中高空面阵CCD航空相机操纵系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中高空面阵CCD航空相机是用于军用飞机进行空中侦察的重要设备,其任务就是从中高空实时获取高分辨率可见光目标图像信息,处理后将侦察信息实时传输给地面控制中心,完成地面目标采集和战场目标打击效果的评估。而操纵系统是中高空面阵CCD航空相机重要的控制与检测设备,可实现对航空相机供电电源的实时故障诊断和状态监测与控制,以及完成航拍图像的并行实时无损压缩。
     论文结合某型中高空面阵CCD航空相机的设计方案,设计了一款满足基本侦察任务要求的航空相机操纵系统,并对所涉及到的关键技术进行了深入研究,为研制功能更强大、更完善的航空相机提供了一定的理论依据和工程实践经验。因此,开展本课题研究对促进我国航空相机事业发展,提高我国航空侦察能力具有非常重要的意义。
     本文针对现有通用的Linux操作系统功能模块繁多的情况,其不仅占用内存资源,而且影响执行速度和任务响应速度。为此,提出了基于PC104总线的移植与裁剪技术,根据应用需求,对Linux系统进行实用性改造,提高了系统的任务响应速度;针对航拍图像数据量大,存储困难等问题,给出了基于软硬件并行技术的图像压缩子系统设计方案,实现图像的并行、实时和无损压缩,其图像压缩时数据流的处理速率达到60MB/S,图像压缩比达到10:1;针对航空相机供电电源故障率高,传统故障诊断方法不足而使得相机维护难度大的实际问题,进行了基于PSO-RBF神经网络的故障诊技术研究,设计了基于PSO-RBF的航空相机电源的故障诊断系统,实现了对航空相机供电电源的实时、全自动化的故障诊断。其研究的主要内容有:
     在全面分析某型中高空面阵CCD航空相机工作原理基础上,论述了航空相机的系统组成。依据航空相机操纵系统的性能指标要求,进行了航空相机操纵器系统的总体方案设计,设计了操纵系统的硬件电路模块,并分析了其功能;给出了航空相机操纵系统软件模块的构成,设计了操纵系统总体工作流程;针对系统所涉及到的关键技术,即基于PC104总线的Linux系统的裁剪技术,图像实时无损压缩的软硬件并行技术和基于PSO-RBF神经网络的故障诊断技术,提出了航空相机操纵系统的相关技术指标,并进行了深入研究。
     (1)研究了基于PC104总线的Linux系统的裁剪技术.
     研究了Linux裁剪技术与方法,选择了操纵系统的主控计算机主板,分析了PC104主板的硬件资源。针对其硬件资源进行了Boot Loader移植,将移植后操作系统采用粗粒度和细粒度的内核裁剪方法进行了实用性改造,增强了Linux内核的抢占性;通过改善Linux内核实时调度器的调度策略,构建了一个具有实时处理能力的嵌入式系统,以满足系统的实时性需求。实现了任务响应时间不大于20ms,系统启动时间不大于5s。
     (2)研究了图像实时无损压缩的软、硬件并行技术
     在分析图像压缩基础知识和小波变换原理的基础上,研究了适用于图像无损压缩9/7-M小波提升方法,给出了航空相机操纵系统图像并行无损压缩子系统的总体设计方案,分别设计了图像并行无损压缩子系统的软硬件。采用DSP+FPGA结构,将一幅4056×5356的大图用两块结构完全相同的图像压缩板并行处理;采用三级整数提升小波变换技术,对小波变换的高频和低频系数分别进行了编码,并对编码数据进行打包处理,减少了对内存的访问时间。实现了航拍图像的并行、实时和无损压缩,其图像压缩时数据流的处理速率达到60MB/S,图像压缩比达到10:1。
     (3)研究了基于PSO-RBF神经网络的故障诊断技术。
     在分析粒子群优化算法基本原理基础上,建立了RBF神经网路模型,并提出了PSO-RBF神经网络算法,依据此算法,设计了基于PSO-RBF神经网络的航空相机供电电源的故障诊断子系统方案。搭建了故障诊断子系统的硬件平台,编写了PSO-RBF算法程序。利用己搭建的软硬件平台对航空相机供电电源进行测试,结果表明在不依赖标准设备和附加测试点的条件下,可实现航空相机供电电源的实时、全自动化芯片级的故障诊断,并可自动完成故障定位。故障现象的检测覆盖率达到了100%,准确率达到了95%以上,故障元器件定位率达到98%。
As an important equipment of aerial recommaissance for military aircraft, Medium-high altitude array CCD aerial camera is used to capture the high resolution visible light image information,after images processing,the reconnaissance imformation can be transmissted to the groun control center, such the evaluations about the targets acquisition and the effect of battlefield targets strike are accoomplished. The operating system is the best equipment of above camera for control and detection, which can diagnose faults, monitor condition and contrl real-time the power supply of aerial camera, and realizes aerial images lossless compression real-time by parallel trammission.
