光纤通信系统中高效信号处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光传输系统中信号传输速率的提高和传输距离的增加,光传输链路中色度色散、偏振模色散以及光纤非线性效应等因素严重影响传输系统的性能。本论文基于这样的考虑,对高速长距离光纤传输系统中的信号进行处理。利用OFDM技术频谱利用率高、抗色散能力强和传输容量大等优势,把OFDM技术与无线系统结合形成光载无线(ROF)通信系统,实现光纤跟无线无缝结合,但相对无线传输,ROF系统的传输速率和传输距离提高了很多。与直接检测相比,相干检测系统的优势在于具有更高的接收灵敏度和频谱利用率,可以提高中继传输距离。但在相干检测传输系统中,两个激光器的频率不同步造成接收信号星座图旋转和偏移,而且激光器线宽引起的相位噪声对传输系统都会造成严重影响。因此,为了提高光纤传输系统的性能,本文对光纤传输系统中影响系统性能的若干问题进入了深入探讨和研究,理论分析和实验验证了提高光纤传输系统性能的几个关键技术。对以后的光纤传输系统的发展具有理论和实用价值。本论文主要工作和取得的成果为如下几个部分:
     第一、针对高PAPR的OOFDM信号对光传输系统中电器件、光器件以及光纤非线性效应的影响,提出了两个降低OOFDM信号PAPR方法。一个是Hadamard转换结合压扩变换技术,另一个是FE-Nyquist脉冲成型技术。Hadamard转换结合压扩变换技术降低OOFDM信号PAPR技术,主要是利用了Hadamard是非正弦正交变换,转换过程中没有复杂的乘法运算,而且可以改变信号的非周期自相关性。而压扩转换技术主要对OFDM信号中小幅度信号进行放大,而对大幅度信号进行压缩,从而降低OFDM信号的PAPR。FE-Nyquist脉冲成型技术降低OOFDM信号PAPR主要是利用FE-Nyquist矩阵具有正交性,OFDM信号与FE-Nyquist矩阵乘积后的数据序列具有一定的相关性,从而使OFDM信号各子载波之间具有一定的相关性,这样降低OFDM信号相位相同情况出现的概率,从而降低OFDM信号的PAPR。
     第二、使用LDPC编码级联TCM编码调制技术提高OFDM-ROF系统性能。讲述了ROF系统的优势和各部分的功能。理论分析了LDPC编码和TCM编码调制技术的编译码原理和结构,利用TCM不降低信号频带利用率和不降低功率利用率,还能获得系统编码增益等优势,可以解决系统频带利用率不足问题。实验搭建了60GHz光载毫米波系统。实验结果验证了LDPC-TCM编码调制技术能很好的提高OFDM-ROF系统性能。
     第三、针对传统均衡技术把均衡部分和译码部分分离带来的不足,使用Turbo迭代均衡技术,该技术使Turbo均衡中的均衡器具有处理输入先验信息与输出后验信息的功能,Turbo中的均衡器与Turbo译码器进行信息交换,降低Turbo编码技术的算法复杂度。为了减少偏振复用系统中偏振模色散和偏振串扰对传输系统的干扰影响和均衡技术算法复杂度,本文提出基于MIMO-CMA迭代均衡技术,该技术能有效降低偏振模色散和偏振串扰的影响,通过实验验证了MIMO-CMA迭代均衡技术能提高偏振复用CO-OFDM系统性能,而且该均衡技术的算法复杂度较低。
     第四、针对相干检测系统中由于本振光与信号光频率不同步和激光器线宽带来的信号相位旋转和相位噪声等影响,本文提出了基于八阶统计量盲相位估计结合最大似然相位估计方法来提高单载波系统中信号相位估计精度,减少相位估计算法复杂度。理论分析了八阶统计盲相位估计和最大似然相位估计方法原理,以及各自的优缺点。实验验证了该级联相位估计方法能提高单载波系统中信号相位估计精度和减少相位估计计算量,说明该方法能有效降低激光器线宽对信号的影响。
With the increasing of transmission distance and rate, the fiber chromatic-dispersion, polarization-mode-dispersion and nonlinear-effect will seriously affect the performance of transmission systems. To solve this problem, the paper focuses on the high efficient signal processing in high-rate and long-haul fiber-optics communication systems. We have explored the OFDM radio-over-fiber system which the advantage of high spectral efficiency, high-capacity and strong dispersion resistance of OFDM signal to realize seamless integration of the wireless and fiber communication system. Comparing to the direct-detection systems, the coherent-detection systems have higher receiving sensitivity and capacity, and can promote transmission distance. However, in coherent-detection systems, the two transceivers lasers'frequency is not possible the same, this will lead to the rotation and shifting of the constellation. Also, the phase noise of the lasers will damage the transmission system. Therefore, to promote the performance of the fiber transmission system, this paper involves some related key technical problems. The paper includes the following parts:
     First, we propose two methods including the Hadamard transforming with companding and the FE-Nyquist pulse sharping technique to reduce the PAPR of OFDM signal to diminish the nonlinear effect of electrical and optical device. The Hadamard transforming technique with companding takes the advantage of the nonsinusoidal orthogonal transforming without complex multiply operation, so as to reduce the signal correlation. The companding transforming which amplify the small amplitude signals and compress the large amplitude signal is used at the OOFDM transmitter to reduce the signal PAPR. The Hadamard transforming technique also takes the advantage of orthogonality FE-Nyquist matrix. The product of OFDM signal and the FE-Nyquist matrix has certain correlation, and this enhance the correlation of the sub-carriers of the OFDM signal so as to reduce the OFDM signal's PAPR.
