基于MBC的复杂结构振动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1972年华裔学者Yao提出了土木工程结构振动控制的概念以来,结构振动控制理论研究和应用技术取得了迅猛的发展,目前已被广泛应用于土木工程控制的各个领域,效果显著。伴随着科技的进步和发展,高层、高耸、大跨等复杂结构形式不断涌现,结构自由度的增加以及大量控制装置和传感器的应用,使得土木工程控制系统趋于复杂化,导致结构控制方法发生转变,传统的集中控制策略逐渐暴露出局限性。为了解决集中控制方法处理复杂结构方面的不足,20世纪70年代分散控制策略应运而生。基于市场竞争机制的控制策略(Market-based control,MBC)作为一种分散控制方法,是一种多目标优化算法。MBC策略是将自由经济市场中的价格机制引入到控制系统中,以市场模拟控制系统,以销售商和消费者分别替代能量源系统和受控结构,通过模拟自由市场中的经济行为完成控制能量的最优分配,以解决不同领域的控制问题。
     目前,已有MBC理论主要用于解决结构处于弹性状态下的控制问题,对于进入弹塑性状态的结构振动控制研究较少。此外,MBC策略应用时主要基于精确的结构计算模型,而对于复杂结构而言,由于结构本身存在的非线性、时变性、不确定性和复杂性等因素,往往很难建立精确的计算模型,使得MBC策略的应用受到限制。鉴于以上原因,本文主要开展了以下几方面的研究工作:
     (1)总结了MBC理论的发展历程和研究现状,介绍了MBC理论的经济学基础,概括了结构控制系统市场模型的理论基础,同时对工程中常用的MBC供需函数模型予以总结和分析,为MBC策略在土木工程振动控制中的应用提供理论平台。
     (2)在已有MBC理论的基础上考虑复杂结构的非线性问题,以拟力法为结构非线性求解平台,解决结构动力分析中计算时间长、求解速度慢、存储空间大等问题,实现了MBC策略在结构非线性控制领域中的应用。通过数值算例验证了该方法的正确性和有效性。
     (3)将模糊逻辑理论引入MBC策略中,利用模糊逻辑不需要建立精确计算模型的优点,提出了基于MBC理论的模糊价格规则提取方法;在此基础上,建立了基于MBC理论的模糊控制方法。数值算例展示了模糊价格提取方法的操作流程,将模糊控制方法用于结构控制中取得了较好的控制效果。
Since the conception of vibration control in civil engineering structure was proposed by scholars Yao in 1972, the theoretical studies and application technology of vibration control had made considerable advancement in the past 30 years, and was widely used in all aspects of civil engineering control, Moreover, achieving good results. With the development of science and technology, the complicated large-scale systems were built (such as high-raise building, long-span structure). Owing to the increase of structure dimensions and the massive application of control devices and sensors, the system tend to complicate, the structure control method was transformed, and the traditional centralized-control strategy gradually revealed limitations. During 1970s, decentralized control strategy was proposed, and was used to compensate the shortage of centralized-control strategy in dealing with the complicated large-scale system.
     As a decentralized control strategy, Market-based control (MBC) is a multipurpose optimal method. MBC strategy is that price mechanism in the free-market economy is introduced to the control system, and achieve the optimal allocation of the control energy via simulating economic behavior in the free-market economy, resolve the control problem in different fields. Moreover, the market simulate the control system, and the seller and consumer respectively substitute the energy system and controlled structure.
     Currently, the existing MBC strategy is mostly used to resolve the control problem of linear elastic structure, but can't do anything about the non-linear control problem in the elastic-plastic structure. Furthermore, the application of MBC strategy is based upon accurate model of the buildings, because of the complicated structure's nonlinear, time variant, uncertainty and complexity, the accurate models are difficultly built, and the use of MBC strategy is limited. For these reasons, the paper's contents include :
     (1) retrospect and summarize the development and current situation of the MBC strategy, introduce the Theoretical foundation of economics, sum up the ideological foundation of the structure control system market model. Moreover, this paper summarizes the demand and supply function widely used in engineering, laying the theoretical foundation for the practical application of the MBC strategy.
     (2) the structural nonlinear deformation problem is considered upon MBC strategy. Force analogy method (FAM) is proposed to analyze the structural nonlinear problem. The new method fills in the blank of structural nonlinear deformation upon MBC theory, and compared with traditional method of variable stiffness, FAM reduces storage spaces and enhances computing speed. At last, an example is given to demonstrate the accuracy and efficiency of the proposed computational method.
