以聚乙二醇为亲水链的两亲接枝聚膦腈的自组装及其药物传递系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择聚膦腈作为聚合物主链,以不同分子量的聚乙二醇为亲水性的侧链,尝试使用甘氨酸乙酯、对氨基苯甲酸乙酯和氨基胆固醇三种不同的化合物作为疏水取代基,合成了一系列具有不同物化性能的两亲接枝聚膦腈。确立了取代基比例可控、聚合产率高的两亲接枝聚膦腈合成方法,通过核磁共振、紫外光谱、凝胶渗透色谱和差示扫描量热法分析表征了共聚物结构。
     对两亲接枝聚膦腈在水溶液中的自组装行为进行了系统研究。通过芘荧光探针法测定了共聚物在水溶液中的临界胶束浓度,结果表明随着共聚物中疏水取代基团含量的增大临界胶束浓度逐渐降低。共聚物组装体的形态主要采用透射电子显微镜来观察,结果表明以聚乙二醇为亲水链的两亲共聚物在水溶液中能够自发组装形成不同结构的聚集体:对于以甘氨酸乙酯为疏水基团的两亲接枝聚膦腈,当甘氨酸乙酯取代度较高时,其胶束呈现为棒状,随着共聚物中甘氨酸乙酯的含量逐渐降低,胶束体系中同时出现有棒状和球形两种形态的胶束,进一步减少甘氨酸乙酯基团的含量则共聚物胶束只剩下球形一种形态。对于以对氨基苯甲酸乙酯为疏水基团的两亲接枝聚膦腈,当亲水链含量较高时,共聚物胶束的形态呈现为球形;当亲水链含量下降到一定值时两亲共聚物会形成聚合物囊泡。对于以分子量1100的PEG为亲水链的对氨基苯甲酸乙酯取代的两亲接枝聚膦腈,当PEG含量为某一特定水平时其在水中形成的自组装体的形态会变得不稳定,在不同浓度下使用不同溶剂透析得到的组装体形态有所区别,提高聚合物浓度则组装体结构会发生由网状结构向球形粒子的转变。氨基胆固醇的疏水性很强,因此以氨基胆固醇为疏水取代基的两亲接枝聚膦腈只有在亲水链段含量很高时才能在水中形成稳定的球形胶束。
     两亲接枝聚膦腈胶束能够增溶疏水性药物,胶束对疏水药物的负载能力受到共聚物的组成、药物的种类以及载药胶束制备方法的影响;以甘氨酸乙酯为疏水基团的两亲接枝聚膦腈胶束在包载药物后形态会发生显著变化,其中甘氨酸乙酯含量较低的共聚物空白胶束在载药后原先具有的棒状胶束全部转变成球形纳米载药胶束,而甘氨酸乙酯含量较高的共聚物载药胶束的形态则与载药量有关,当载药量较低时载药胶束依然呈现与空白胶束一致的球形,而当载药量增加到一定程度后载药胶束就转变为空心球状。载药胶束在具有不同pH值的释放介质中的体外释药研究结果说明载药胶束具备缓释特征,在较低的pH值下释放速度会明显加快。
     由对氨基苯甲酸乙酯取代的两亲接枝聚膦腈形成的聚合物囊泡可以用来运载水溶性的抗癌药物,对装载水溶性药物的聚合物囊泡体外释药行为的研究结果说明囊泡中药物释放过程遵循Fickian扩散机理。
     对载药胶束和囊泡抗肿瘤能力的体外评价实验结果显示,两亲接枝聚膦腈载药胶束能有效抑制肿瘤细胞的生长,以甘氨酸乙酯为疏水基团的两亲聚膦腈载药胶束对阿霉素耐药型MCF-7乳腺癌细胞的半数抑制浓度IC50是未包封的游离药物对照组的三分之一;而包载水溶性抗肿瘤药物的两亲聚膦腈共聚物囊泡对肝癌细胞HepG2的半数抑制浓度IC50要比直接使用原料药的对照组低17倍。
     通过研究肿瘤细胞对两亲接枝聚膦腈载药胶束的摄取,我们发现阿霉素耐药型MCF-7乳腺癌细胞摄取载药胶束的效率比其摄取游离药物的效率高出很多,4小时时与载药胶束一起孵育的细胞中阿霉素的荧光强度可达相同浓度游离药物对照组的3倍。载药胶束能显著改变阿霉素在阿霉素耐药MCF-7细胞中的分布,由胶束运载的阿霉素更容易进入到细胞核中;此外,实验结果表明载药胶束的粒径能显著影响胶束被细胞摄取的速率,孵育4小时时粒径小的胶束被肿瘤细胞摄取的量是粒径大的胶束的1.9倍。
     利用大鼠角叉菜胶诱导的急性炎症模型考察了以氨基胆固醇为取代基的两亲聚膦腈载药胶束的炎症治疗性能。与相同剂量的药物溶液对照组相比,共聚物载药胶束组的治疗效果明显优于相应的对照组。
     总之,两亲接枝聚膦腈胶束药物传递系统在药物控释领域特别是在抗肿瘤药物传递方面具有很强的应用潜力和广阔的发展前景,值得进行深入研究。
In this study,a new series of amphiphilic methoxy-poly(ethylene glycol)graftedpolyphosphazenes with different side groups including glycine ethyl ester(GlyEt),ethyl 4-aminobenzoate(EAB)and Cholesterol (Chol)were synthesized andcharacterized.Differential synthesis strategies of amphiphilic graft polyphosphazeneswere established to achieve controlled hydrophilic ratio of each copolymer withrelatively high product yield.Copolymer structure was characterized by NMR,UV,DSC and GPC.
