离子聚合物接枝多壁碳纳米管的合成及其电活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于碳纳米管(CNTs)拥有独特的结构,表现出优异的光、电、磁、力学物理性质,在生物医学和电子器件等领域拥有巨大的应用前景。尤其是水溶性碳纳米管在生物医药方面表现出了巨大潜力,更加吸引了人们关注。本文选择价廉易得的有机分子,在多壁碳纳米管(MWNTs)表面共价接枝上离子聚合物,探讨了此改性水溶性MWNTs在电化学传感器及电活性高分子制动器方面的应用。
     先对MWNTs进行酸化处理,利用酰胺反应在MWNTs表面引入可聚合的乙烯基。通过自由基聚合反应,将苯乙烯磺酸钠(SSS)和丙烯酸(AA)原位共聚合到MWNTs的表面,合成了聚(苯乙烯磺酸钠-丙烯酸)接枝多壁碳纳米管( P(SSS-co-AA)-g-MWNT )。傅立叶红外光谱( FTIR )、拉曼光谱( Raman Spectroscopy)、核磁共振氢谱(1H NMR)和透射电子显微镜(TEM)分析证实了聚(苯乙烯磺酸钠-丙烯酸)(P(SSS-co-AA))共价接枝在MWNTs管壁表面,形成以纳米管为核、P(SSS-co-AA)为壳的核壳结构,包覆层厚度在7-12nm之间,P(SSS-co-AA)的接枝含量为82.3%。P(SSS-co-AA)-g-MWNT具有良好的水溶性,溶解度为4mg/mL。利用此水溶性MWNTs修饰玻碳电极制成电化学传感器,修饰的电极具有电子快速转移能力、强的催化能力和电化学活性。用该电化学传感器检测生物分子时,尿酸(UA)、多巴胺(DA)和5-羟基色胺(5-HT)分别有较好的电化学响应,且能同步检测多巴胺和5-羟基色胺。
     以水溶性MWNTs为模板,在其表面组装Ag纳米粒子,形成Ag@MWNT纳米复合物。通过控制还原剂的添加量,组装的Ag颗粒尺寸能控制在2-4nm之间,且Ag@MWNT在水中具有良好的分散性。复合物修饰的玻碳电极具有较强的催化能力,能检测溶液中的溶解氧和双氧水。
     通过热交联和戊二醛交联,制备了PVA/P(SSS-co-AA)离子交换膜(IEM),并优化实验条件。当PVA与P(SSS-co-AA)的质量比为2:1时,IEM有较好的力学性能、离子交换容量和吸水率。P(SSS-co-AA)-g-MWNT与PVA/P(SSS-co-AA) (w/w 2:1)基体具有很好的相容性,能均匀的分散于基体中。与未添加P(SSS-co-AA)-g-MWNT的IEM相比,添加P(SSS-co-AA)-g-MWNT的IEM力学性能和电导率得到明显改善。当P(SSS-co-AA)-g-MWNT的添加量为20%时,离子交换膜的杨氏模量从288.70增加到620.46 MPa,电导率从10-13增大到10-4 Scm-1。
     以离子交换膜为中间层,两面镀上金属Au,制备了三明治结构的制动器。在直流电场(1-5V)的驱动下,制动器能向阳极发生弯曲变形。当采取频率为0.25Hz、电压为±1.5V的方波驱动时,掺杂5%、10%和20% P(SSS-co-AA)-g-MWNT的制动器偏转位移的振幅均在13 mm以上。同时,随着P(SSS-co-AA)-g-MWNT添加量的增加,制动器的松弛现象得到明显改善,对电场的灵敏性也得到提高。
     用P(SSS-co-AA)-g-MWNT膜取代金属Au作为电极层,制备了新型结构的制动器。在直流电场驱动下,制动器向阳极作弯曲变形运动。当在频率为0.25Hz、电压为2V的方波电压驱动下,制动器作周期性弯曲运动,偏转位移最大振幅为1 mm,并且随着电压的增大偏转位移振幅增大。通过SEM观察,功能化纳米管组成的MWNTs片与离子交换膜具有强的界面粘结性,在循环弯曲变形时不易剥离。MWNTs片中纳米管的网络连接和多孔结构,能阻止水分解时所产生的气体对电极层的破坏。在0.25Hz、±2.0V方波电压驱动下、经过3,000次循环操作,偏转的最大位移幅度仅减少大约10%;而每天循环操作200次,持续三个月后制动器的偏转位移几乎没有衰减,该制动器具有较长的使用寿命。
Carbon nanotubes (CNTs) are extremely promising for applications in materials science and medicinal chemistry, due to their extraordinary optical, electronic, thermal, mechanical and chemical properties. Especially, water-soluble carbon nanotubes (CNTs)-based composites have received much attention for investigations in the area of potential biological applications and environmentally compliant productions. But the defects of their insolubility and entanglements have imposed great limitations to the application and development of CNTs. The poor solubility of nanotubes in most solvents and matrices rendered a difficult processing ability, and the excellent properties of individual nanotube cannot show high efficiency in the matrices. How to obtain water-soluble CNTs is becoming a great challenge, which determined the commercial viability of the large-scale CNT processing. The most common way to overcome this above is the chemical modification of CNTs by oxidation followed by organic modification with hydrophilic substances.
     In the present dissertation, the synthesis of ionic polymer covalently modified CNTs, as well as the structure and the electroactive properties of the modified CNTs have been mainly studied. The organic small molecules with functional groups are preliminarily grafted onto the CNT surfaces via amidation to generate CNT-supported macroinitiators. Ionic polymer is then covalently grafted on the surface of CNTs via free radical in-situ polymerization of monomers and finally silver (Ag) nanoparticles are assembled on the surface of CNTs via water-soluble CNTs as template. The electrochemistry of water-soluble CNTs and Ag/CNTs was investigated. The actuation behaviors of ion-exchange membrane with water-soluble CNTs have been also discussed. Water-soluble poly (sodium styrene sulfonate-co-acrylic acid) (P(SSS-co-AA)) grafted CNTs (P(SSS-co-AA)-g-MWNT) have been successfully synthesized by an in-situ free radical copolymerization of sodium styrene sulfonate and acrylic acid in the presence of CNTs terminated with vinyl groups. P(SSS-co-AA)-g-MWNT showed a core-shell structure with a polymer layer thickness of 7-12 nm as shell and nanotube as core, and the grafting content of polymer was 82.3 wt.%. P(SSS-co-AA)-g-MWNT has good solubility and stable dispersibility in water with 4 mg/mL of dissolubility. The electrochemical sensor based on P(SSS-co-AA)-g-MWNT has strong catalytic ability, high electrochemical activity and fast electronic transfer capability. Low content of uric acid (UA), dopamine (DA) and 5-hydroxytryptamine (5-HT), respectively, can be detected by this sensor. It is very interesting that P(SSS-co-AA)-g-MWNT can detect the mixture of DA and 5-HT simultaneously.
