气孔限制.西北农业学报,2002,11(3):87-90
    [249]姜国斌,丁丽娜,金华,萨娜,张薇,赵允鹏.盐胁迫对杨树幼苗叶片光合特性及叶绿素荧光参数的影响.辽宁林业科技,2007(1):20-23,43
    [250]陈献勇,廖镜思.水分胁迫对果梅光合色素和光合作用的影响.福建农业大学学报,2000,29(1):35-39
    [251]Kao WY,Tsai TT,Tsai HC,Shih CN.Response of three Glycine species to salt stress.Environmental and Experimental Botany,2006,56:120-125
    [252]Mishra SK,Subrahmanyam D,Singhal GS.Interactionship between salt and light stress on the primary process of photosynthesis.Plant Physiol.1991,138:92-96
    [253]Sunyo J.Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought.Plant Science,2004,166:459-466
    [254]Lu CM,Qiu NW,Lu QT.Does salt stress lead to increased susceptibility of photosystem Ⅱto photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsagrown outdoors? Plant Science,2002,163:1063-1068
    [255]Meloni DA,Oliva MA,Martinez CA,et al.Photosynthesis and activity of superoxide dismutase,peroxidase and glutathione reductase in cotton under saltstress.Environmental and Experimental Botany,2003,49:69-76
    [256]Morales F,Abadia A,Gomez-Aparis J.Effects of combined NaCl and CaCl_2 salinity on photosynthetic parameters of barley grown in nutrient solution.Plant Physiol,1992,86:419-426
    [257]王建波,孙国荣,陈刚,等.Na_2CO_3胁迫下星星草幼苗叶PS Ⅱ光能利用和耗散与培养基质渗透势的关系.生态学报,2006,26(1):115-122
    [258]张契,姚舸,钦佩.盐胁迫对蓖麻Na~+、K~+吸收分布和叶绿素荧光的影响.安徽农业科学,2008,36(29):12566-12570转12606
    [259]Almoguera C,Prieto-Dapena P,Jordano J.Dual regulation of a heat shock promoter during embryogenesis:Stage-dependent role of heat shock elements.Plant J,1998,13:437-446
    [260]Bjorkman O,Demmig B.Photon yield of O_2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins.Planta,1987,170:489-504
    [261]Percival GC,Fraser GA,Oxenham G.Foliar salt tolerance of Acer genotypes using chlorophyll fluorescence.J.Arboriculture,2003,29:61-65
    [262]王仁雷,华春,周峰,周泉澄,周斌伟.盐胁迫下不同耐盐性水稻幼苗叶绿素荧光差异性研究.江苏农业科学,2008,(4):34-37
    [263]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用.浙江农业学报,2006,18(1):51-55
    [264]彭建云,綦翠华,陈敏,阎留华,范海,王宝山.盐处理对不同抗盐性小麦幼苗叶绿素荧光参数的影响.安徽农业科学,2008,36(10):3970-3972
    [265]Ashihara H,Adachi K,Otawa M,Yasumoto E,Fukushima Y,Kato M,Sano H,Sasamoto H,Baba S,Compatible solutes and inorganic ions in the mangrove plant Avicennia marina and their effects on the activities of enzymes.Naturforsh.1997,52,433-440
    [266]Yamaya T,Matsumoto H,Accumulation of asparagines in NaCl-stressed barley seedlings.Berichte des Ohara Institut fur Landwirtschaftliche Biologie,Okayama Universitat,1989,19:181-188
    [267]El-Shourbagy MN,Koshk HT.Sodium chloride effects on the sugar metabolism of several plants.Phytochemistry,1975,17:101-108
    [268]Khavarinejad RA,Mostofi Y.Effects of NaCl on photosynthetic pigments,saccharides,and chloroplast ultrastructure in leaves of tomato cultivars.Photosynthetica,1998,35:151-154