     Fluorescence probe was adopted to determine the critical micelle concentration(CMC)of amphiphilic copolymers,and the results revealed that the CMC willdecrease with the increasing hydrophobic content of amphiphilic copolymers.Themorphology of assemblies was observed by TEM,it was found that aggregates withvarious shaps can be formed in aqueous sulution.For the amphipHilic graftpolyphosphazenes that using GlyEt as hydrophobic groups,rod-like micelles wereobserved when copolymer has high GlyEt content,as the weight ratio of hydrophobicgroups decreased,micelles with multiple morphology obtained,where the rods andspherical micelles are coexistent,micelles of copolymer with low GlyEt content are allin spherical shape.For copolymers with EAB as hydrophobic groups,thesecopolymers could self-assemble into distinct aggregates in aqueous solutions. Spherical micelles were observed for the copolymer sample with higher hydrophilicweight fraction.However,when the hydrophilic weight fractions decreased to less than0.50,vesicle-like polymersomes were formed.Noteworthy,micelles derived fromcopolymer with high EAB content and PEG_(1100)as hydrophilic chains are not quitestable,depending on the type of co-solvent and the copolymer concentrations,the shapof aggregates altered between network aand spherical micelles.It was also found thatcholesterol group is quite hydrophobic,cholesterol substituted amphiphilicpolyphosphazenes can not dissolved in water and form micelles until the weightcontent ofhydrophilic PEG side chains reach to a relatively high level.
     Different hydrophobic drugs were encapsulated into polymeric micelles derivedfrom those copolymers;the size,drug-loading content and entrapment efficiency aredetermined by several factors including physicochemical characteristics of copolymer,structure of drug molecular and the preparation parameters.Drug loading exhibitedconsiderably strong impact on the morphology of micelles derived from GlyEtsubstituted polyphosphazenes:turned the rod-like and spherical drug free micelles intospheres and vesicles respectively.Drug-loaded micelles are quite stable and can befreeze-dried for long-term storage,in vitro release behavior of those drug-loadedmicelles exhibits a sustained release manner and a pH-related drug release wasconfirmed.
     Water-soluble anti-cancer drug was successfully loaded into the aqueous core ofpolymersome derived from copolymers with EAB as hydrophobic groups,which wasclearly observed by transmission electron microscopy.Drug release profile of thisdrug-loaded polymersome provided linear relationships for Higuchi plotting,indicatingthat Fickian diffusion played an important role during this release period.
     In vitro cytotoxicity assay revealed that drug-loaded micelles of amphiphilicpolyphosphazenes can effectively suppress proliferation of tumor cells,drug-loadedmicelles based on GlyEt substituted polyphosphazenes have enhanced cytotoxicity on adriamycin-resistant MCF-7 cell line,the 72h IC50 reduced 3 fold comparaed to freedrug formulation;The cytotoxicity against HepG2 cells of drug-loaded polymersomesbased on copolymers with EAB as hydrophobic groups was significantly enhancedcomparaed to free drug formulation,and the 24h IC50 reduced 17 fold by usingpolymersome carrier.
     Moreover,flow cytometry results revealed that the drug-loaded micelles havehigher cell internalization efficiency,fluorescence intensity of drug in theadriamycin-resistant MCF-7 cells incubate with drug-loaded micelles can be 3 foldhigher than that of free drug parallel,it was also found that smaller size favored theinternalization of micelles by adriamycin-resistant MCF-7 cells,cell up-take efficiencyof drug-loaded micelles with particale size of 147nm is 1.9 fold higher comparaed todrug-loaded micelles with particale size of 279nm.
     carrageenan-induced acute arthritis was employed to evaluate the therapeutic effectof indomethacin-loaded amphiphilic polyphosphazene micelles,and the resultsindicated that drug-loaded polymeric micelles exhibit more significant therapeuticeffect than that of control group.
     In summary,the present novel amphiphilic polyphosphazene copolymers have highpotentials on drug delivery applications especially on anti-tumor drug delivery systems.More extensive studies are definitely needed.
引文
[1]A.Lieske,W.Jaeger,Synthesis and characterization of block copolymers containing cationic blocks.Macromolecular Chemistry and Physics 1998 199(2):255-260.
    [2]W.A.Braunecker,K.Matyjaszewski,Controlled/living radical polymerization:Features,developments,and perspectives.Progress in Polymer Science 2007 32(1):93-146.
    [3]M.F.Cunningham,Controlled/living radical polymerization in aqueous dispersed systems.Progress in Polymer Science 2008 33(4):365-398.
    [4]J.S.Wang,K.Matyjaszewski,Controlled living radical polymerization-halogen atom-transfer radical polymerization promoted by a cu(i)cu(ii) redox process.Macromolecules 1995 28(23):7901-7910.
    [5]J.Chiefari,Y.K.Chong,F.Ercole,J.Krstina,J.Jeffery,T.P.T.Le,R.T.A.Mayadunne,G.F.Meijs,C.L.Moad,G.Moad,E.Rizzardo,S.H.Thang,Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process.Macromolecules 1998 31(16):5559-5562.
    [6]M.H.Stenzel,RAFT polymerization:an avenue to functional polymeric micelles for drug delivery.Chemical Communications 2008(30):3486-3503.
    [7]X.W.Xu,A.E.Smith,S.E.Kirkland,C.L.McCormick,Aqueous RAFT Synthesis of pH-Responsive Triblock Copolymer mPEO-PAPMA-PDPAEMA and Formation of Shell Cross-Linked Micelles.Macromolecules 2008 41(22):8429-8435.