     Ag and CNTs composite (Ag@MWNT) has been successfully synthesized by in-situ reducing Ag ion on the surface of nanotube with water-soluble CNTs as template. Ag crystal is composed of fcc unit cell structure with a =0.408 nm and has a narrow size distribution among 2-4 nm and adheres firmly on the surface of nanotube. The electrochemical sensor based on Ag@MWNT had good catalyst ability to the low concentration of dissolved oxygen (O2) and peroxide hydrogen (H2O2).
     Reinforced ion-exchange membrane (IEM) has been prepared by doping CNTs into the matrix of poly (vinyl alcohol) (PVA) and P(SSS-co-AA), generating good water-uptake and ionic exchange capability. Ionic polymer-functional CNTs had well-dispersed and was well good compatible in/with the matrix, resulting improve mechanical strength and conductivity of IEM.
     Electroactive actuators have been consisted of sandwich structure by sputtering gold (Au) on the two sides of IEM. All the actuators with four different contents of CNTs have more than 10 mm displacement of tip deflection under low square wave potential of±1.5 V with a frequency of 0.25 Hz. With the increasing of content of CNTs doped, the relaxation of actuator was gradually disappeared and the sensitivity of actuator to the electric filed increases.
     A novel actuator has been prepared with functional CNTs mat which served as electrode lays. The actuator shows maximum deflection displacement of 1 mm and 3 mm driven by±2.0 V or±3.0 V potential of square wave with a frequency of 0.25 Hz, respectively. Compared with Au metal as electrode, the CNTs mats improve the cycle life of the actuator with the continuous actuation of 3,000 cycles and the actuator is able to have a three months cycle life if driven 200 strokes each day.
引文
[1] Iijma S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58
    [2] Ebbesen T. W. Carbon nanotubes. Physics Today, New York, 1996, 49: 26-32
    [3] Henning T. H., Salama F. Carbon in the universe. Science, 1998, 282: 2204-2210
    [4] Hiura H., Ebbesen T. W., Fujita J., et al. Role of sp3 defect structures in graphite and carbon nanotubes. Nature, 1994, 367: 148-151
    [5] http://www-ibmc.u-strasbg.fr/ict/vectorisation/nanotubes_eng.shtml
    [6] Williams K. A., Eklund P. C. Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes. Chem. Phys. Lett., 2000, 320: 352-358
    [7] Hone J., Batlogg B., Benes Z., et al. Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes. Science, 2000, 289: 1730-1733
    [8] Ma R. Z., Wei B. Q., Xu C. L. The morphology changes of carbon nanotubes under laser irradiation. Carbon, 2000, 38: 636-636
    [9] Wang Y. Y., Gupta S., Nemanich R. J. Role of thin Fe catalyst in the synthesis of double- and single-wall carbon nanotubes via microwave chemical vapor deposition. Applied Physics Letters, 2004, 85: 2601-2603
    [10]李亚利,于瀛大.纳米碳管制备新技术——固相热解法.科学通报, 1997, 42(16): 1787-1790
    [11] Dai H., Hafner J. H., Rinzler A. G., et al. Nanotubes as Nanoprobes in Scanning Probe Microscopy. Nature, 1996, 384: 147-151
    [12] Wong S. S., Harper J. D., Lansbury P. T., et al. Carbon nanotube tips: high-resolution probes for imaging biological systems. J. Am. Chem. Soc., 1998, 120: 603-604
    [13] Wong S. S., Joselevich E., Woolley A. T., et al. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature, 1998, 394: 52-55
    [14] Wong S. S., Woolley A. T., Joselevich E., et al. Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy. J. Am. Chem. Soc., 1998, 120: 8557-8558
    [15] Jensen K., Weldon J., Garcia H., et al. Nanotube radio. Nano Lett., 2007, 7: 3508-3511
    [16] Poncharal P., Wang Z. L., Ugarte D., et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science, 1999, 283: 1513-1516
    [17] Kong J., Franklin N. R., Zhou C., et al. Nanotube molecular wires as chemical sensors. Science, 2000, 287: 622-625
    [18] Kong J., Chapline M.G., Dai H. J. Functionlized carbon nanotubes for molecular hydrogen sensors. Adv. Mater., 2001, 13: 1384-1386
    [19] Collin P. G., Bradley K., Ishigaml M., et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 2000, 287: 1801-1804
    [20] Varghese O. K., Kichambre P. D., Gong D., et al. Gas sensing characteristics of multi-wall carbon nanotubes. Sensors and Actuators B, 2001, 81: 32-41
    [21] Modi A., Koratkar N., Lass E., et al. Miniaturized gas ionization sensors using carbon nanotubes. Nature, 2003, 424: 171-174
    [22] Saito R., Fujita M., Dresselhaus G., et al. Electronic structure of chiral graphene tubules. Appl. Phys. Lett., 1992, 60: 2204-2206
    [23] Wild?er J. W. G., Venema L. C., Rinzler A. G., et al. Electronic structure of atomically resolved carbon nanotubes. Nature, 1998, 391: 59-62
    [24] Odom T. W., Huang J. L., Kim P., et al. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998, 391: 62-64
    [25] Britto P. J., Santhanam K. S. V., Ajayan P. M. Carbon nanotube electrode for dopamine oxidation. Bioelectrochem. Bioenerg., 1996, 41: 121-125
    [26] Davis J. J., Coles R. J., Hill H. A. O. Protein electrochemistry at carbon nanotube electrodes. J.Electroanal.Chem., 1997, 440: 279-282
    [27] Luo H. X., Shi Z. J., Li N. Q., et al. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal.Chem., 2001, 73: 915-920
    [28] Wang Z. H., Liang Q. L., Wang Y. M., et al. Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. J. Electroanal. Chem., 2003, 540: 129-134
    [29] Hu C. G., Wang W. L., Wang S. X., et al. Investigation on electrochemical properties of carbon nanotubes. Diamond and Related Materias, 2003, 12: 1295-1299
    [30] Wang J., Xu D., Kawde A. N., et al. Metal nanoparticle-based electrochemical stripping potentiometric detection of dna hybridization. Anal. Chem., 2001, 73:5576-5581
    [31] Chen J., Cai C. X. Direct Electrochemical Oxidation of NADPH at a Low Potential on the Carbon Nanotube Modified Glassy Carbon Electrode. Chinese J. Chem., 2004, 22: 167-171
    [32] Zhang Y. Z., Cai Y. J., Su S. Determination of dopamine in the presence of ascorbic acid by poly(styrene sulfonic acid) sodium salt/single-wall carbon nanotube film modified glassy carbon electrode. Analytical Biochemistry, 2006, 350: 285-291
    [33] Wu K. B., Ji X. B., Fei J. J., et al. The fabrication of a carbon nanotube film on a glassy carbon electrode and its application to determining thyroxine. Nanotechnology, 2004, 15: 287-291