    [269]Murakeozy EP,Nagy Z,Duhaze C,Bouchereau A,Tuba Z.Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary.J.Plant Physiol.2003,160:395-401
    [270]Alamgir ANM,Ali MY,Effect of salinity on leaf pigments,sugar and protein concentrations and chloroplast ATPAase activity of rice(Oryza sativa L.).Bangladesh J.Bot.1999,28,145-149
    [271]魏爱丽,杨臣,陈云昭,王玉国.盐胁迫下大豆小真叶愈伤组织可溶性蛋白含量变化的研究.山西农业大学学报,1997,17(4):318-321
    [272]田晓艳,刘延吉,郭迎春.盐胁迫对NHC牧草Na~+、K~+、Pro、可溶性糖及可溶性蛋白的影响.草业科学,2008,25(10):34-38
    [273]Chaubey CN,Senadhira D.Conventional plant breeding for tolerance to problem soils.In:Yeo,A.R.& Flowers,T.J.(eds.):Soil Mineral Stresses,Approaches to Crop Improvement.Springer,Berlin,1994:37-60
    [274]Jeschke WD.Partitioning of K~+,Na~+,Mg~(2+) and Ca~(2+) through xylem and phloem to component organs of nodulated lupin subjected to mild salinity.J Plant Physiol 1987,128:77-98
    [275]Ashraf M.Salt Tolerance of Cotton:Some New Advances.Critical Reviews in Plant Sciences,2002,21(1):1-30
    [276]Ashraf M,Orooj A.Salt stress effects on growth,ion accumulation and seed oil concentration in an aridz one traditional medicinal plant ajwain(Trachyspermum ammi [L.]Sprague).Journal of Arid Environments 2006,64:209-220
    [277]王宝山,赵可夫.小麦叶片中Na~+、K~+提取方法的比较.植物生理学通讯,1995,31(1):50-52
    [278]Yasseen,BT,Shihab EM,Yahya R A.Cytological and physiological studies on the effect of sodium chloride on growth processes and proline accumulation in the germinating seeds of barley.Mesopotamia J.Agric.,1989,21:237-248
    [279]Fedina LS,Georgieva K,Grigarova I.Light-dark changes in proline content of barley leaves under salt stress.Biologic Plantarum,2002,45:59-63;32
    [280]Ashraf M,O'Leary JW.Responses of some newly developed salt-tolerant genotypes of spring wheat to salt stress.1.Yield components and ion distribution.J.Agron.Crop Sci.1996,176:91-101
    [281]Hurkman WJ,Fornari CS,Tanaka CK.A comparison of the effect of salt on polypeptide and translatable mRNA in roots of a salt tolerant and salt sensitive cultivar of barley.Plant Physiol.,1989,90:1444-1456
    [282]Lessani H,Marschner H.Relation between salt tolerance and long distance transport of sodium and chloride in various crop species.Aust.J.Plant Physiol.,1978,5:27-37
    [283]Hajibagheri MA,Harvey DM,Flowers TJ.Quantitative ion distribution within root cells of salt sensitive and salt tolerant maize varieties.New Phytol.,1987,105:367-376
    [284]Subbarao GV,Johansen C,Jana MK,Kumar Rao JVDK.Physiological basis of differences in salinity tolerance of pigeonpea and its related wild species.J.Plant Physiol.,1990,137:64-68
    [285]He T,Cramer GR.Salt tolerance of rapid cycling Brassica species,in relation to potassium/sodium ratio and selectivity at the whole plant and callus level.J.Plant Nutr.,1993,16:1263-1277
    [286]Mittler R,Oxidative stress,antioxidants and stress tolerance.Trends Plant Sci.2002,7:405-410