    [8]A.Hirao,K.Sugiyama,H.Yokoyama,Precise synthesis and surface structures of architectural per-and semifluorinated polymers with well-defined structures.Progress in Polymer Science 2007 32(12):1393-1438.
    [9]P.Sigwalt,M.Moreau,Carbocationic polymerization:Mechanisms and kinetics of propagation reactions.Progress in PolymerScience 2006 31(1):44-120.
    [10]K.Satoh,M.Kamigaito,M.Sawamoto,Direct synthesis of amphiphilic random and block copolymers of p-hydroxystyrene and p-methoxystyrene via living cationic polymerization with BF3OEt2/ROH systems.Macromolecules 2000 33(16):5830-5835.
    [11]T.Higashimura,M.Mitsuhashi,M.Sawamoto,Synthesis of p-methoxystyrene isobutyl vinyl ether block copolymers by living cationic polymerization with iodine.Macromolecules 1979 12(2):178-182.
    [12]M.P.Labeau,H.Cramail,A.Deffieux,Amphiphilic block copolymers of controlled dimensions with hydrophilic glycosidic vinyl ether moieties. Macromolecular Chemistry and Physics 1998 199(3):335-342.
    [13]C.J.Hawker,J.L.Hedrick,E.E.Malmstrom,M.Trollsas,D.Mecerreyes,G.Moineau,P.Dubois,R.Jerome,Dual living free radical and ring opening polymerizations from a double-headed initiator.Macromolecules 1998 31(2):213-219.
    [14]E.Esselborn,J.Fock,A.Knebelkamp,Block copolymers and telechelic oligomers by end group reaction of polymethacrylates.Rolduc Abbey,Netherlands,1995,pp.91-98.
    [15]W.Z.Yuan,J.Y.Yuan,F.B.Zhang,X.M.Xie,C.Y.Pan,Synthesis,characterization,crystalline morphologies,and hydrophilicity of brush copolymers with double crystallizable side chains.Macromolecules 2007 40(25):9094-9102.
    [16]T.Higashihara,M.Kitamura,N.Haraguchi,K.Sugiyama,A.Hirao,J.H.Ahn,J.S.Lee,Synthesis of well-defined star-branched polymers by using chain-end-functionalized polystyrenes with a definite number of 1,3-butadienyl groups and its derivatized functions.Macromolecules 2003 36(18):6730-6738.
    [17]A.Hirao,M.Hayashi,N.Haraguchi,Synthesis of well-defined functionalized polymers and star branched polymers by means of living anionic polymerization using specially designed 1,1-diphenylethylene derivatives.Macromolecular Rapid Communications 2000 21(17):1171-1184.
    [18]X.F.Liang,C.Guo,J.H.Ma,J.Wang,S.Chen,H.Z.Liu,Temperature-dependent aggregation and disaggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer in aqueous solution.Journal of Physical Chemistry B 2007 111(46):13217-13220.
    [19]C.Giacomelli,L.Le Men,R.Borsali,J.Lai-Kee-Him,A.Brisson,S.P.Armes,A.L.Lewis,Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles:Light scattering,electron microscopy,and fluorescence experiments.Biomacromolecules 2006 7(3):817-828.
    [20]M.Jacquin,P.Muller,H.Cottet,R.Crooks,O.Theodoly,Controlling the melting of kinetically frozen poly(butyl acrylate-b-acrylic acid) micelles via addition of surfactant.Langmuir 2007 23(20):9939-9948.
    [21]J.N.Slaughter,K.M.Schmidt,J.L.Byram,S.Mecozzi,Synthesis and self-assembly properties of a novel[poly(ethylene glycol)]-fluorocarbon-phospholipid triblock copolymer.Tetrahedron Letters 2007 48(22):3879-3882.
    [22]F.Calderara,Z.Hruska,G.Hurtrez,J.P.Lerch,T.Nugay,G.Riess,Investigation of polystyrene-poly(ethylene oxide) bloek-copolymer micelle formation in organic and aqueous-solutions by nonradiative energy-transfer experiments.Macromolecules 1994 27(5):1210-1215.
    [23]J.K.Vasir,V.Labhasetwar,Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles.Biomaterials 2008 29(31):4244-4252.
    [24]X.J.Zhang,Y.L.Wang,W.Wang,Salt-Induced Aggregation of Polyelectrolyte-Amphiphilic Dendron Complexes in THF Solutions.Langmuir 2009 25(4):2075-2080.
    [25]J.Bhattacharjee,G.Verma,V.K.Aswal,P.A.Hassan,Small angle neutron scattering study of doxorubicin-surfactant complexes encapsulated in block copolymer micelles.Pramana-Journal of Physics 2008 71(5):991-995.
    [26]J.Hu,L.H.Huang,L.Lang,Y.D.Liu,X.L.Zhuang,X.S.Chen,Y.Wei,X.B.Jing,The Study of Electroactive Block Copolymer Containing Aniline Pentamer Isolated from Different Solvents.Journal of Polymer Science Part a-Polymer Chemistry 2009 47(5):1298-1307.
    [27]S.Ruthstein,A.M.Raitsimring,R.Bitton,V.Frydman,A.Godt,D.Goldfarb,Distribution of guest molecules in Pluronic micelles studied by double electron electron spin resonance and small angle X-ray scattering.Physical Chemistry Chemical Physics 2009 11(1):148-160.