    [34] Hu C. G., Zhang Y. Y., Bao G., et al. DNA Functionalized single-walled carbon nanotubes for electrochemical detection. J. Phys. Chem. B, 2005, 109: 20072-20076
    [35] Wu K. B. Hu S. S. Electrochemical study and selective determination of dopamine at multi-wall carbon nanotube-Nafion film coated glassy carbon electrode. Microchim. Acta, 2004, 144: 131-137
    [36] Islam M F, Rojas E, Bergey D M, Johnson A T, Yodh A G. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett., 2003, 3: 269-273
    [37] Chen R. S., Huang W. H., Tong H., et al. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes. Anal. Chem., 2003, 75: 6341-6345
    [38] Hrapovic S., Majid E., Liu Y. L., et al. Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Analytical Chemistry, 2006, 78: 5504-5521
    [39] Male K. B., Hrapovic S., Liu Y. L., et al. Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Analytica Chimica Acta, 2004, 516: 35-41
    [40] Guo D. J., Li H. L. High dispersion and electrocatalytic properties of platinum on functional multi-walled carbon nanotubes electroanalysis. Electroanalysis, 2005, 17: 869-872
    [41] Lin Y. H., Cui X. L., Yen C., et al. Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. J. Phys. Chem. B, 2005, 109: 14410-14415
    [42] Chen J. H., Wang M. Y., Liu B., et al. Platinum catalysts prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation. J. Phys. Chem. B, 2006, 110: 11775-11779
    [43] Gao M., Huang S. M., Dai L. M., et al. Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers. Angew. Chem. Int. Ed. 2000, 39: 3664-3667
    [44] Barone P. W., Baik S., Heller D. A., et al. Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Materials, 2005, 4: 86-92
    [45] Shankar R., Ghosh T. K., Spontak R. J. Dielectric elastomers as next-generation polymeric actuators. Soft Matter, 2007, 3: 1116-1129
    [46] Fremond M., Miyazaki M. Shape Memory Alloys, New York: Springer, 1996
    [47] Moulson A., Herbert J. Electroceramics, London: Chapman & Hall, 1995
    [48] Huber J. E., Fleck N. A., Ashby M. F. The selection of mechanical actuators based on performance indices. Proc. R. Soc. London, Ser. A, 1997, 453, 2185-2205
    [49] Bar-Cohen Y. Electro-active polymers: current capabilities and challenges. Smart Structures and Materials: Electroactive Polymer Actuators and Devices (EAPAD), Bar-Cohen Y., Editor, Proceedings of SPIE, 2002, 4695: 1-7
    [50] Oh J. H., Hanson D., Kim W. S., et al. Design of android type humanoid robot albert hubo. Proc. 2006 IEEE/RSJ Int. Conf. Intel. Robot. Automat., Beijing, China, 2006, 1428-1433
    [51] Eguchi M. Phil. Mag., 1925, 49: 178-182
    [52] Hamlen R. P., Kent C. E., Shafer S. N. Electrolytically activated contractile polymers. Nature, 1965, 206: 1149-1150
    [53] Fragala A., Enos J., LaConti A., et al. Electrochemical activation of a synthetic artificial muscle membrane. Electrochim. Acta., 1972, 17: 1507-1522
    [54] Shahinpoor M., Kim K J. Novel ionic polymer–metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles. Sensors and Actuators A, 2002, 96: 125-132
    [55] Dennler G., Sariciftci N. S., Schw?diauer R., et al. Unexpected electromechanical actuation in conjugated polymer based diodes. J. Mater. Chem., 2006, 16: 1789-1793
    [56] Fukushima T., Asaka K., Kosaka A., et al. Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew. Chem. Int. Ed.,2005, 44: 2410-2413
    [57] Bar-Cohen Y. Electroactive Polymer Actuators and Devices. Smart Structures and Materials: Electroactive Polymer Actuators and Devices (EAPAD), Bar-Cohen Y., Editor, Proceedings of SPIE, 1999, 3669: 1-414
    [58] http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/EAP-web.htm
    [59] Bar-Cohen Y. Electroactive polymer actuators as artificial muscles: progress and challenges. Smart Structures and Materials: Electroactive Polymer Actuators and Devices (EAPAD), Bar-Cohen Y., Editor, Proceedings of SPIE, 2004, 5385: 10-16
    [60] Madden J. D. W., Vandesteeg N. A., Anquetil P. A., et al. Artificial muscle technology: physical principles and naval prospects. IEEE J. Oceanic Eng., 2004, 29: 706-728
    [61] Bay L., West K., Sommer-Larsen P., et al. A conducting polymer artificial muscle with 12 % linear strain. Adv. Mater., 2003, 15: 310-313
    [62] Nemat-Nasser S., Li J. Y. Electromechanical response of ionic polymer-metal composites. J. Appl. Phys. 2000, 87: 3321-3331
    [63] Shahinpoor M., Kim K. J. Ionic polymer-metal composites: I. Fundamentals. Smart Mater. Struct., 2001, 10: 819-833
    [64] Kim K. J., Shahinpoor M. Ionic polymer–metal composites: II. Manufacturing techniques. Smart Mater. Struct., 2003, 12: 65-79
    [65] Shahinpoor M., Kim K. J. Ionic polymer–metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Mater. Struct., 2004, 13: 1362-1388
    [66] Bar-Cohen Y., Leary S., Yavrouian A., et al. Challenges to the application of IPMC as actuators of planetary mechanisms. Smart Structures and Materials: Electroactive Polymer Actuators and Devices (EAPAD), Bar-Cohen Y., Editor, Proceedings of SPIE, 2000, 3987: 140-146
    [67] Guo S. X., Fukuda T., Kosuge K., et al. Micro catheter system with active with active guide wire. Proc. IEEE ICRA, 1995, 1: 79-84
    [68] Guo S. X., Fukuda T., Kato N., Oguro K. Development of Underwater Microrobot using ICPF Actuator. Proc. IEEE ICRA, 1998, 2: 1829-1834
    [69] Tadokoro S., Takamori T., Oguro K. Application of the Nafion-platinum composite actuator. Smart Structures and Materials: Electroactive Polymer Actuators andDevices (EAPAD), Bar-Cohen Y., Editor, Proceedings of SPIE, 2001, 4329: 28-42
    [70] Shahinpoor M., Kim K. J. Ionic polymer–metal composites: IV. Industrial and medical applications. Smart Mater. Struct., 2005, 14: 197-214
    [71] Nemat-Nasser S., Wu Y. Comparative experimental study of ionic polymer–metal composites with different backbone ionomers and in various cation forms. J. Appl. Phys., 2003, 93: 5255-5267
    [72] Akle B. J., Bennett M. D., Leo D. J. High-strain ionomeric–ionic liquid electroactive actuators. Sens. Actuators, A, 2006, 126: 173-181
    [73] Han M. J., Park J. H., Lee J. Y., et al. Ionic polymer-metal composite actuators employing radiation-grafted fluoropolymers as ion-exchange membranes. Macromol. Rapid Commun., 2006, 27: 219-222