     (3) Fuzzy logic is introduced into MBC strategy, a new extraction method of fuzzy price rules upon MBC theory is built, and a new fuzzy control strategy based on MBC theory is proposed. The extraction method of fuzzy price rules are carried out by an example, and the fuzzy control strategy obtain the better control effects in the course of being used in the structure control.
引文
[1]江见鲸,徐志胜.防灾减灾工程学.北京:机械工业出版社,2005.
    [2]欧进萍.结构振动控制—主动、半主动和智能控制.北京:科学出版社,2003.
    [3]李宏男.建筑抗震设计原理.北京:中国建筑工业出版社,1996.
    [4]李宏男.结构振动与控制.北京:中国建筑工业出版社,2005.
    [5]李宏男,阎石.中国结构控制的研究与应用.地震工程与工程振动,1999,19(1):107-112.
    [6]周锡元,阎维明,杨润林.建筑结构的隔震、减振和振动控制[J].建筑结构学报,2002,23(2):2-12.
    [7]曾德民,苏经宇,樊水荣,马东辉.建筑基础隔振技术系列讲座之一:建筑基础隔震技术的发展和应用概况.工程抗震,1996,3:37-41.
    [8]苏经宇,曾德民,樊水荣,马东辉,李虹.建筑基础隔振技术系列讲座之二:叠层钢板橡胶隔震体系设计与分析.工程抗震,1996,4:27-32.
    [9]樊水荣,苏经宇,曾德民,马东辉.建筑基础隔振技术系列讲座之三:建筑基础摩擦滑移隔振技术及其应用.工程抗震,1997,1:39-43.
    [10]马东辉,曾德民,苏经宇,樊水荣,李虹.建筑基础隔振技术系列讲座之四:基础隔震技术家族的新成员——建筑基础复合隔震体系.工程抗震,1997,2:27-31.
    [11]苏经宇,曾德民.我国建筑结构隔震技术的研究和应用.地震工程与工程振动,2001,21(4):94-101.
    [12]周云,邓雪松,汤统壁,吴从晓,聂一恒,丁鲲.中国(大陆)耗能减震技术理论研究、应用的回顾与前瞻.工程振动与加固改造,2006,28(6):1-15.
    [13]王烨华,周云,丁鲲.粘弹性阻尼减震结构研究与应用的新进展.防灾减灾工程学,2006,26(1):109-121.
    [14]Sladek J R,Klingner R E.Effect of tuned-mass dampers on seismic response.Journal of Structural Engineering,1983,109(8):2004-2009.
    [15]Xu Y L,Kwok K C S.Semianalytical method for parametric study of tuned mass dampers.ASCE,Journal of Structural Engineering,1994,20(3):747-764.
    [16]Wu J N,Chen G D,Lou,M L.Seismic effectiveness of Tuned Mass Dampers considering soil-structure interaction.Earthquake Engineering and Structural Dynamics,1999,28(11):1219-1233.
    [17]Chen G D,Wu J N.Experimental study on multiple tuned mass dampers to reduce seismic responses of a three-story building structure.Earthquake Engineering and Structural Dynamics,2003,32(5):793-810.
    [18]Ghosh A,Basu B.Effect of soil interaction on the performance of tuned mass dampers for seismic applications.Journal of Sound and Vibration,2004,274(3-5):1079-1090.
    [19]Miranda,J C.On tuned mass dampers for reducing the seismic response of structures.Earthquake Engineering and Structural Dynamics,2005,34(7):847-865.
    [20]文永奎,孙利民.大跨度斜拉桥钢塔施工阶段制振用TMD、TLD装置及其性能试验.地震工程与工程振动,2008,28(3):157-164.
    [21]李昕,孙宁,金峤,周晶.海上平台利用TLD的减震研究.船舶力学,2009,13(4):615-620.
    [22]Cheng F Y,Tian P.Generalized optimal active and hybrid control for seismic structure.Proceedings of the First World Conference on Structural Control,Los Angeles,1994.
    [23]田石柱,刘季.结构模型的AMD主动控制试验.地震工程与工程振动,1999,19(4):90-94.
    [24]张春巍,欧进萍.海洋平台结构振动的AMD主动控制参数优化分析.地震工程与工程振动,2002,22(4):151-156.