    [28]F.C.Giacomelli,I.C.Riegel,C.L.Petzhold,N.P.da Silveira,P.Stepanek,Aggregation Behavior of a New Series of ABA Triblock Copolymers Bearing Short Outer A Blocks in B-Selective Solvent:From Free Chains to Bridged Micelles.Langmuir 2009 25(2):731-738.
    [29]S.Yusa,Y.Yokoyama,Y.Morishima,Synthesis of Oppositely Charged Block Copolymers of Poly(ethylene glycol) via Reversible Addition-Fragmentation Chain Transfer Radical Polymerization and Characterization of Their Polyion Complex Micelles in Water.Macromolecules 2009 42(1):376-383.
    [30]H.J.Pownall,L.C.Smith,Viscosity of hydrocarbon region of micelles measurement by excimer fluorescence.Journal of the American Chemical Society 1973 95(10):3136-3140.
    [31]K.Nakamura,R.Endo,M.Takeda,Study of molecular-motion of block copolymers in solution by high-resolution proton magnetic-resonance.Journal of Polymer Science Part B-Polymer Physics 1977 15(12):2095-2101.
    [32]M.J.Kositza,C.Bohne,P.Alexandridis,T.A.Hatton,J.F.Holzwarth,Dynamics of micro-and macrophase separation of amphiphilic block-copolymers in aqueous solution.Macromolecules 1999 32(17):5539-5551.
    [33]M.J.Kositza,C.Bohne,P.Alexandridis,T.A.Hatton,J.F. Holzwarth,Micellization dynamics and impurity solubilization of the block-copolymer L64 in an aqueous solution.Langmuir 1999 15(2):322-325.
    [34]K.Prochazka,B.Bednar,E.Mukhtar,P.Svoboda,J.Trnena,M.Almgren,Nonradiative energy-transfer in block copolymer micelles.Journal of Physical Chemistry 1991 95(11):4563-4568.
    [35]K.Schillen,A.Yekta,S.R.Ni,M.A.Winnik,Characterization by fluorescence energy transfer of the core of polyisoprene-poly(methylmethacrylate) diblock copolymer micelles.Strong segregation in acetonitrile.Macromolecules 1998 31(1):210-212.
    [36]Y.Yamamoto,K.Yasugi,A.Harada,Y.Nagasaki,K.Kataoka,Temperature-related change in the properties relevant to drug delivery of poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles in aqueous milieu.Journal of Controlled Release 2002 82(2-3):359-371.
    [37]N.Nishiyama,K.Kataoka,Current state,achievements,and future prospects of polymeric micelles as nanocarriers for drug and gene delivery.Pharmacology & Therapeutics 2006 112(3):630-648.
    [38]G.Gaucher,M.H.Dufresne,V.P.Sant,N.Kang,D.Maysinger,J.C.Leroux,Block copolymer micelles:preparation,characterization and application in drug delivery.Salt Lake City,UT,2005,pp.169-188.
    [39]R.Duncan,The dawning era of polymer therapeutics.Nature Reviews Drug Discovery 2003 2(5):347-360.
    [40]A.Horgan,B.Vincent,Polystyrenenanoparticles based on poly(butyl methacrylate-g-methoxypoly(ethylene glycol)) and poly(methyl methacrylateg-methoxypoly (ethylene glycol)) graft copolymers.Journal of Colloid and Interface Science 2003 262(2):536-547.
    [41]C.Giacomelli,V.Schmidt,R.Borsali,Nanocontainers formed by self-assembly of poly(ethylene oxide)-b-poly(glycerol monomethacrylate)-Drug conjugates.Macromolecules 2007 40(6):2148-2157.
    [42]M.Almgren,W.Brown,S.Hvidt,Self-aggregation and phase-behavior of poly(ethylene oxide) poly(propylene oxide) poly(ethylene oxide) block-copolymers in aqueous-solution.Colloid and Polymer Science 1995 273(1):2-15.
    [43]C.Booth,D.Attwood,Effects of block architecture and composition on the association properties of poly(oxyalkylene) copolymers in aqueous solution.Macromolecular Rapid Communications 2000 21(9):501-527.
    [44]K.Mortensen,J.S.Pedersen,Structural study on the micelle formation of poly(ethylene oxide) poly(propylene oxide) poly(ethylene oxide) triblock copolymer in aqueous-solution,Macromolecules 1993 26(4):805-812.
    [45]I.Goldmints,G.E.Yu,C.Booth,K.A.Smith,T.A.Hatton,Structure of (deuterated PEO) (PPO) (deuterated PEO) block copolymer micelles as determined by small angle neutron scattering.Langmuir 1999 15(5):1651-1656.
    [46]K.Yu,C.Barrels,A.Eisenberg,Vesicles with hollow rods in the walls:A trapped intermediate morphology in the transition of vesicles to inverted hexagonally packed rods in dilute solutions of PS-b-PEO.Macromolecules 1998 31(26):9399-9402.
    [47]K.Yu,C.Bartels,A.Eisenberg,Trapping of intermediate structures of the morphological transition of vesicles to inverted hexagonally packed rods in dilute solutions of PS-b-PEO.Langmuir 1999 15(21):7157-7167.
    [48]K.Yu,A.Eisenberg,Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilic PS-b-PEO diblock copolymers in solution.Macromolecules 1998 31(11):3509-3518.
    [49]F.M.Abuzaina,A.J.Patel,S.Mochrie,S.Narayanan,A.Sandy,B.A.Garetz,N.P.Balsara,Structure and phase behavior of block copolymer melts near the sphere-cylinder boundary.Macromolecules 2005 38(16):7090-7097.