    [74]代丽君.化学还原工艺制备离子聚合物金属复合材料的研究.化学与粘合, 2007, 29(4): 238-250
    [75]李丰富,张玉军,郑岩. EDS法分析离子交换膜金属复合材料的铂电极厚度.哈尔滨理工大学学报, 2007, 12(2): 138-144
    [76] Shahinpoor M., Kim K. J. Mass transfer induced hydraulic actuation in ionic polymer-metal composites. Intell. Mater. Syst. Struct., 2002, 13: 369-376
    [77]王海霞,余海湖,李小甫,等. Pt-Ni/Nafion膜电致动材料的制备及性能研究.武汉理工大学学报, 2004, 26(12): 5-8
    [78]马春秀,张玉军. Nafion-金属的制备及电形变性能研究.宇航材料工艺, 2007, (4): 34-36
    [79] Paquette J. W, Kim K. J, Nam J. D., et al. An equivalent circuit model for ionic polymer-metal composites and their performance improvement by a clay-based polymer nano-composite technique. J. Intell. Mater. Syst. Struct., 2003, 14: 633-642
    [80] Xie X. L., Mai Y. W., Zhou X. P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. R., 2005, 49: 89-112
    [81] Baughman R. H., Cui C., Zakhidov A. A., et al. Carbon nanotube actuators. Science, 1999, 284: 1340-1344
    [82] Hughes M., Spinks G. M. Multiwalled carbon nanotube actuators. Adv. Mater., 2005, 17: 443-446
    [83] Lee D. Y., Park I. S., Lee M. H., et al. Ionic polymer-metal composite bending actuator loaded with multi-walled carbon nanotubes. Sens. Actuator A: Phys., 2007,133: 117-127
    [84] Yun S., Kim J.. A bending electro-active paper actuator made by mixing multi-walled carbon nanotubes and cellulose. Smart Mater. Struct., 2007, 16: 1471-1476
    [85] Shi J. H., Guo Z. X., Zhan B. H., et al. Actuator based on MWNT/PVA hydrogels. J. Phys. Chem. B, 2005, 109: 14789-14791
    [86] Yun Y. H., Shanov V., Schulz M. J., et al. Development of novel single-wall carbon nanotube-epoxy composite ply actuators. Smart Mater. Struct., 2005, 14: 1526-1532
    [87] Landi B. J., Raffaelle R. P., Heben M. J., et al. Single wall carbon nanotube-nafion composite actuators. Nano Lett., 2002, 2: 1329-1332
    [88]成会明.纳米碳管制备、结构、物性及应用.化学工业出版社:北京, 2002
    [89] Cahill P. A., Rohlfing C. M. Theoretical studies of derivatized buckyballs and buckytubes. Tetrahedron, 1996, 52: 5247-5256
    [90] Tsang S. C., Chen Y. K., Green M. L. H., et al. A simple chemical method of opening and filling carbon nanotubes. Nature, 1994, 372: 159-162
    [91] Lago R. M., Tsang S. C., Green M. L. H., et al. Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups. J. Chem. Soc., Chem. Commun., 1995, 1355-1356
    [92] Hiura H., Ebbesen T. W., Tanigaki K. Opening and purification of carbon nanotubes in high yields. Adv. Mater., 1995, 7: 275-276
    [93] Liu J., Rinzler A. G., Dai H., et al. Fullerene pipes. Science, 1998, 280: 1253-1256
    [94] Ajayan P. M., Tour J. M., Nanotube composites. Nature, 2007, 447: 1066-1068
    [95] Zhu J., Yudasaka M., Zhang M., et al. A surface modification approach to the patterned assembly of single-walled carbon nanomaterials. Nano Lett., 2003, 3, 1239-1243
    [96] Zhu J., Yudasaka M., Zhang M., et al. Dispersing carbon nanotubes in water: a noncovalent and nonorganic way. J. Phys. Chem. B, 2004, 108, 11317-11320
    [97] Georgakilas V., Tzitzios V., Gournis D., et al. Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives. Chem. Mater., 2005, 17: 1613-1617
    [98] Zhang Y., Liu C., Shi W., et al. Direct measurements of the interaction between pyrene and graphite in aqueous media by single molecule force spectroscopy:Understanding theπ-πinteractions. Langmuir, 2007, 23: 7911-7915
    [99] Chen R. J., Zhang Y. G., Wang D. W., et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein mmobilization, J. Am.Chem. Soc., 2001, 123: 3838-3839
    [100] Nakayama-Ratchford N., Bangsaruntip S., Sun X., et al. Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: supramolecular conjugates with pH-dependent absorbance and fluorescence. J. Am. Chem. Soc., 2007, 129: 2448-2449
    [101] Lee J., Huh J., Kim K., et al. Aqueous suspension of carbon nanotubes via non-covalent functionalization with oligothiophene-terminated poly(ethylene glycol). Carbon, 2007, 45: 1051-1057
    [102] Matarredona O., Rhoads H., Li Z., et al. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. B, 2003, 107: 13357-13367
    [103] Garg A., Sinnott S. B. Effect of chemical functionalization on the mechanical properties of carbon nanotubes. Chem. Phys. Lett., 1998, 295: 273-278
    [104] O’Connell M. J., Bachilo S. M., Huffman C. B., et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 2002, 297: 593-596
    [105] Bachilo S. M., Strano M. S., Kittrell C., et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002, 298: 2361-2366
    [106] Yurekli K., Mitchell C. A., Krishnamoorti R. Small-angle neutron scattering from surfactant- assisted aqueous dispersions of carbon nanotubes. J. Am. Chem. Soc., 2004, 126: 9902-9903
    [107] Wang H., Zhou W., Ho D. L., et al. Dispersing single-wall carbon nanotubes with surfactants: a small angle neutron scattering study. Nano Lett., 2004, 4: 1789-1793
    [108] Gong X. Y., Liu J., Baskaran S., et al. Surfactant-assisted processing of carbon nanotube/polymer composites. Chem. Mater., 2000, 12: 1049-1052
    [109] Moore V. C., Strano M. S., Haroz E. H., et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett., 2003, 3: 1379-1382
    [110] Vigolo B., Pénicaud A., Coulon C., et al. Macroscopic fibers and ribbons of oriented carbon nanotube. Science, 2000, 290: 1331-1334
    [111] Shaffer M. S. P., Windle A. H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv. Mater., 1999, 11: 937-941
    [112] O’Connell M. J., Boul P., Ericson L. M., et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett., 2001, 342: 265-271
    [113] Rouse J. H. Polymer-assisted dispersion of single-walled carbon nanotubes in alcohols and applicability toward carbon Nanotube/Sol-Gel composite formation. Langmuir, 2005, 21: 1055-1061
    [114] Han X., Li Y., Deng Z. DNA-wrapped single walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv. Mater., 2007, 19: 1518-1522
    [115] Shin S. R., Lee C. K., So I., et al. DNA-wrapped single-walled carbon nanotube hybrid fibers for supercapacitors and artificial muscles. Adv. Mater., 2008, 20: 466-470
    [116] Barisci J. N., Tahhan M., Wallace G. G., et al. Properties of carbon nanotube fibers spun from dna-stabilized dispersions. Advanced Functional Materials, 2004, 14: 133-138
    [117] Tang B. Z., Xu H. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules, 1999, 32: 2569-2576