    [25]Rasouli S K,Yahyai M.Control of response of structures with passive and active tuned mass dampers.The Structurs Design of Tall Buildings,2002,11(1):1-14.
    [26]Cao H,Reinhorn A M,Soong T T.Design of an active mass damper for a tall TV tower in Nanjing,China.Engineering Structures,1998,20(3):134-143.
    [27]蒙文流,韦树英,罗会来.半主动控制的研究现状及其工程应用.广西科学院学报,2008,24(3):231-237.
    [28]刘季,李敏霞.变刚度半主动结构振动控制.振动工程学报,1999,12(2):166-172.
    [29]孙作玉,隋丽丽.变阻尼半主动结构控制振动台试验.地震工程与工程振动,2000,20(4):106-111.
    [30]李慧,袁雪松,吴波.粘滞流体变阻尼半主动控制器对结构抗震控制的试验研究.振动工程学报,2002,15(1):25-30.
    [31]翟伟廉,陈朝晖,徐幼麟.压电材料智能摩擦阻尼器对高耸钢塔结构风振反应的半主动控制.地震工程与工程振动,2000,20(1):94-99.
    [32]姜南.应用MR阻尼器的相邻建筑地震反应半主动控制理论与试验研究:(博士学位论文).天津:天津大学,2008.
    [33]李宏男,阎石,林皋.智能结构控制发展综述.地震工程与工程振动,1999,19(2):29-36.
    [34]黄尚廉.智能结构系统——防灾减灾的研究前沿.土木工程学报,2000,33(4):1-5.
    [35]祁皑.液压阻尼系统(HDS)和混合控制系统(AMD-HDS)对底层柔性建筑的抗震控制研究:(博士学位论文).哈尔滨:哈尔滨工业大学,1998.
    [36]Clearwater S.Market-Based Control:A paradigm for distributed resource allocation.World Scientific Publishing,Singapore,1996.
    [37]Lynch J P,Law K H.A Market-Based Control Solution for Semi-Active Structural Control.Computing in Civil and Building Engineering:Proceedings of the Eight International Conference,Stanford,CA,USA,Aug 14-16,2000.
    [38]Lynch J P,Law K H.Market-Based Control of linear structural systems.Earthquake Engineering and Structural Dynamics,2002,31(10):1855-1877.
    [39]李宏男,李学涛,霍林生.基于市场机制结构控制策略的研究和应用进展.世界地震工程,2005,21(4):1-9.
    [40]霍林生,李宏男.基于市场机制的TLCD半主动控制方案.应用力学学报,2005,22(1):71-75.
    [41]李学涛.基于市场机制的结构振动控制:(硕士学位论文).大连:大连理工大学,2005.
    [42]李宏男,李学涛,霍林生.多维结构振动的改进MBC控制策略.振动工程学报,2007,20(4):317-323.
    [43]李瀛.应用MBC策略的建筑结构振动控制:(硕士学位论文).大连:大连理工大学,2007.
    [44]李宏男,李瀛.应用MBC策略的MRD隔震结构半主动控制.地震工程与工程振动.2008,28(5):140-145.
    [45]张军等译.经济学(微观).北京:机械工业出版社,2007.
    [46]傅唯力.需求与供给函数在经济学现象中的解释.中国民营科技与经济,1999,(11):23-24.
    [47]Wong Kevin K.F,Yang Rong.Inelastic dynamic response of structures using force analogy method.Journal of Engineering Mechanics,1999,125(11):1190-1200.
    [48]Wong Kevin K.F,Yang Rong.Earthquake response and energy evaluation of inelastic structures.Journal of Engineering Mechanics,2002,128(3):308-318.
    [49]Wong Kevin K.F,Yang Rong.Predictive instantaneous optimal control of inelastic structures during earthquakes.Earthquake Engineering and Structural Dynamics,2003,32:2179-2195.
    [50]Wong Kevin K.F.,M.ASCE.Predictive optimal linear control of inelastic structures during earthquake.Journal of Engineering Mechanics,2005,131(2):131-152.
    [51]李钢,李宏男,李瀛.基于拟力法的消能减震结构地震反应分析.土木工程学报,2009,42(4):55-63.
    [52]刘哲峰,沈蒲生.基于拟力法的地震能量分析.//周福林,张燕.防灾减灾工程研究及进展.北京:科学出版社,2005:184-190.