     Combined with the design of a certain type of medium-high altitude array CCD aerial camera,the aerial camera operating system met requirements the basic reconnamissance mission,which of the technologies researched in deeply further.that provides the theory basis and the practical experiences for aerial camera with the more powerful and perfect performance.Therfore,It is the very important significance to promote the aviation camera business and improve the aciation reconnaissance capability by this paper research.
     In view of problem of function module variety in the existing general Linux operating system, which not only memory resources oppupied, but also the spped of execution and response speed influenced.Therefore, the transplantation and cutting technology is presented based on PC104bus, and according to the application demand, the Linux system is carried on a practical transformation for improving the response speed to the system task. In view of memory problem because of large image date,the design of image compression subsystem based on hardware and software prarllel technology is given that can achieve image parallel,real-time and lossless compression.The processing rate of data stream and the image compression ratio can reach60MB/S and10:1during the image compression processing. In order to solve the problems of the high failure rate on the aerial camera power supply resulting from the camera maintenance difficult applying of the traditional fault diagnosis methods, the research of fault diagnosis technology is put forward based on PSO-RBF neural network.The fault diagnosis system of the aerial camera power supply based on PSO-RBF is designed to realize the aerial camera fault diagnosis in real-time, full automation.The main research contents include:
     In a comprehensive working principle analysis of a certain type of medium-high altitude area array CCD aerial camera, the system of the aerial camera is discussed. According to the performance requirements of aerial camera control system, the overall design of aerial camera manipulator system is given.The hardware circuit module of operation system is designed and its functions are analyzed. The software module design of aerial camera control system is given too.The system overall workflow is presented.In view of the key technologies, namely the Linux system cutting technology based on PC104bus, the software and hardware real-time parallel imagelossless compression technology and the fault diagnosis technology based on PSO-RBF neural network, the relevant technical indexes of aerial camera operating system are put forward, and nd conducted in-depth study.
     (1) The cutting technology on the Linux system based on PC104bus is researched.
     The cutting technology and method on the linux system is researched.The master control computer board of operating is selected. The hadware resources of PC104motherboard is analyzed. After Carrying on the Boot Loader transplantation for the hardware resource of system, this system is practical transformated through the method using coarse-grained and fine-grained to enhance the preemption of the Linux kernel.By improving the scheduling strategies of kernel real-time scheduler, the embedded system with the capabilities of real-time processing is constructed to meet the needs of system real time. Through above job,the system can reach the task response time<20ms, startup time≤5S.
     (2) The real-time imge lossless compression and soft-hardware parallel technology are researched.
     Based on the analysis of based knowledge about image compression and the theory of wavelet transform,the overall design scheme of the parallel image conmpressin subsystem of aerial camera operation system is given after the studing9/7-M wavelet lifting method applied to image lossless compression.The software and hardware is designed of this system.Using DSP+FPGA structure,size of4056×5356large image using two pieces of the same structure compression plate is parallel compressed.The high and low frequency coefficients of wavelet transform are coded respectively by the technology based on the three stage integer lifting.The coding date is packed to reduce the memory access time.The aerial image parallel, real-time and lossless compression can be realized finally,.The compression data stream reaches60MB/S,and the image compression ratio can reach10:1.
     (3) The fault diagnosis technology is researched based on PSO-RBF neural network.
     In the analysis of the basic principle of the particle swarm optimization algorithm, the RBF neural network model is established, and the PSO-RBF neural network algorithm is put forward. A fault diagnosis system for aerial camera power supply based on PSO-RBF neural network is designed by above algorithm. To build the hardware platform of fault diagnosis subsystem, the program of the PSO-RBF algorithm is written.The power supply aerial camera is tested by above platform.The results show that this system can realized real-time,automatic chip level fault diagnosis without relying on standard equipment and additional test conditions and fault location automatically.The fault coverage rate of detection reaches100%, the accuracy rate reaches more than95%, the fault components localization rate reaches98%.