    [118] Zhang H., Li X., Cheng H. Water-soluble multiwalled carbon nanotubes functionalized with sulfonated polyaniline. J. Phys. Chem. B, 2006, 110: 9095-9099
    [119] Hsiao C., Lin T., Cheng L., et al. The Nanomechanical properties of polystyrene thin films embedded with surface-grafted multiwalled carbon nanotubes. Macromolecules, 2005, 38: 4811-4818
    [120] Kim T., Doe C., Kline S. R., et al. Water-redispersible isolated single-walled carbon nanotubes fabricated by in situ polymerization of micelles. Adv. Mater., 2007, 19: 929-933
    [121] Chen J., Hamon M., Hu H., et al. Solution properties of single-walled carbon nanotubes. Science, 1998, 282: 95-98
    [122] Humon M. A., Chen J., Hu H., et al. Dissolution of single-walled carbon nanotubes. Adv. Mater., 1999, 11: 834-840
    [123] Riggs J. E., Guo Z. X., Sun Y. P., et al. Strong luminescence of solubilized carbon nanotubes. J. Am. Chem. Soc., 2000, 122: 5879-5880
    [124] Czerw R, Guo Z X, Carroll D L, et al. Organization of polymers onto carbon nanotubes: a route to nanoscale assembly. Nano Lett., 2001, 1: 423-427
    [125] Pompeo F., Resasco D. Water solubilization of single-walled carbon nanotubes by functionalized with glucosamine. Nano Lett., 2002, 2: 369-373
    [126] Zhao B., Hu H., Yu A., et al. Synthesis and characterization of water soluble singlewalled carbon nanotubes graft copolymers. J. Am. Chem. Soc., 2005, 127: 8197-8203
    [127] Zhao B., Hu H., Mandal S. K., et al. A bone mimic based on the self-assembly of hydroxyapatite on chemically fucntionalized single-walled carbon nanotubes. Chem.Mater., 2005, 17: 3235-3241
    [128]李博,廉永福,施祖进,等.单层碳纳米管的化学修饰.高等学校化学学报, 2000, 21: 1633-1635
    [129] Gao J., Itkis M. E., Yu A., et al. Continuous spinning of a ingle-walled carbon nanotube- nylon composite fiber. J. Am. Chem. Soc., 2005, 127: 3847-3854
    [130] Gao J., Zhao B., Itkis M. E., Chemical engineering of the single-walled carbon nanotube-nylon 6 interface. J. Am. Chem. Soc., 2006, 128: 7492-7496
    [131] Ge J. J., Zhang D., Li Q., et al. Multiwalled carbon nanotubes with chemically grafted polyetherimides. J. Am. Chem. Soc., 2005, 127: 9984-9985
    [132] Hamon M. A., Hui H., Bhowmik P., et al. Ester-functionalized soluble single walled carbon nanotubes. Appl. Phys. A, 2002, 74: 333-338
    [133] Sun Y. P., Huang W. J., Lin Y., et al. Soluble dendron-functionalized carbon nanotubes: preparation, characterization, and properties. Chem. Mater., 2001, 13: 2864-2869
    [134] Fu K. F., Huang W. J., Lin Y., et al. Defunctionalization of functionalized carbon nanotubes. Nano Lett., 2001, 1: 439-441
    [135] Baskaran D., Mays J. W., Zhang X. P., et al. Carbon nanotubes with covalently linked porphyrin antennae: photoinduced electron transfer. J. Am. Chem. Soc., 2005, 127: 6916-6917
    [136] Zhao B., Hu H., Yu A., et al. Synthesis and characterization of water soluble single walled carbon nanotubes graft copolymers. J. Am. Chem. Soc., 2005, 127:8197-8203
    [137] Chen G.-X., Kim H.-S., Park B. H., et al. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid). J. Phys. Chem. B, 2005, 109: 22237-22243
    [138] Lin Y., Zhou B., Fernando K. A. S., et al. Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer. Macromolecules, 2003, 36: 7199-7204
    [139] Hill D., Lin Y., Qu L., et al. Functionalization of carbon nanotubes with derivatized polyimide. Macromolecules, 2005, 38: 7670-7675
    [140] Yang Y., Xie X., Wu J., et al. Synthesis and selfassembly of polystyrene-grafted multiwalled carbon nanotubes with a hairy-rod.nanostructure. J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 3869-3881
    [141] Yang Y., Xie X., Wu J., et al. Multiwalled carbon nanotubes functionalized by hyperbranched poly(ureaurethane)s by a one-pot polycondensation. Macromol. Rapid Commun., 2006, 27: 1695-1701
    [142] Nakajima T., Kasamatsu S., Matsuo Y. Synthesis and characterization of fluorinated carbon nanotube. Eur. J. Solid State Inorg. Chem., 1996, 33: 831-840
    [143] Hamwi A., Alvergnat H., Bonnamy S., et al. Fluorination of carbon nanotubes. Carbon, 1997, 35: 723-728
    [144] Mickelson E. T., Huffman C. B., Rinzler A. G., et al. Fluorination of single-walled carbon nanobubes Chem. Phys. Lett., 1998, 296: 188-194
    [145] Touhara H., Okino F. Property control of carbon materials by fluorination. Carbon, 2000, 38: 241-267
    [146] Yudanov N. F., Okotrub A. V., Shubin Y. V., et al. Fluorination of arc-produced carbon material containing multiwall nanotubes. Chem. Mater., 2002, 14: 1472-1476
    [147] Touhara H., Inahara J., Mizuno T., et al. Property control of new forms of carbon materials by fluorination. J. Fluor. Chem., 2002, 114: 181-188
    [148] Kawasaki S., Komatsu K., Okino F., et al. Fluorination of open- and closed-end single-walled carbon nanotubes. Phys. Chem. Chem. Phys., 2004, 6: 1769-1772
    [149] Kelly K. F., Chiang I. W., Mickelson E. T., et al. Insight into the mechanism of sidewall functionalization of single walled nanotubes: an STM study. Chem. Phys. Lett., 1999, 313: 445-450
    [150] Gu Z., Peng H., Hauge R. H., et al. Cutting single-wall carbon nanotubes through fluorination. Nano Lett., 2002, 2: 1009-1013
    [151] Mickelson E. T., Chiang I. W., Zimmerman J. L., et al. Solvation of fluorinated single wall carbon nanotubes in alcohol solvents. J. Phys. Chem. B, 1999, 103: 4318-4322
    [152] Marcoux P. R., Schreiber J., Batail P., et al. A spectroscopic study of the fluorination and defluorination reactions on single-walled carbon nanotubes. Phys. Chem. Chem. Phys., 2002, 4: 2278-2285
    [153] Zhao W., Song C., Zheng B., et al. Thermal recovery behavior of fluorinated single-walled carbon nanotubes. J. Phys. Chem. B, 2002, 106: 293-296
    [154] Pehrsson P. E., Zhao W., Baldwin J. W., et al. Thermal fluorination and annealing of single-wall carbon nanotubes. J. Phys. Chem. B, 2003, 107: 5690-5695
    [155] Khabashesku V. N., Billups W. E., Margrave J. L. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc. Chem. Res., 2002, 35: 1087-1095
    [156] Huffman C. B., Ericson L. M., Chiang I. W., et al. Reversible sidewall functionalization of buckytubes. Chem. Phys. Lett., 1999, 310: 367-372