    [53]刘哲峰,沈蒲生,龚胡广.基于拟力法的框架结构静力弹塑性分析.建筑科学与工程学报,2006,23(3):32-36
    [54]Lynch J P,Law K H.Energy Market-Based Control of Linear Civil Structures.Proceeding of the US-Korea Workshop on Smart Structural Systems,Pusan,Korea,Aug 23-24,2002.
    [55]赵光伟,裴星洙,周晓松.基于能量平衡的建筑结构地震响应预测法基础研究.工业建筑.2006,36:182-188.
    [56]谢礼立,翟长海.最不利设计地震动研究.地震学报,2003,25(3):250-261.
    [57]GB 50011—2001建筑抗震设计规范.北京:中国建筑工业出版社,2001.
    [58]曾光奇,胡均安,王东,刘春玲.模糊控制理论与工程应用.武汉:华中科技大学出版社,2006.
    [59]吴晓莉,林哲辉.MATLAB辅助模糊系统设计.西安:西安电子科技大学出版社,2002.
    [60]张国良,曾静,柯熙政,邓方林.模糊控制及其MATLAB应用.西安:西安交通大学出版社,2002.
    [61]张化光,何希勤.模糊自适用控制理论及其应用.北京:北京航空航天大学出版社,2002.
    [62]闻新.MATLAB模糊逻辑工具箱的分析与应用.北京:科学出版社,2001.
    [63]张薇敬,欧进萍.基于粗糙集理论的结构振动模糊控制.振动工程学报.2005,4:406-411
    [64]杨润林.结构模糊振动控制的研究.北京:中国建筑科学研究院,2002.
    [65]邹鹏.模糊控制在结构振动控制中的应用:(硕士学位论文).大连:大连理工大学,2006.
    [66]赵鑫.土木工程结构振动的模糊控制算法研究:(硕士学位论文).武汉:武汉理工大学,2006.
    [67]阎石.结构振动智能控制的人工神经网络与模糊逻辑方法研究:(博士学位论文).大连:大连理工大学,2000.
    [68]刘佳.非线性系统的模糊建模与控制:(硕士学位论文).黑龙江:黑龙江大学,2007.
    [69]Goto K.Active vibration control using fuzzy theory:part 1 on control algorithm and control results.Proceeding of 1~(st) World Conference on Structural Control,1994,(1):WP1-41-48.
    [70]Sun L,Goto Y.Applications of fuzzy theory to variable dampers for bridge vibration control.First World Conference on Structural Control,1994,WP1-31-40.
    [71]Liba M.Shaking table test on seismic response control system by fuzzy optimal logic.First World Conference on Structural Control,1994,WP1-69-77.
    [72]Nagarajaiah S.Fuzzy controller for structures with hybrid isolation system.First World Conference on Structural Control,1994,TA2-67-76.
    [73]Yamada M.Active vibration control using fuzzy theory:part 2 optimal membership functions.Proceeding of 1~(st) World Conference on Structural Control,1994,(1):WP1-13—WP1-20.
    [74]Casciati F,Faravelli L and Yao T.Control of nonlinear structures using the fuzzy control.Nonlinear Dynamics,1996,11:171-187.
    [75]Battaini M,Casciati F and Faravelli L.Fuzzy control of structural vibration,an active mass system by a fuzzy controller.Earthquake Engineering and Structural Dynamics,1998,27:1267-1276.
    [76]欧进萍,张薇敬.智能控制算法及其在结构振动控制中的应用.世界地震工程.2002,2:32-38.
    [77]王刚.欧进萍.基于系统特征响应的结构振动模糊控制规则建立与仿真分析.振动工程学报.2002,1:86-89.
    [78]Hideo Fujitani,Mitsumasa Midorikawa and Masanori Iiba.Seismic response control tests and simulations by fuzzy optimal logic of building structures.Engineering Structures.1998,20:164-175.
    [79]Michael D.Symans,Steven W.Kelly.Fuzzy logic control of bridge structures using intelligent semi-active seismic isolation systems.Earthquake Engineering and Structural Dynamics.1999,28:37-60.
    [80]王刚,欧进萍.结构振动的模糊建模与模糊控制规则提取.地震工程与工程振动,2001,2:130-135.
    [81]阎石,林皋,李晓光,李宏男.相邻建筑结构的模糊振动控制.地震工程与工程振动,2000,20(2):39-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700