引文
[1]张伯明等.F-101战斗机发展史[J].航空世界.2006,36(4):44-51
    [2]刘明,修吉宏,刘钢,等.国外航空侦察相机的发展[J].电光与控制.2004,11(1):56-59
    [3]H. A. Niemuth, H. D. Bredehorn. Pin Registration Back for Film Strip Camera. America,1983, Patent no:4410254
    [4]吴宏圣TDICCD全景航空相机像移补偿研究[D].长春光学精密机械与物理研究所硕士学位论文.2003:1-2
    [5]耿立中,安文化,朱涛.KA-112A全景式航空照相机[D].中国人民解放军空军司令部情报部.1988:60-72
    [6]张玉欣,刘宇,葛文奇.像移补偿技术的发展与展望.中国光学与应用光学[J].2010,3(2):112-118
    [7]G E. Palumbo, N. B. DeMonbrun.0C-135B Open Skies (Phase II Upgrade)QOT&E. Air Warfare Center Nellis Afb, N. V.1997:51-98
    [8]J.L. Romjue. From Active Defense to AirLand Battle:the Development of ArmyDoctrine,1973-1982. Historical Office, US Army Training and Doctrine Command.1984:40- 56
    [9]T. Augustyn. K.S-146 a Camera Development and Flight Test Results. Airborne Reconnaissance VIII, San Diego, CA, United States.1984:50-55
    [10]金星,沈怀荣等.故障树定性分析的优化方法[J].指挥技术学院学报.2001,12(6):27-29
    [11][英]D.H.米德尔顿.航空电子系统[M].航空工业出版社.1992:38-46
    [12]杨叔子.人工智能与诊断专家系统[M].西安交通大学出版社,1988
    [13]雷艳静,胡红明等.基于PC104的ARINC429总线接口模块的FPGA实现[J].微计算机应用.2006,1(27):87-90
    [14]朱继洲.故障树原理和应用[M].西安交通人学出版社,1989:41-55
    [15]何艳,陈国强.基于FPGA的ARINC-429总线收发系统实现[J].激光与红外工程.200531(11):19-21
    [16]章国栋,陆廷孝等.系统可靠性与维修性分析与设计[M].北京航空航天大学出版社,1990:122-124
    [17]姜运生等.基于HS3282的ARINC429航空通讯总线设计[J].世界电子元器.2002:60-64
    [18]刘文波,卞巨伟.实现ARINC 429数字信息传输的方案设计[J].电子应用技术.2000(6):48-50
    [19]孙世君.单片机应用系统设计的抗干扰技术[J].丹东纺专学报.2002.12,9(4):43-45
    [20]魏选平,卞树檀.故障树分析法及其应用[J].计算机科学与技术.2004,6(3):31-38
    [21]吴今培.智能故障诊断技术的发展和展望[J].振动、测试与诊断.1999,19(2):79-86
    [22]孙鹏,刘平香.瞬态信号检测方法的研究[J].舰船科学技术.2005,6(3):72-76
    [23]刘文波等.实现ARINC429数字信息传输的方案[J].电子技术应用.2000.6:48-50
    [24]李安,胡柏青,赵济民.故障诊断专家系统的可视化设计及实现[J].海军工程学院学报.1997,(3):34-38.