    [157] Saini R. K., Chiang I. W., Peng H., et al. Covalent sidewall functionalization of single-wall carbon nanotubes. J. Am. Chem. Soc., 2003, 125: 3617-3621
    [158] Tasis D., Tagmatarchis N., Bianco A., et al. Chemistry of Carbon Nanotubes. Chem. Rev., 2006, 106: 1105-1136
    [159] Stevens J. L., Huang A. Y., Peng H., et al. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Lett., 2003, 3: 331-336
    [160] Peng H., Reverdy P., Khabashesku V. N., et al. Sidewall functionalization of single-walled carbon nanotubes with organic peroxides. Chem.Comm., 2003, (3): 362-363
    [161] Unger E., Graham A., Kreupl F., et al. Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification. Curr. Appl. Phys., 2002, 2: 107-111
    [162] Lu X., Tian F., Zhang Q. The [2+1] cycloadditions of dichlorocarbene, silylene, germylene, and oxycarbonylnitrene onto the sidewall of armchair (5, 5) single-wallcarbon nanotube. J. Phys. Chem. B, 2003, 107: 8388-8391
    [163] Chu Y., Su M. Theoretical study of addition reactions of carbene, silylene, and germylene to carbon nanotubes. Chem. Phys. Lett., 2004, 394: 231-237
    [164] Chen J., Hamon M. A., Hu H., et al. Solution nanotubes. Science, 1998, 282: 95-98
    [165] Lee W. H., Kim S. J., Lee W. J., et al. X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material. Appl. Surf. Sci., 2001, 181: 121-127
    [166] Hu H., Zhao B., Hamon M. A., et al. Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. J. Am. Chem. Soc., 2003, 125: 14893-14900
    [167] Holzinger M., Vostrowsky O., Hirsch A., et al. Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed., 2001, 40: 4002-4005
    [168] Prato M., Li Q. C., Wudl F., et al. Addition of azides to fullerene C60: synthesis of azafulleroids. J. Am. Chem. Soc., 1993, 115: 1148-1150
    [169] Hawker C. J. A simple and versatile method hod for the synthesis of C60 copolymers. Macromolecules, 1994, 27: 4836-4837
    [170] Moghaddam M. J., Taylor S., Gao M., et al. Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry. Nano Lett., 2004, 4: 89-93
    [171] Lee K. M., Dai L. Asymmetric end-functionalization of multi-walled carbon nanotubes. J. Am. Chem. Soc., 2005, 127: 4122-4123
    [172] Pekker S., Salvetat J., Jakab E., et al. Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B, 2001, 105: 7938-7943
    [173] Ni B., Sinnott S. B. Chemical functionalization of carbon nanotubes through energetic radical collisions. Phys. Rev. B, 2000, 61: R16343-R16346
    [174] Mylvaganam K., Zhang L. C. Nanotube functionalization and polymer grafting: an AB initio study. J. Phys. Chem. B, 2004, 108: 15009-15012
    [175] Georgakilas V., Kordatos K., Prato M., et al. Organic functionalization of carbon nanotubes. J. Am. Chem. Soc., 2002, 124: 760-761
    [176] Banerjee S., Wong S. S. Rational sidewall functionalization and purification of single- walled carbon nanotubes by solution-phase ozonolysis. J. Phys. Chem. B,2002, 106: 12144-12151
    [177] Mawhinney D. B., Naumenko V., Kuznetsova A., et al. Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K. J. Am. Chem. Soc., 2000, 122: 2383-2384
    [178] Zhang H., Qiu J., Liang C., et al. A novel route to Co/CNTs catalysts by metal organic chemical vapor deposition. Catal. Lett., 2005, 101: 211-214
    [179] Serp P., Feurer R., Kihn Y., et al. Controlled-growth of platinum nanoparticles on carbon nanotubes or nanospheres by MOCVD in fluidized bed reactor. J. Phys. IV (France), 2002, 12(Pr4): 29-36
    [180] Zhu Y., Peng T., Li J. Electrocatalytic oxidation of hydrogen peroxide at a glassy carbon electrode modified with platinum-decorated carbon nanotubes. Gaodeng Xuexiao Huaxue Xuebao, 2004, 25: 1637-1641
    [181] Bera D., Kuiry S. C., McCutchen M., et al. In situ synthesis of carbon nanotubes decorated with palladium nanoparticles using arc-discharge in solution method. J. Appl. Phys., 2004, 96: 5152-5157
    [182] Kim K., Lee S. H., Yi W., et al. Efficient field emission from highly aligned, graphitic nanotubes embedded with gold nanoparticles. Adv. Mater., 2003, 15: 1618-1622
    [183] Chen W., Loh K. P., Xu H., et al. Nanoparticle dispersion on reconstructed carbon nanomeshes. Langmuir, 2004, 20: 10779-10784
    [184] Kukovitsky E. F., L’vov S. G., Sainov N. A. Liquid particles in catalytically grown carbon nanotubes. Mol. Cryst. Liq. Cryst. Sci. Techn. Sect. C, 1998, 10: 165-168
    [185] Koshio A., Shiraishi M., Kobayashi Y., et al. Modification of carbon nanotubes by laser ablation of copper. Chem. Phys. Lett., 2004, 396: 410-414
    [186] Arai F., Liu P., Dong L., et al. Pure metal deposit using multi-walled carbon nanotubes decorated with ruthenium dioxide super-nanoparticles. Fourth IEEE Conference on Nanotechnology (Munich, Germany), 2004: 196-198
    [187] Xue B., Chen P., Hong Q., et al. Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J. Mater. Chem., 2001, 11: 2378-2381
    [188] Huang H., Zhang W., Li M., et al. Carbon nanotubes as a secondary support of a catalyst layer in a gas diffusion electrode for metal air batteries. J. Colloid InterfaceSci., 2005, 284: 593-596
    [189] Carmo M., Paganin V. A., Rosolen J. M., et al. Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes. J. Power Sources, 2005, 142: 169-176
    [190] Tessonnier J., Pesant L., Ehret G., et al. Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Appl. Cat. A, 2005, 288: 203-210
    [191] Guo D. J., Li H. L. High dispersion and electrocatalytic properties of platinum nanoparticles on SWNT bundles. J. Electroanal. Chem., 2004, 573: 197-202
    [192] He Z., Chen J., Liu D., et al. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diamond Relat. Mater., 2004, 13: 1764-1770
    [193] Guo D. J., Li H. L. High dispersion and electrocatalytic properties of palladium nanoparticles on single-walled carbon nanotubes. J. Colloid Interface Sci., 2005, 286: 274-279
    [194] Guo D. J., Li H. L. Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces. Electrochem. Commun., 2004, 6: 999-1003
    [195] Yu R. Q., Chen L., Liu Q., etal. Platinum deposition on carbon nanotubes via chemical modifieation. Chem. Mater., 1998, 10: 718-722
    [196] Huang Q., Gao L. Immobilization of rutileTiO2 on multiwalled carbon nanotubes. J. Mater. Chem., 2003, 13: 1517-2519
    [197] Liu Y. Q., Gao L. A study on the electrical properties of carbon nanotubes-NiFe2O4 nanocomposites: effect of the surface treatment of carbon nanotubes. Carbon, 2005, 43: 47-52