    [287]Mehta RA,Fawcett TW,Porath D,Matto AR.Oxidative stress causes lipid membrane translocation and in vivo degradation of ribulase 1,5-bisphosphate carboxylase/oxygenase.J.Biol.Chem,1992,267,2810-2816
    [288]Luna CM,Gonzalez VS,Trippi VS.Oxidative damage caused by excess copper in oat leaves.Plant Cell Physiol.1994,35,11-15
    [289]Sreenivasulu N,Grimm B,Wobus U,Weschke W.Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of fox-tail millet(Setaria italica).Physiol.Plant.,2000,109:435-442
    [290]Benavides MP,Marconi PL,Gallego SM,Comba ME,Tomaro ML.Relationship between antioxidant defence systems and salt tolerance in Solanum tuberosum.Aust.J.Plant Physiol.,2000,27:273-278
    [291]Lee DH,Kim YS,Lee CB.The inductive responses of the antioxidant enzymes by salt stress in the rice(Oryza sativa L.).J.Plant Physiol.,2001,158:737-745
    [292]Mittova V,Tal M,Volokita M,Guy M.Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species.Physiol.Plant,2002,115,393-400
    [293]Mittova V,Tal M,Volokita M,Guy M.Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii.Plant Cell Environ.,2003,26:845-856
    [294]Rahnama H,Ebrahimzadeh H.The effect of NaCl on antioxidant enzyme activities in potato seedlings.Biol Plant,2005,49:93-97
    [295]Dionisiosese ML,Tobita S.Antioxidant responses of rice seedlings to salinity stress.Plant Sci.1998,135:1-9
    [296]林植芳,李双顺,林桂珠,等.衰老叶片和叶绿体中H_2O_2的累积与膜脂过氧化的关系.植物生理学报,1988,14(1):16-22
    [297]Nakano Y,Asadas K.Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.Plant Cell Physiol,1981,22:867-880
    [298]Rout NP,Shaw BP.Salt tolerance in aquatic macrophytes:possible involvement of the antioxidative enzymes.Plant Sci.2001,160,415-423
    [299]Dureja V.Effect of salinity stress on antioxidant enzymes in salt-tolerant and salt-sensitive cultivar of rice(Oryza sativa L.).M.Sc.Thesis.CCS Haryana Agricultural Univerisity,Hisar,2003
    [300]Mittal R,Dubey RS.Behaviour of peroxidases in rice:changes in enzyme activity and isoforms in relation to salt tolerance.Plant Physiol.Biochem.1991,29(1),31-40
    [301]Stevens HC,Calvan M,Lee K,Siegel BZ,Siegel SM.Peroxidase activity as a screening parameter for salt stress in Brassica species.Phytochemistry,1978;17:1521-1525
    [302]Siegal SM,Chen J,Kottenmeier W,Clark K,Siegel BZ,Chang H.Reduction in peroxidase in Cucumis,Brassica and other seedlings cultured in saline waters.Phytochemistry,1982;21:539-542
    [303]Bor M,(?)zdemir F,T(u|¨)rkan I.The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L.and wild beet Beta maritima L.Plant Sci.2003,164,77-84
    [304]Vaidyanathan H,Sivakumar P,Chakrabarty R,Thomas G.Scavenging of reactive oxygen species in NaCl-stressed rice(Oryza sativa L.)-differential response in salt-tolerant and sensitive varieties.Plant Science,2003,165:1411-1418
    [305]赵博生,衣艳君,刘家尧.外源甜菜碱对干旱/盐胁迫下的小麦幼苗生长和光合功能的改善.植物学通报,2001,18(3):378-380