    [50]M.L.Adams,D.R.Andes,G.S.Kwon,Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity.Biomacromolecules 2003 4(3):750-757.
    [51]C.M.Fernyhough,D.Pantazis,S.Pispas,N.Hadjichristidis,The micellar behavior of linear triblock terpolymers of styrene (S),isoprene (Ⅰ),and methyl methacrylate (MMA) in selective solvents for PS and PMMA.European Polymer Journal 2004 40(2):237-244.
    [52]H.M.Aliabadi,A.Mahmud,A.D.Sharifabadi,A.Lavasanifar,Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of Cyclosporine A.Journal of ControlledRelease 2005 104(2):301-311.
    [53]K.C.R.Bahadur,S.R.Bhattarai,S.Aryal,M.S.Khil,N.Dharmaraj,H.Y.Kim,Novel amphiphilic triblock copolymer based on PPDO,PCL,and PEG:Synthesis,characterization,and aqueous dispersion.Colloids and Surfaces a-Physicochemical and Engineering Aspects 2007 292(1):69-78.
    [54]K.T.Oh,E.S.Lee,D.Kim,Y.H.Bae,L-Histidine-basedpH-sensitive anticancer drug carrier micelle:Reconstitution and brief evaluation of its systemic toxicity.International Journal of Pharmaceutics 2008 358(1-2):177-183.
    [55]S.K.Agrawal,N.Sanabria-DeLong,G.N.Tew,S.R.Bhatia,Structural characterization of PLA-PEO-PLA solutions and hydrogels:Crystalline vs amorphous PLA domains.Macromolecules 2008 41(5):1774-1784.
    [56]T.Tang,V.Castelletto,P.Parras,I.W.Hamley,S.M.King,D.Roy,.Pettier,R.Hoogenboom,U.S.Schubert,Thermo-responsive poly(methyl methacry late)-block-poly (N-isopropyl acrylamide) block copolymers synthesized by RAFT polymerization:Micellization and gelation.Macromolecular Chemistry and Physics 2006 207(19):1718-1726.
    [57]S.E.Burke,A.Eisenberg,Effect of sodium dodecyl sulfate on the morphology of pol ystyrene-b-poly (acrylic acid) aggregates in dioxane-water mixtures.Langmuir 2001 17(26):8341-8347.
    [58]S.E.Burke,A.Eisenberg,Kinetics and mechanisms of the sphere-to-rod and rod-to-sphere transitions in the ternary system PS310-b-PAA(52)/dioxane/water.Langmuir 2001 17(21):6705-6714.
    [59]S.E.Burke,A.Eisenberg,Kinetic and mechanistic details of the vesicle-to-rod transition in aggregates of PS310-b-PAA(52) in dioxane-water mixtures.Polymer 2001 42(21):9111-9120.
    [60]J.R.C.van der Maarel,W.Groenewegen,S.U.Egelhaaf,A.Laap,Salt-induced contraction of polyelectrolyte diblock copolymer micelles.Langmuir 2000 16 (19):7510-7519.
    [61]Z.S.Gao,S.K.Varshney,S.Wong,A.Eisenberg,BLOCK-COPOLYMER CREW-CUT MICELLES IN WATER.Macromolecules 1994 27(26):7923-7927.
    [62]C.H.Lin,W.C.Chen,H.L.Chen,Heteroarm Star Polystyrene-block-Poly(4-vinylpyridine):Multiple Morphologies in Dilute Solutions.Macromolecular Chemistry and Physics 2008 209(22):2349-2358.
    [63]F.Bougard,C.Giacomelli,L.Mespouille,R.Borsali,P.Dubois,R.Lazzaroni,Influence of the macromolecular architecture on the self-assembly of amphiphilic copolymers based on poly (N,N-dimethylamino-2-ethyl methacrylate) and poly(epsilon-caprolactone).Langmuir 2008 24(15):8272-8279.
    [64]S.Antoun,J F.Gohy,R.Jerome,Micellization of quaternized poly (2-(dimethylamino) ethylmethacrylate)-block-poly (methylmethacrylate) copolymers in water.Polymer 2001 42(8):3641-3648.
    [65]F.Bouyer,N.Sanson,M.Destarac,C.Gerardin,Hydrophilic block copolymer-directed growth of lanthanum hydroxide nanoparticles.New Journal of Chemistry 2006 30 (3):399-408.
    [66]L.Deng,K.Shi,Y.Y.Zhang,H.M.Wang,J.G.Zeng,X.Z.Guo,Z.J.Du,B.L.Zhang,Synthesis of well-defined poly(N-isopropylacrylamide)-b-poly(L-glutamic acid) by a versatile approach and micellization.Journal of Colloid and Interface Science 2008 323 (1):169-175.
    [67]T.Y.Jiang,Z.Y.Wang,C.Chen,F.K.Mo,Y.L.Xu,L.X.Tang,J.J.Liang,Poly(aspartiC-acid) derivatives as polymeric micelle drug delivery systems.Journal of Applied Polymer Science 2006 101(5): 2871-2878.
    [68]S.C.De Smedt,J.Demeester,W.E.Hennink,Cationic polymer based gene delivery systems.Pharmaceutical Research 2000 17(2):113-126.
    [69]F.Lecomte,J.Siepmann,M.Walther,R.J.MacRae,R.Bodmeier,pH-sensitive polymer blends used as coating materials to control drug release from spherical beads:Importance of the type of core.Biomacromolecules 2005 6(4):2074-2083.