    [25]周东华,叶银忠著.现代故障诊断与容错控制[J].北京:清华大学出版社,2000.(6):88-92
    [26]伍智锋,唐硕分布式飞行仿真系统的参数分布技术[J].系统仿真学报.2003 15(3):429-432
    [27]盐见弘,岛岗淳.故障模式和影响分析与故障树分析的应用[M].北京:机械工业出版社,1987:130-146
    [28]黄洪钟.机械系统可靠性分析的失效树技术研究[J].机械科学与技术.1991(3):16-21
    [29]伍明高等.综合电子显示原理[M].西北工业大学出版社,1998.16-46
    [30]Charles H.-P. Wen, Li-C. Wang, Kwang-Ting Cheng. Simulation-Based Functional Test Generation for Embedded Processors. IEEE TRANSACTIONS ON COMPUTERS,2006 55(11):1335-1343
    [34]Patton,R.CHen J,A Robust Parity Space Approach to fault Diagnosis Based on Optimal Eigenstructure Assignment.Proc.of IEEEControl' 91 Conferece,1991:1135-1143
    [35]Cepin M,Mavko B.Probabilistic Safety Assessment Improves Surveillance Requirements in Technical Specification[J].Reliability Engineering and System Safety,1997,56(1):69-77
    [36]WEI Bao-hua, LU Hai-xing, SHEN Yu-hao.A Real-time On-line Data Acquisition System Based on PC104. Shijiazhuang Machine Engineering Institute:6550-6552
    [37]Vaurio J K.Common Cause Failure Probabilities in Stand by Safety System Fault Tree Analysis with Testing-scheme and Timing Dependencies [J].Reliability Engineering and System Safety,2003,79(l):43-57
    [38]ireza E,Seyed G M.FPGA-based Monte Carlo Simulation for Fault Tree Analysis [J].Microelectronics Reliability,2004,44(6):1017-1028
    [39]Liang Yuying, Cai Jinyn, Meng Yafeng. Real-time Detection and Diagnosis of Radar PCB.Ordnance Engineering College Shijiazhuang Hebei Province, China.6757-6759
    [40]Sohn S D.Seong P H.Quantitative Evaluation of Safety Critical Software Testability Based on Fault Tree Analysis and Entropy[J]. Systems and Software.2004,73(2):351-360
    [41]Chanda R S,Bhattachar[jee P K. A Reliability Approach to Transmission Expansion Planning Using Fuzzy Fault-tree Model[J]. Electric Power Systems Research,1998,45(2):101-108
    [42]Antonio C F,Nelson F F.Fuzzy FTA:A Fuzzy Fault Tree System for Uncertainty Analysis[J].Annals of Nuclear Energy,1999,26(6):523-532
    [43]Lin C T,Wang M J.Hybrid Fault Tree Analysis Using Fuzzy Sets[J].Reliability Engineering and System Safety,1997,58(3):205-213
    [44]M.Mcdarres,G.Deifuli,"A truncation methodology for evaluating large fault trees" IEEE Trans, Reliability Vol.R.33,1984,Oct,PP325-328
    [45]B.Page.J.E.Perry "A simple approach to fault-tree ptobabilities",Computer and Chemical Engineering Vol.Oct.1986,PP249-257
    [46]F.A.Patterson Hine,B.V.Keen,"Direct evaluation of fault trees using object oriented programing techniques",IEEE Trans,Reliability Vol,38,1989,Jun,PP186-192
    [47]谢斌.嵌入式系统开发入门与指导[M].西安:西安电了科技大学出版社,2004:35-39
    [48]郭明,侯彦华.嵌入式Linnx系统的现状与未来[J].北京广播电视大学学报,2003:33-56
    [49]陈俊宏.嵌入式系统原理与实务[M].北京:中国铁道出版社,2004:99-103
    [50]胡志刚.嵌入式Linnx移植方法[J].中南大学学报,2004,35(4):638-642.
    [51]王田苗.嵌入式系统设计与实例开发[M].北京:清华大学出版社,2003.342-348
    [52]魏平,夏良正:,王岩Linnx体系结构及嵌入式Linnx的移植方法[J].东南大学学报,2004,(1]):126-130.
    [53]Jhon Lombardo嵌入式Linnx[M].北京:中国电力出版社,2003.132-138
    [54]袁太生,张素琴.嵌入式系统软件移植浅析[J].太原大学学报,2003.138-145
    [55]杨刚.32位RISC嵌入式处理器及其应用[M].北京:电了工业出版社,2007.145-150
    [56]李善平,刘文峰,焕龙等Linnx与嵌入式系统。清华大学出版社,2003.33-25
    [57]杜春.ARM体系结构与编程[M].北京:清华大学出版社,2003.45-49
    [58]王学龙.嵌入式Linnx系统设计与应用[M].北京:清华大学出版社,2001.99-105
    [59]陈再秀.PC/104嵌入式系统综述[J].计算机应用,2005,39(6):96-99.