    [306]Tang CF,Liu YG,Zeng GM.Effects of Exogenous Spermidine on Antioxidant System Responses of Typha latifolia L.Under Cd~(2+) Stress.Journal of Integrative Plant Biology.2005,47(4):428-434
    [307]Groppa MD,Tomaro ML,Benavides MP.Polyamines and heavy metal stress:the antioxidant behavior of spermine in cadmium- and copper-treated wheat leaves.BioMetals,2007,20:185-195
    [308]Kubis J.Exogenous spermidine differentially alters activities of some scavenging system enzymes,H_2O_2 and superoxide radical levels in water-stressed cucumber leaves.Journal of Plant Physiology,2008,165:397-406
    [309]Zhao Hl,Tan JF,Qi CM.Photosynthesis of Rehmannia glutinosa subjected to drought stress is enhanced by choline chloride through alleviating lipid peroxidation and increasing proline accumulation.Plant Growth Regul.2007,51:255-262
    [310]王龙强,蔺海明,肖雯,贾恢先.盐地宁夏枸杞生理生化指标及抗盐特性研究.甘肃农业大学学报,2004,39(6):611-614
    [311]杨晓杰,张洪伟.水杨酸对盐胁迫下管花蒲公英的保护作用.植物研究,2006,26(2):222-224
    [312]Kim Se Eun,Kim Young Ho,Lee Jung Joon.A new sesquiterpene ester from Celastrus orbiculatus reversing multidrug resistance in cancer cells.J Nat Prod,1998,61:108-111
    [313]郭伟珍,林艳,邢存旺,史靖.南蛇藤的组织培养和快速繁殖.植物生理学通讯,2005,41(5):645
    [314]周昊,闫弘伟.攀援植物在北方城市园林立体绿化中的应用.沈阳大学学报,2006,18(2):87-89
    [315]徐兴友,王子华,张风娟,郭振清,尹伟伦,王华芳.干旱胁迫对6种野生耐旱花卉幼苗根系保护酶活性及脂质过氧化作用的影响.林业科学,2008,44(2):41-47
    [316]惠红霞,许兴,李前荣.外源甜菜碱对盐胁迫下枸杞光合功能的改善.西北植物学报,2003,23(12):2137-2422
    [317]鲁丽丽,刘耕,李君,范海,赵可夫.外源GSH对NaCl胁迫下二色补血草盐害缓冲机理的研究.山东师范大学学报,2006,21(2):108-111
    [318]封德顺.海藻糖的生物学功能简介.生物学通报,1999,34(2):13-14
    [319]聂凌鸿,宁正祥.海藻糖的生物保护作用.生命的化学,2002,21(3):206-208
    [320]张丽娟,孙娣,汪洋,闫玉清.海藻糖的研究进展.黑龙江医药,2006,19(3):192-194
    [321]李莉,黄群策,秦广雍.海藻糖在提高植物抗逆性方面的研究进展.生物学通报,2003,38(6):6-7
    [322]Crowe JH,Crowe LM,Chapman D.Preservation of membranes in anhydrobiotic organisms:The role of trehalose.Science,1984,223:701-703
    [323]刘磷,陈舜雷,言浩.6-a-葡糖基-β-环糊精对辣根POD性能的影响.生物工程学报,2000,16(6):747-749
    [324]黄成垠,安国瑞,王庆敏,等.海藻糖对医用诊断工具酶活性保护研究.微生物学通报,1997,24:341-343
    [325]Guifu X,Timasheff SN.The thermodynamic mechanism of protein stabilization by trehalose.Biophysical Chemistry,1997,64:25-43
    [326]葛宇,袁勤民.海藻糖对活性物质的保护作用机理研究进展.药物生物技术, 2002,9(5):297-300
    [327]Asada K.The water-water cycle in chloroplasts:Scavenging of active oxygens and dissipation of excess photons.Annu Rev Plant Physiol Plant Mol Biol,1999,50:601-639
    [328]丁顺华,王宝山.海藻糖在植物抗性方面的研究进展.山东师大学报(自然科学版),2000,15(4):447-449
    [329]Erdei L,Szegletes Z,Barabas K,Pestenacz A.Response in polyamine titer under osmotic and salt stress in sorghum and maize seedlings.J Plant Physiol,1996,147:599-603
    [330]周国贤,郭世荣,王素平.外源多胺对低氧胁迫下黄瓜幼苗光合特性和膜脂过氧化的影响.植物学通报,2006,23(4):341-347
    [331]Yamaguchi K,Takahashi Y,Berberich T,Imai A,Takahashi T,Michael A J,Kusano T.A protective role for the polyamine spermine against drought stress in Arabidopsis.Biochem.Biophys Res Commun,2007,352:486-490