    [198] Banerjee S., Wong S. S. Synthesis and charaeterization of carbon nanotube-nanocrystal heterostruetures. Nano Lett., 2002, 2: 195-200
    [199] Ravindran S., Chaudhary S., Colburn B., et al. Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications. Nano Lett., 2003, 3: 447-453
    [200] Haremza J. M., Hahn M. A., Krauss T. D., et al. Attachment of single CdSe nanocrystals to individual single walled carbon nanotubes. Nano Lett., 2002, 2: 1253-1258
    [201] Zhao L., Gao L. Coating of multi-walled carbon nanotubes with thick layers of tin (Ⅳ) oxide. Carbon, 2004, 42: 1858-1861
    [202] Jiang L. Q., Gao L. Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity. Mater. Chem. Phys., 2005, 91: 313-316
    [203] Chen W., Lee J. Y., Liu Z. Preparation of Pt and Pt Ru nanoparticles supported on carbon nanotubes by microwave-assisted heating polyol process. Mater. Lett., 2004, 58: 3166-3169
    [204] Yu Y., Ma L. L., Huang W. Y., et al. Sonication assisted deposition of Cu2O nanoparticles on multiwall carbon nanotubes with polyol process. Carbon, 2005, 43: 670-673
    [205] Ajayan P. M., Stephan O., Colliex C., et al. Aligned carbon nanotubes formed by cutting a polymer resin-nanotube composite. Science, 1994, 265: 1212-1214
    [206] Jin L., Bower C., Zhou O., et al. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett., 1998, 73: 1197-1199
    [207] Cui S., Canet R., Derre A., et al. Characterization of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing. Carbon, 2003, 41: 797-809
    [208] Gojny F. H., Nastalczyk J., Roslaniec Z., et al. Surface modified multi-walled carbon nanotubes in CNT/epoxy composites. Chem. Phys. Lett., 2003, 370: 820-824
    [209] Miyagawa H., Drzal L. T. Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carb on nanotubes. Polymer, 2004, 45: 5163-5170
    [210] Park S., Jeong H., Nah C. A study of oxyfluorination of multi-walled carbon nanotubes on mechanical interfacial properties of epoxy matrix nanocomposites. Mater. Sci. Eng. A, 2004, 385: 13-16
    [211] Schadler L. S., Giannaris S., Ajayan P. M. Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett., 1998, 73: 3842-3844
    [212] Ajayan P. M., Schadler L. S., Giannaris C., et al. Single-walled carbon nanotube-polymer composites: strength and weaknesses. Adv. Mater., 2000, 12: 750-753
    [213] Wagner H. D., Lourie O., Feldman Y., et al. Stress-induced fragmentation ofmultiwall carbon nanotubes in a polymer matrix. Appl. Phys.Lett. 1998, 72: 188-196
    [214] Sandler J. K. W., Shaffer M. S. P., Prasse T., et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer, 1999, 40: 5967-5971
    [215] Sandler J. K. W., Kirk J. E., Kinloch I. A., et al. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer, 2003, 44: 5893-5899
    [216] Biercuk M. J., Llaguno M. C., Radosavljevic M., et al. Carbon nanotube composites for thermal management. Appl. Phys. Lett., 2002, 80: 2767-2769
    [217] Hone J., Llaguno M. C., Biercuk M. J., et al. Thermal properties of carbon nanotubes and nanotube-based materials. Appl. Phys. A, 2002, 74: 339-343
    [218] Haggenmueller R., Gommans H. H., Rinzler A. G., et al. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 2000, 330: 219-225
    [219] Du F., Fischer J. E., Winey K. I. Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J. Polym. Sci., Part B, 2003, 41: 3333-3338
    [220] Sabba Y., Thomas E. L. High-concentration dispersion of single-wall carbon nanotubes. Macromolecules, 2004, 37: 4815-4820
    [221] Putz K. W., Mitchell C. A., Krishnamorti R., et al. Elastic modulus of single-walled carbon nanotube/poly(methyl methacrylate) nanocomposites. J. Polym. Sci., Part B, 2004, 42: 2286-2293
    [222] Fan J., Wan M., Zhu D., et al. Synthesis and properties of carbon nanotube-polypyrrole eomposites. Synth. Met., 1999, 102: 1266-1267
    [223] Zhang X., Zhang J., Wang R., et al. Surfactant-directed polypyrrole/CNT nanocables: Synthesis, characterization, and enhanced electrical properties. Chem. Phys. Chem., 2004, 5: 998-1002
    [224] Chen G. Z., Shaffer M. S. P., Coleby D., et al. Carbon nanotubes and polypyrrole composites: coating and doping. Adv. Mater., 2000, 12: 522-526
    [225] Frackowiak E., Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001, 39: 937-950
    [226] Hughes M., Shaffer M. S. P., Renouf A. C., et al. Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes withpolypyrrole. Adv. Mater., 2002, 14: 382-385
    [227] Gao M., Dai L., Wallace G. G. Biosensors based on aligned carbon nanotubes coated with inherently conducting polymers. Electroanalysis, 2003, 15: 1089-1094
    [228] Liu J., Tian S., Knoll W. Properties of Polyaniline/Carbon Nanotube Multilayer Films in Neutral Solution and Their Application for Stable Low-Potential Detection of Reduced beta-Nicotinamide Adenine Dinucleotide. Langmuir, 2005, 21: 5596-5599
    [229] Feng W., Bai X. D., Lian Y. Q., et al. Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon, 2003, 41: 1551-1557
    [230] Musa I., Baxendale M., Amaratunga G. A. J., et al. Properties of regioregular poly(3-octylthiophene)/multi-wall carbon nanotube composites. Synth.Met., 1999, 102: 1250-1252
    [231] Zhang X., Liu T., Sreekumar T. V., et al. Poly(vinyl alcohol)/SWNT composite film. Nano Lett., 2003, 3: 1285-1288
    [232] Cadek M., Coleman J. N., Barron V., et al. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 2002, 81: 5123-5125
    [233] Shim M., Kam N. W., Chen R. J., et al. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett., 2002, 2: 285-288
    [234] Chen R. J., Choi H. C., Bangsaruntip S., et al. An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J. Am. Chem. Soc., 2004, 126: 1563-1568
    [235] Zhang W., Shen L., Phang I., et al. Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules, 2004, 37: 256-259
    [236] Liu T., Phang I., Shen L., et al. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules, 2004, 37: 7214-7222
    [237] Bianco A., Kostarelos K., Partidos C. D., et al. Biomedical applications of functionalised carbon nanotubes. Chem. Comm., 2005: 571-577
    [238] Pantarotto D., Singh R., McCarthy D., et al. Functionalized carbon nanotubes forplasmid DNA gene delivery. Angew. Chem., Int. Ed., 2004, 43: 5242-5246