    [70]F.T.Liu,A.Eisenberg,Preparation and pH triggered inversion of vesicles from poly(acrylic acid)-block-polystyrene-block-poly(4-vinyl pyridine).Journal of the American Chemical Society 2003 125(49):15059-15064.
    [71]K.S.Soppimath,D.C.W.Tan,Y.Y.Yang,pH-triggered thermally responsive polymer core-shell nanoparticles for drug delivery.Advanced Materials 2005 17(3):318-333.
    [72]S.Y.Kim,Y.M.Lee,H.J.Shin,J.S.Kang,Indomethacin-loaded methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) diblock copolymeric nanosphere:pharmacokinetic characteristics of indomethacin in the normal Sprague-Dawley rats.Biomaterials 2001 22(14):2049-2056.
    [73]T.Riley,T.Govender,S.Stolnik,C.D.Xiong,M.C.Garnett,L.Illum,S.S.Davis,Colloidal stability and drug incorporation aspects of micellar-like PLA-PEG nanoparticles.Colloids and Surfaces B-Biointerfaces 1999 16(1-4):147-159.
    [74]G.Ruan,S.S.Feng,Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel.Biomaterials 2003 24(27):5037-5044.
    [75]J.Z.Du,D.P.Chen,Y.C.Wang,C.S.Xiao,Y.J.Lu,J.Wang,G.Z.Zhang,Synthesis and micellization of amphiphilic brush-coil block copolymer based on poly(epsilon-caprolactone) and PEGylated polyphosphoester.Biomacromolecules 2006 7(6):1898-1903.
    [76]T.Trimaille,K.Mondon,R.Gurny,M.Moller,Novel polymeric micelles for hydrophobic drug delivery based on biodegradable poly(hexyl-substituted lactides).International Journal of Pharmaceutics 2006 319(1-2):147-154.
    [77]Y.Y.Li,X.Z.Zhang,H.Cheng,G.C.Kim,S.X.Cheng,R.X.Zhuo,Novel stimuli-responsive micelle self-assembled from Y-shaped P(UA-Y-NIPAAm) copolymer for drug delivery.Biomacromolecules 2006 7(11):2956-2960.
    [78]P.Vangeyte,S.Gautier,R.Jerome,About the methods of preparation of poly(ethylene oxide)-b-poly(epsilon-caprolactone) nanoparticles in water analysis by dynamic light scattering.Colloids and Surfaces a-Physicochemical and Engineering Aspects 2004 242(1-3):203-211.
    [79]M.A.R.Meier,S.N.H.Aerts,B.B.P.Staal,M.Rasa,U.S.Schubert,PEO-b-PCL block copolymers:Synthesis,detailed characterization,and selected micellar drug encapsulation behavior.Macromolecular Rapid Communications 2005 26(24):1918-1924.
    [80]N.Rapoport,Combined cancer therapy by micellar-encapsulated drug and ultrasound.Istanbul,Turkey,2002,pp.155-162.
    [81]Y.Yamamoto,Y.Nagasaki,Y.Kato,Y.Sugiyama,K.Kataoka,Long-circulating poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles with modulated surface charge.Journal of Controlled Release 2001 77(1-2):27-38.
    [82]J.X.Zhang,L.Y.Qiu,Y.Jin,K.J.Zhu,Thermally responsive polymeric micelles self-assembled by amphiphilic polyphosphazene with poly(N-isopropylacrylamide) and ethyl glycinate as side groups:Polymer synthesis,characterization,and in vitro drug release study.Journal of Biomedical Materials Research Part A 2006 76A(4):773-780.
    [83]R.X.Zhang,X.J.Li,L.Y.Qiu,X.H.Li,M.Q.Yah,Y.Jin,K.J.Zhu,Indomethacin-loaded polymeric nanocarriers based on amphiphilic polyphosphazenes with poly (N-isopropylacrylamide) and ethyl tryptophan as side groups:Preparation,in vitro and in vivo evaluation.Journal of Controlled Release 2006 116(3):322-329.
    [84]M.Yokoyama,T.Okano,Y.Sakurai,K.Kataoka,Improved synthesis of adriamycin-conjugated poly(ethylene oxide) poly(aspartic acid) block-copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin.Journal of Controlled Release 1994 32(3):269-277.
    [85]H.R.Stapert,N.Nishiyama,D.L.Jiang,T.Aida,K.Kataoka,Polyion complex micelles encapsulating light-harvesting ionic dendrimer zinc porphyrins.Langmuir2000 16(21):8182-8188.
    [86]C.Brus,H.Petersen,A.Aigner,F.Czubayko,T.Kissel,Physicochemical and biological characterization of polyethylenimine-graft-poly(ethylene glycol) block copolymers as a delivery system for oligonucleotides and ribozymes.Bioconjugate Chemistry 2004 15(4):677-684.
    [87]Arnida,N.Nishiyama,N.Kanayama,W.D.Jang,Y.Yamasaki,K.Kataoka,PEGy lated gene nanocarriers based on block catiomers bearing ethylenediamine repeating units directed to remarkable enhancement of photochemical transfection.Journal of Controlled Release 2006 115(2):208-215.
    [88]H.Cabral,N.Nishiyama,S.Okazaki,H.Koyama,K.Kataoka, Preparation and biological properties of dichloro(1,2-diaminocyclohexane)platinum(Ⅱ) (DACHPt)-loaded polymeric micelles.Noordwijk,NETHERLANDS,2004,pp.223-232.
    [89]P.Opanasopit,T.Ngawhirunpat,A.Chaidedgumjorn,T.Rojanarata,A.Apirakaramwong,S.Phongying,C.Choochottiros,S.Chirachanchai,Incorporation of camptothecin into N-phthaloyl chitosan-g-mPEG self-assembly micellar system.European Journal of Pharmaceutics and Biopharmaceutics 2006 64(3):269-276.