    [332]Tang W,Newton RJ.Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine.Plant Growth Regulation,2005,46:31-43
    [333]Belle NA,Dalmolin GD,Fonini G,et al.Polyamines reduces lipid peroxidation induced by different pro-oxidant agents.Brain Research,2004,1008:245-251
    [334]Slocum R,Kaur-Sawhney R,Galston AW.The physiology and biochemistry of polyamines in higher plants.Archives of Biochemistry and Biophysics,1984,235:283-303
    [335]Mehta AM,Saftner RA,Schaeffer GW,et al.Translational modification of an 18kilodalton polypeptide by spermidine in rice cell suspension cultures.Plant Physiology,1991,95:1294-1297
    [336]Bouchereau A,Aziz A,Larher F,et al.Polyamines and environmental challenges:Recent development.Plant Science,1999,140:103-125
    [337]Kubis J.Polyamines and "scavenging system":Influence of exogenous spermidine on catalase and guaiacol peroxidase activities,and free polyamine level in barley leaves under water deficit.Acta Physiologiae Plantarum,2003,25:337-343
    [338]Schindler C,Reith P,Lichtenthaler HK.Differential level of carotenoid and decrease of zea-xanthine cycle performance during leaf development in a green and an aurea variety of tobacco.Journal of Plant Physiology,1994,143:500-507
    [339]Mishra SN,Sharma I.Putrescine as a growth inducer and as a source of nitrogen for mustard seedlings under sodium chloride salinity.Indian Journal of Experimental Biology,1994,32:916-918
    [340]Alia G,Mohanty P,Matysik J.Effect of proline on the production of singlet oxygen. Amino Acids,2001,21:195-200
    [341]Wang X,Shi GX,Xu QS,et al.Exogenous polyamines enhance copper tolerance of Nymphoides peltatum.Journal of Plant Physiology,2006,164:1062-1070
    [342]Munne-Bosch S,Alegre L.Interplay between ascorbic acid andlipophilic antioxidant defences in chloroplasts of water-stressed Arabidopsis plants.FEBS Letters,2002,524:145-148
    [343]Shalata A,Meumann PM.Exogenous ascorbic acid(vitamin C) increases resistance to salt stress and reduces lipid peroxidation.J Exp Bot,2001,52(364):2207-2211
    [344]Zhang JX,Kirkham MB.Lipid peroxidation in sorghumand sunflower seedlings as affected by ascorbic acid,benzoic acid and propyl gallate.J Plant Physiol,1996,149:489-493
    [345]潘瑞炽,李玲.植物生长发育的化学控制.广州:广东高等教育出版社,1995,20-21.34-35
    [346]农友业,何若天.氯化胆碱对甘蔗光合性能及糖含量的影响广西农业大学学报,1994,19(4):337-339
    [347]Che FS,Cho C,Hyeon SB,et al.Metsbolism of choline chloride and its analogy in wheat seedlings.Plant Cell Physiol.1990,31(1):45-50
    [348]梁煜周,何若天.氯化胆碱对冷胁迫下的烟草幼苗的保护性效应.广西农业大学学报,1998,17(3):227-232
    [349]梁煜周,何若天.氯化胆碱对低温胁迫下的稻苗的保护效应.中国水稻科学,1999,13(1):31-35
    [350]陈以峰,周燮.对盐胁迫下甘薯扦枝生根的影响初报.国外农学--杂粮作物,1995,(4):36-38
    [351]何冰,许鸿源,何若天.氯化胆碱对干旱胁迫下玉米幼苗叶片膜结构保护机制的研究.广西农业生物科学,1999,18(4):253-257
    [352]李伶俐,李文,马宗斌.氯化胆碱对棉苗生长及某些生理特性的影响.植物生理学通讯,1999,35(1):18-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700