    [60]张纪坤,张小全.嵌入式Linux系统开发技术详解一基于ARM[M].北京:人民邮电出版社,2006.
    [61]胡莉,黄玉清.嵌入式PC/104计算机性能及应用方法[J].应用天地,2005,29(5):25-27.
    [62]张广莹,徐丽娜.PC/104计算机的应用[J].哈尔滨工业大学学报,2005,36(12):113-115.
    [63]Jack Tackett,David Gunter. Linux大全[M].北京:电了工业出版社,1989.1122-1125
    [64]邱巍.嵌入式工roux操作系统移植[D].武汉:武汉理工大学,2004.236-260
    [65]李驹光,郑耿,江泽明.嵌入式Linux系统开发详解[M].北京:清华大学出版社,2006.345-348
    [66 J马季兰,玛秀芳.操作系统原理与Linux系统[M].北京:人民邮电出版社,1999.146-148
    [67]奚立群,赵识寸秋,杜中平.移植Linux技术分析[J].MODERN COMPUTER,2003,9(31):69-73.
    [68]李善平.L工NUX与嵌入式系统[M].北京:清华大学出版社,2003.61-66
    [67]周立功.ARM嵌入式系统基础教程[M].北京:北京航空航天大学出版社,2005.65-69
    [68]漆昭铃.基于PowerPC的嵌入式Linux[M].北京:北京航空航天大学出版社,2004.74-99.
    [69]杨朝军Linux嵌入式系统的优化[J].山东电子,2002.29(5):37-51.
    [70]周巍松Linux系统分析与高级编程技术[M].北京:机械工业出版社,1999.11-16
    [71]Michael Barr著C/C++嵌入式系统编程[M].北京:中国电力出版社,2001.6-50
    [72]贾明,严世贤Linux下的C编程[M].北京:人民邮电出版社,2001.10-13
    [73]陈文智.嵌入式系统开发原理与实践[M].北京:清华大学出版社,2005.34-39
    [74]William Stallings操作系统:精髓与原理[M].北京:清华大学出版社,1995.
    [75]陈建辉Linux操作系统[M].北京:机械工业出版社,2002.
    [76]张金龙.基于ARM-Linux的嵌入式系统研究与软硬件的实现[D].北京交通大学硕士学位论2005.
    [77]张丽芬.操作系统原理与设计[M].北京:北京理工大学出版社,1997.
    [78]冯树林基于嵌入式PC/104的Linux系统移植研究[D].西北农林科技大学硕士学位论文.2008
    [79]丁小东 基于视频采集系统的嵌入式Linux操作系统裁剪方法探讨[D].中南民族大学硕士学位论文.2010
    [80]Rafael C. Gonzalez, Richard E. Woods著.阮秋琦,阮宇智译.数字图像处理.第二版.北京:电子工业出版社2003:326-414
    [81]Kenneth R.Castleman著.朱志刚,林学阁,石定机译.数字图像处理[M].北京:电子工业出版社,2002
    [82]王卫国,郭宝龙.嵌入式图像编码算法研究[J].高技术通讯.2002
    [83]肖自美.图像信息理论与压缩编码技术[M].广州:中山大学出版社,2002.14(7):831-835
    [84]Charles H.-P. Wen, Li-C. Wang, Kwang-Ting Cheng. Simulation-Based Functional Test Generation for Embedded Processors. IEEE TRANSACTIONS ON COMPUTERS,2006 55(11):1335-1343
    [85]Luqi,Ying Qiao,Lin Zhang, A Computational Model for Complex Systems of Embedded Systems, Lecture Notes in Computer Science, Volume 2941/2004
    [86]Jack Tackett.Jr.and David Gunter, Using Linux, Indianapolis,Ind.:Que,cl997
    [87]孙旭光.一种多功能ARINC429总线接口板设计[J].测控技术.2003.第6期
    [88]宋东,郑海良,马存宝.微机ARINC429总线智能接口卡设计[J].仪器仪表学报.2002.第23卷第3期增刊
    [89]刘明东,禄乐滨ARINC429总线接口芯片及接口板的设计与实现[J].空军工程大学学报自然科学版.2001.第22卷第1期
    [90]李建平.小波分析与信号处理—理论、应用及软件实现[M].重庆:重庆出版社.1997:5-12
    [91]刘贵忠,邸双亮.小波分析及其应用[M].西安:西安电子科技大学出版社,1995:112-118
    [92]胡春玲,陈义宽.图像编码时小波基的选择[J].中国图像图形学报.1998.3(9):34-37
    [93]牛建伟,王刃,李波.基于零树和位平面的小波图像压缩算法[J].软件学报.2002.13(3):460-466
    [94]伍明高等.综合电子显示原理[M].西北工业大学出版社.1998.5:16-46
    [95]WEI Bao-hua, LU Hai-xing, SHEN Yu-hao.A Real-time On-line Data Acquisition System Based on PC104. Shijiazhuang Machine Engineering Institute:6550-6552
    [96]姜涛,谢晓方,宇伟ARINC 429总线在航空设备中的应用[J].航空计算技术.1997.第3期
    [97]姚志军,张平,白向林.一种基于PC 104的测试仪器.现代电子技术.2003.第1期
    [98]魏忠,蔡勇,雷红卫.嵌入式开发详解[M].北京:电子工业出版社,2003
    [99]孙秀敏等.基于小波变换的视频压缩的硬件实现通讯技术[J].指挥技术学院学报.2001.No.117:100-102
    [100]Mallat S G.Multifrequency Channel Decomposition of Images and Wavelet Models[J].IEEE Trans.On Acoustics,Speech and Signal Processing,1989,37(12):2091-2110