    [90]S.Q.Liu,Y.W.Tong,Y.Y.Yang,Thermally sensitive micelles self-assembled from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) for controlled delivers of paclitaxel.Molecular Biosystems 2005 1(2):158-165.
    [91]F.Mathot,L.van Beijsterveldt,V.Preat,M.Brewster,A.Arien,Intestinal uptake and biodistribution of novel polymeric micelles after oral administration.Journal of Controlled Release 2006 111(1-2):47-55.
    [92]V.P.Sant,D.Smith,J.C.Leroux,Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies.Journal of ControlledRelease 2005 104(2):289-300.
    [93]M.F.Francis,M.Cristea,F.M.Winnik,Exploiting the vitamin B-12 pathway to enhance oral drug delivery via polymeric micelles.Biomacromolecules 2005 6(5):2462-2467.
    [94]S.Kawakami,P.Opanasopit,M.Yokoyama,N.Chansri,T.Yamamoto,T.Okano,F.Yamashita,M.Hashida,Biodistribution characteristics of all-trans retinoic acid incorporated in liposomes and polymeric micelles following intravenous administration.Journal of Pharmaceutical Sciences 2005 94(12):2606-2615.
    [95]H.M.Aliabadi,D.R.Brocks,A.Lavasanifar,Polymeric micelles for the solubilization and delivery of cyclosporine A:pharmacokinetics and biodistribution.Biomaterials 2005 26(35):7251-7259.
    [96]K.M.Huh,S.C.Lee,Y.W.Cho,J.W.Lee,J.H.Jeong,K.Park,Hydrotropic polymer micelle system for delivery of paclitaxel.Noordwijk,NETHERLANDS,2004,pp.59-68.
    [97]Y.Zhang,T.Jin,R.X.Zhuo,Methotrexate-loaded biodegradable polymeric micelles:Preparation,physicochemical properties and in vitro drug release.Colloids and Surfaces B-Biointerfaces 2005 44(2-3):104-109.
    [98]Y.Matsumura,H.Maeda,A new concept for macromolecular therapeutics in cancer-chemotherapy-mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.Cancer Research 1986 46(12):6387-6392.
    [99]M.Yokoyama,Polymeric Micelle drug carriers for tumor targeting.in:S.Svenson (Ed.),New York,NY,2003,pp.27-39.
    [100]B.Shi,C.Fang,M.X.You,Y.Zhang,S.K.Fu,Y.Y.Pei,Stealth MePEG-PCL mice]les:effects of polymer composition on micelle physicochemical characteristics,in vitro drug release,in vivo pharmacokinetics in rats and biodistribution in S-180 tumor bearing mice.Colloid and PolymerScience 2005 283(9):954-967.
    [101]K.Greish,A.Nagamitsu,J.Fang,H.Maeda,Copoly(styrene-maleic acid)-Pirarubicin micelles:High tumor-targeting efficiency with little toxicity.Bioconjugate Chemistry 2005 16(1):230-236.
    [102]H.S.Yoo,T.G.Park,Folate receptor targeted biodegradable polymeric doxorubicin micelles.Journal of Controlled Release 2004 96(2):273-283.
    [103]E.K.Park,S.Y.Kim,S.B.Lee,Y.M.Lee,Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery.Salt Lake City,UT,2005,pp.158-168.
    [104]M.Licciardi,G.Giammona,J.Z.Du,S.P.Armes,Y.Q.Tang,A.L.Lewis,New folate-functionalized biocompatible block copolymer micelles as potential anti-cancer drug delivery systems.Polymer 2006 47(9):2946-2955.
    [105]Y.Bae,W.D.Jang,N.Nishiyama,S.Fukushima,K.Kataoka,Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery.Molecular Biosystems 2005 1(3):242-250.
    [106]M.Hruby,C.Konak,K.Ulbrich,Polymeric micellar pH-sensitive drug delivery system for doxorubicin.Journal of Controlled Release 2005 103(1):137-148.
    [107]S.Q.Liu,Y.W.Tong,Y.Y.Yang,Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lact ide-co-glycolide) with varying compositions.Biomaterials 2005 26(24):5064-5074.
    [108]M.Nakayama,T.Okano,T.Miyazaki,F.Kohori,K.Sakai,M.Yokoyama,Molecular design of biodegradable polymeric micelles for temperature-responsive drug release.Journal of Controlled Release 2006 115(1):46-56.
    [109]J.Q.Jiang,X.Tong,D.Morris,Y.Zhao,Toward photocontrolled release using light-dissociable block copolymer micelles.Macromolecules 2006 39(13):4633-4640.
    [110]Z.G.Gao,H.D.Fain,N.Rapoport,Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound.Journal of Controlled Release 2005 102(1):203-222.
    [111]R.M.Sawant,J.P.Hurley,S.Salmaso,A.Kale,E.Tolcheva,T.S.Levchenko,V.P.Torchilin,“SMART” drug delivery systems:Double-targeted pH-responsive pharmaceutical nanocarriers.Bioconjugate Chemistry 2006 17(4):943-949.
    [112]K.N.Eun Seong Lee,and You Han Bae,Super pH-Sensitive Multifunctional Polymeric Micelle NANO LETTERS 2005 5(2):325-329.
    [113]J.H.Jeong,T.G.Park,Poly(L-lysine)-g-poly(D,L-lactic-coglycolic acid) micelles for low cytotoxic biodegradable gene delivery carriers.Journal of Controlled Release 2002 82(1):159-166.