    [239] Chen X., Lee G. S., Zettel A., et al. Biomimetic Engineering of Carbon Nanotubes by Using Cell Surface Mucin Mimics. Angew. Chem., Int. Ed., 2004, 43: 6111-6116
    [240] Kim O. K., Je J. T., Baldwin J. W., et al. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylase. J. Am. Chem. Soc., 2003, 125: 4426-4427
    [241] Zhao B., Hu H., Haddon R. C. Synthesis and properties of a water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) graft copolymer. Adv. Funct. Mater., 2004, 14: 71-76
    [242] Lin Y., Rao A. M., Sadanadan B., et al. Functionalizing multiple-walled carbon nanotubes with aminopolymers. J. Phys. Chem. B, 2002, 106: 1294-1298
    [243] Dong C., You Y., Pan C. Synthesis of Water-Soluble Multiwalled Carbon Nanotubes with Grafted Temperature-Responsive Shells by Surface RAFT Polymerization. Chem. Mater., 2005, 17: 2247-2254
    [244] Kong H., Gao C., Yan D. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules, 2004, 37: 4022-4030
    [245] Bahr J. L., Yang J. P., Kosynkin D. V., et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc., 2001, 123: 6536-6542
    [246] Price B. K., Hudson J. L., Tour J. M. Green chemical functionalization of single-walled carbon nanotubes in ionic liquids. J. Am. Chem. Soc., 2005, 127: 14867-14870
    [247] Yantasee W., Lin Y., Hongsirikarn K., et al. Electrochemical sensors for the detection of lead and other toxic heavy metals: the next generation of personal exposure biomonitors. Environmental Health Perspectives, 2007, 115: 1683-1690
    [248] Tang X., Bansaruntip S., Nakayama N., et al. Carbon nanotube DNA sensor and sensing mechanism. Nano Lett., 2006, 6: 1632-1636
    [249] Kim T. H., Park J. H., Lee T. W., et al. Enhanced electroluminescence from a conjugated polymer/ionomer blend. Polymer, 2004, 45: 8567-8571
    [250] Chen J. H., Li W. Z., Wang S. X., et al. Electrochemical characterization ofcarbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon, 2002, 40: 1193-1197
    [251] Kovach P. M., Ewing A. G., Wilson R. L., et al. In vitro comparison of the selectivity of electrodes for in vivoelectrochemistry. J. Neurosci. Methods, 1984, 10: 215-227
    [252] Wightman R. M., May L. J., Michael A. C. Detection of dopamine dynamics in the brain. Anal. Chem., 1988, 60: 769A-779A
    [253] Selvaraju T., Ramaraj R. Electrochemically deposited nanostructured platinum on Nafion coated electrode for sensor applications. J. Electroanal. Chem., 2005, 585: 290-300
    [254] Li J., Lin X. Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode. Sensors Actuators B, 2007, 124: 486-493
    [255] Wu K., Fei J., Hu S. Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Anal. Biochem., 2003, 318: 100-106
    [256] Guo S., Dong S., Wang E. Gold/platinum hybrid nanoparticles supported on multiwalled carbon nanotube/silica coaxial nanocables: preparation and application as electrocatalysts for oxygen reduction. Phys. Chem. C, 2008, 112: 2389-2393
    [257] Hu X., Wang T., Qu X., et al. In Situ Synthesis and characterization of multiwalled carbon nanotube/Au nanoparticle composite materials. J. Phys. Chem. B, 2006, 110: 853-857
    [258] Ding Y., Jin G., Yin J. Electrodeposition of silver nanoparticles on MWCNT film electrodes for hydrogen peroxide sensing. Chinese Journal of Chemistry, 2007, 25: 1094-1098
    [259] Wang Z., Liu Q., Zhu H., et al. Dispersing multi-walled carbon nanotubes with water-soluble block copolymers and their use as supports for metal nanoparticles. Carbon, 2007, 45: 285-292
    [260] Sata T., Tanimoto M., Kawamura K., et al. Transport properties of cation-exchange membranes in the presence of ether compound in electrodialysis. J. Colloid Interface Sci., 1999, 219: 310-319
    [261] Oh S., Moon S., Davis T. Effects of metal ions on diffusion dialysis of inorganicacids. J. Membr. Sci., 2000, 169: 95-98
    [262] Kang M., Yoo K., Oh S., et al. A lumped parameter model to predict hydrochloric acid recovery in diffusion dialysis. J. Membr. Sci., 2001, 188: 61-70
    [263] Uragami T., Yoshida F., Sugihara M. Active transport of organic ions through crosslinked chitosan membrane, Sep. Sci. Technol., 1988, 23 (10/11): 1067-1082
    [264] Lee Y. M., Nam S. Y., Woo D. J. Pervaporation of ionically surface crosslinked chitosan composite membranes for water–alcohol mixtures. J. Membr. Sci., 1997, 133: 103-110
    [265] Sadeghipour K., Salomon R., Neogi S. Development of a novel electrochemically active membrane and 'smart' material based vibration sensor/damper. Smart Mater. Struct., 1992, 1: 172-179
    [266] Lendlein A., Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 2002, 296: 1673-1676
    [267] Kainuma R., Imano Y., Ito W., et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature, 2006, 439: 957-960
    [268] Lee J., Lee J., Nam J., et al. Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator. Sensors and Actuators A, 2005, 118: 98-106
    [269] Abe Y., Mochizuki A., Kawashima T., et al. Effect on bending behavior of counter cation species in perfluorinated sulfonate membrane-platinum composite. Polym. Adv. Technol., 1998, 9: 520-526
    [270] Kim K. J., Shahinpoor M. The synthesis of nano-scaled platinum particles (NSPP)-their role in performance improvement of ionic polymer-metal composite (IPMC) artificial muscles. Smart Structures and Materials: Electroactive Polymer Actuators and Devices (EAPAD), Bar-Cohen Y., Editor, Proceedings of SPIE, 2001, 4329: 189-198
    [271] Shahinpoor M., Kim K. J. Electrically-controllable deformation memory effects in ionic polymers. Smart Structures and Materials: Electroactive Polymer Actuators and Devices (EAPAD), Bar-Cohen Y., Editor, Proceedings of SPIE, 2002, 4695: 85-94
    [272] Shahinpoor M. Recent advances in ionic polymer conductor composite materials as distributed nanosensors, nanoactuators and artificial muscles. Smart Structuresand Materials: Electroactive Polymer Actuators and Devices (EAPAD), Bar-Cohen Y., Editor, Proceedings of SPIE, 2005, 5759: 49-63
    [273] Shahinpoor M., Kim K. The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles. Smart Mater. Struct., 2000, 9: 543-551
    [274] de Gennes P. G., Okumura K., Shahinpoor M., et al. Mechanoelectric effects in ionic gels. Europhys. Lett., 2000, 50: 513-518

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700