    [101]Mallat S G.A Theory for Multiresolution Signal Decomposition:the Wavelet Representation[J].IEEE Trans.On Pattern Recognition and Machine Intelligence,1989,11(7):674-693
    [102]金星,沈怀荣等.故障树定性分析的优化方法[J].指挥技术学院学报.2001.12(6):27-29
    [103]李安,胡柏青,赵济民.故障诊断专家系统的可视化设计及实现[J].海军工程学院学报.1997.(3):34-38
    [104]朱继洲.故障树原理和应用[M].西安:西安交通人学出版社,1989:41-55
    [105]马波等.小波分形混合图像编码算法中双正交小波的选择[J].计算机学报.1999.Vol.22(11):1138-1142
    [106]Patton,R,CHen J,A Robust Parity Space Approach to fault Diagnosis Based on Optimal Eigenstructure Assignment.Proc.of IEEEControl'91 Conferece,1991
    [107]PC104 Specification Version 2.4 PC 104 Embedded Consortium 2001 30 Akos Ledeczi,Arpad Bakay,Miklos Maroti, Model-Integrated Embedded Systems, Lecture Notes in Computer Science, Volume 1936/2001
    [108]Louis L.Odette, Intelligent embedded systems, Reading,Mass.:Addison-Wesley Pub.Co.,c1991
    [109]Hegde,Smita Suresh, A set of methodologies to ensure accurate data acquisition from A/D board on an embedded system, DEGREE MSCSE, America, THE UNIVERSITY OF TEXAS AT ARLINGTON,2003
    [110]Wang,Dongsheng, Advanced development of a dynamic test bed for flight management systems, DEGREE MASc, CANADA, CONCORDIA UNIVERSITY,2003
    [111]Bollinger,Terry,Survey of Linux applications,IEEE Software,v 16,n 1,Jan-Feb,1999
    [112]Antonini,et al.Image coding using wavelet transforms.IEEE Trans.on Image Processing,1992,1(2):205-220
    [113]Charles H.-P. Wen, Li-C. Wang, Kwang-Ting Cheng. Simulation-Based Functional Test Generation for Embedded Processors. IEEE TRANSACTIONS ON COMPUTERS.2006 55(11):1335-1343
    [114]Tsun-Yee Yan, Muthu Jeganathan, James R. Lesh. Progress on the development of the optical communications demonstrator[P].Proc.SPIE.Vol.2990(1997):94-101
    [115]Roy.S Bondurant.Don M.Boroson.Overview of the lasercom program at Lincoln laboratory[P].Proc.SPIE.Vol.2381(1995):2-4
    [116]柯丽,黄廉卿.DSP芯片在实时图像处理系统中的应用.研究生论坛.2005,1:17-23
    [117]M.Jegnathan,A Portillo.Lessons learnt from the optical communications demonstrator[P].Proc.SPIE. Vol.3615(1999),23-31
    [118]T.Tolker-nielsen,GOppenhauser. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4,SILEX[P].Proc.SPIE.Vol.4635, (2002),1-15
    [119]Caroline Racho, Angel Portillo. Characterization and Design of Digital Pointing Subsytem for Optical Communication Demonstrator[J]. SPIE,1999,3615:250-261
    [120]James R. Lesh. Deep Space Optical Communications-A Program Update. SPIE,1990,1218:530-540
    [121]Donald Russell, Homayoon Ansari, and Chien-C. Chen. LaserCom Pointing Acquisition and Tracking Control using a CCD based Tracker[P]. Proc.SPIE.Vol.2123(1994):294-303
    [122]王庆有.CCD应用技术[M].天津:天津大学出版社,2000
    [123]李国朝,陈向东.面阵CCD电荷耦合器件的特点及原理分析[M].天中学刊.2003.18(5):97-98
    [124]李宁,汪俊发.基于Camera Link的高速数据采集系统[J].红外,2005,7:31-37
    [125]AIA. Specificationsof the Camera Link Interface Standard for Digita Cameras and Frame Grabbers.