    [114]S.Fukushima,K.Miyata,N.Nishiyama,N.Kanayama,Y.Yamasaki,K.Kataoka,PYGylated polyplex micelles from triblock catiomers with spatially ordered layering of condensed pDNA and buffering units for enhanced intracellular gene delivery.Journal of the American Chemical Society2005 127(9):2810-2811.
    [115]N.Nishiyama,Arnida,W.D.Jang,K.Date,K.Miyata,K.Kataoka,Photochemical enhancement of transgene expression by polymeric micelles incorporating plasmid DNA and dendrimer-based photosensitizer.Journal of Drug Targeting 2006 14(6):413-424.
    [116]J.Y.Seong,Y.J.Jun,B.M.Kim,Y.M.Park,Y.S.Sohn,Synthesis and characterization of biocompatible poly(organophosphazenes) aiming for local delivery of protein drugs.International Journal of Pharmaceutics 2006 314(1):90-96.
    [117]Y.J.Jun,J.I.Kim,M.J.Jun,Y.S.Sohn,Selective tumor targeting by enhanced permeability and retention effect.Synthesis and antitumor activity of polyphosphazene-platinum (Ⅱ) conjugates.Journal of Inorganic Biochemistry 2005 99(8):1593-1601.
    [118]S.Jain,F.S.Bates,On the origins of morphological complexity in block copolymer surfactants.Science 2003 300(5618):460-464.
    [119]T.Li,J.P.Lin,T.Chen,S.N.Zhang,Polymeric micelles formed by polypeptide graft copolymer and its mixtures with polypeptide block copolymer.Polymer 2006 47(13):4485-4489.
    [120]J.X.Zhang,X.D.Li,M.Q.Yan,L.Y.Qiu,Y.Jin,K.J.Zhu,Hydrogen bonding-induced transformation of network aggregates into vesicles-A potential method for the preparation of composite vesicles.Macromolecular Rapid Communications 2007 28(6):710-717.
    [121]A.K.Andrianov,Water-soluble polyphosphazenes for biomedical applications.Journal of Inorganic and Organometallic Polymers and Materials 2006 16(4):397-406.
    [122]L.Y.Qiu,K.J.Zhu,Novel blends of poly[bis(glycine ethyl ester) phosphazene]and polyesters or polyanhydrides:compatibility and degradation characteristics in vitro.Polymer International 2000 49(11):1283-1288.
    [123]M.Kool,M.van der Linden,M.de Haas,G.L.Scheffer,J.M.L.de Vree,A.J.Smith,G.Jansen,G.J.Peters,N.Ponne,R.J.Scheper,R.Elferink,F.Baas,P.Borst,MRP3,an organic anion transporter able to transport anti-cancer drugs.Proceedings of the National Academy of Sciences of the United States of America 1999 96(12):6914-6919.
    [124]K.Shiozawa,M.Oka,H.Soda,M.Yoshikawa,Y.Ikegami,J.Tsurutani,K.Nakatomi,Y.Nakamura,S.Doi,T.Kitazaki,Y.Mizuta,K.Murase,H.Yoshida,D.D.Ross,S.Kohno,Reversal of breast cancer resistance protein (BCRP/ABCG2)-mediated drug resistance by novobiocin,a coumermycin antibiotic.International Journal of Cancer 2004 108(1):146-151.
    [125]G.Kwon,M.Naito,M.Yokoyama,T.Okano,Y.Sakurai,K.Kataoka,Micelles based on ab block copolymers of poly(ethylene oxide) and poly(beta-benzyl 1-aspartate).Langmuir 1993 9(4):945-949.
    [126]H.Bermudez,A.K.Brannan,D.A.Hammer,F.S.Bates,D.E.Discher,Molecular weight dependence of polymersome membrane structure,elasticity,and stability.Macromolecules 2002 35(21):8203-8208.
    [127]H.J.Lee,S.R.Yang,E.J.An,J.D.Kim,Biodegradable polymersomes from poly (2-hydroxyethyl aspartamide) grafted with lactic acid oligomers in aqueous solution.Macromolecules 2006 39(15):4938-4940.
    [128]A.Nykanen,M.Nuopponen,A.Laukkanen,S.P.Hirvonen,M.Rytela,O.Turunen,H.Tenhu,R.Mezzenga,O.Ikkala,J.Ruokolainen,Phase behavior and temperature-responsive molecular filters based on self-assembly of Polystyrene-block-poly(N-isopropylacrylamide)-blockpolystyrene.Macromolecules 2007 40(16):5827-5834.
    [129]A.Nykaenen,M.Nuopponen,P.Hiekkataipale,S.P.Hirvonen,A.Soininen,H.Tenhu,O.Ikkala,R.Mezzenga,J.Ruokolainen,Direct Imaging of nanoscopic plastic deformation below bulk T-g and chain stretching in temperature-responsive block copolymer hydrogels by cryo-TEM.Macromolecules 2008 41 (9):3243-3249.
    [130]F.Ahmed,R.I.Pakunlu,G.Srinivas,A.Brannan,F.Bates,M.L.Klein,T.Minko,D.E.Discher,Shrinkage of a rapidly growing tumor by drug-loaded polymersomes:pH-triggered release through copolymer degradation.Molecular Pharmaceutics 2006 3 (3):340-350.
    [131]N.Sarier,E.Onder,Thermal insulation capability of PEG-containing polyurethane foams.Thermochimica Acta 2008 475(1-2):15-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700