    [126]J. Batlle, J. Mart, P. Ridao and J. Amat.A New FPGA/DSP-Based Parallel Architecture for Real-Time Image Processing. Real-Time Imaging 8,345-356 (2002).
    [127]K.araki.Y.arimoto. Performance evaluation of laser communication equipment onboard the ETS-VI satellite[P].Proc. SPIE.Vol.2699(1996),52-59
    [128]TI.TMS320DM642 Video/Imaging Fixed-Point Digital Signal Processor.TI,2002,7
    [129]郭栋,王志良,李正熙,等.基于DSP的实时图像处理系统[J].接口与通信技术应用200例.83-84
    [130]尹福昌,张洪涛.增强型视频跟踪器在空间光通信中的应用结果与分析[J].仪器仪表学报.2002,23(5)增刊:187-189
    [131]付强,王春平,姚志刚.基于TMS320DM642的电视跟踪系统设计.军械工程学院学报.2005,17(5):68-71
    [132]赵丹培.基于DSP的实时图像处理的研究[D]:[长春理工大学硕士学位论文.长春,2002
    [133]朱明,鲁剑锋,赵建,等.基于TMS320C6202 DSP的实时数字图像处理系统的设计[J].光学精密工程.2003,11(5):497-501
    [134]杨东华,李久贤,谢树林.基于DSP的实时视频处理系统及应用.南京理工大学学报.2005,29增刊:151-154
    [135]赵丹培,王延杰,刘广文.基于TMS320C6202的实时图像处理的研究[J].长春理工大学学报.2004,27(1):37-40
    [136]TI.TMS320C6000 DSP External Memory Interface (EMIF) Reference Guide.TI.2006,2.
    [137]王东升,李在铭.基于高速DSP的实时运动目标识别跟踪系统[J].电子测量与仪器学报.2005,19(1):40-44
    [138]张晓飞,袁祥辉.基于DSP成像系统的视频图像采集部分的实现[J].压电与声光.2002,24(3):247-250
    [139]张静,索继东.基于FPGA和DSP的雷达信号处理系统的设计册.大连海事大学学报.2002,28(2):69-72
    [140]樊春梅,王旭东,张银秀,等.视频信号采集系统的设计[J].哈尔滨理工大学学报.2003,8(2):22-25
    [141]徐婉莹,刘建军,黄新生.基于CPLD和DSP的高速图像采集技术研究[J].电子工程师.2004,30(6):48-50
    [142]孙建松,翟多佳,苏宛新.基于DSP的CCD信号高速数据采集与处理系统[J].长春理工大学学报.2003,26(1)42-44
    [143]戴伏生,毛兴鹏.适用于DSP的视频信号数据采集电路设计[J].东北电力学院学报.2003,23(6):13-15
    [144]冈萨雷斯.数字图像处理(第二版)[M].北京:电子工业出版社,2004
    [145]李玉峰,郝志航.星点图像超精度亚像元细分定位算法的研究[J].光学技术.2005,31(5):666-671
    [146]聂飞,冯宗哲,郭宝龙,等.嵌入式视频采集系统的实现方法研究[J].信息终端.2003,(8):46-49
    [147]胡君.一种快速求图像目标质心的方法[J].光学精密工程.1998,6(5):19-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700