     Second, we employ the LDPC coding in catenation with TCM coding to promote the performance of OFDM-ROF system performance. We analyze the function and advantage of ROF system. And also we make an introduction of the LDPC and TCM coding, theoretically analyze the LDPC and TCM coding and decoding principle and structure. The TCM coding can get obvious coding gain without decrease system bandwidth and power utilization. We build a60GHz OFDM-ROF experimental system and verify that the LDPC-TCM coding can promote its performance.
     Third, to overcome the shortcoming of the traditional equalization and decoding technology, we employ the Turbo iterative equalization technology. The technology enables the Turbo equalizer input a priori information and output posterior information, exchange of information with the Turbo decoder and reduce Turbo coding algorithm complexity. To reduce interference of the polarization mode disper-sion and polarization crosstalk in polarization division multiplexing transmission system, we propose a low-complexity MIMO-CMA iterative equalization technology which is experimentally verified.
     Finally, to solve the problem of signal phase rotation and phase noise due to the frequency out-of-sync lasers and the laser linewidth in coherent detection systems, we propose an8-order blind phase estimation algorithm which is combined with max-likelihood method to enhance the accuracy of single-carrier phase estimation and reduce the algorithm complexity. We make a theoretical analysis of the estimation principle of8-order statistical blind phase estimation and the max-likelihood method, also with their merits and drawbacks. The proposed algorithm is also experimentally verified. The experiment shows that this method can reduce the influence of spectral linewidth of laser signal. And the method is simple, has the merit of real-time coherent detection of single carrier system.
引文
[1]Yu J, Huang M F, Qian D, et al. Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals. IEEE Photonics Technology Letters,2008,20(18): 1545-1547
    [2]Bao H, Shieh W. Transmission simulation of coherent Optical OFDM signals in WDM system. Optics Express,2006,15(8):4410-4418
    [3]H Billow, F Buchali, A Klekamp. Electronic Dispersion Compensation, Journal of Lightwave Technology,2008,20(6):158-167
    [4]Q Yu. On the Decision-Feedback Equalize in Optically Amplified Direct-Detection Systems. Journal of Lightwave Technology,2007,25(8):2090-2097
    [5]Pan Q, Green RJ. Bit-error-rate Performance of Lightwave Hyrid AM/OFDM Systems with Comparison with AM/QAM Systems in The Presence of Clipping Impulse Noise. IEEE Photon Technol Lett,1996,8(2):278-280
    [6]Shi Q. Error Performance of OFDM-QAM in Subcarrier Multiplexed Fiber-optic Transmission. IEEE Photon Technol Lett,1997,9(6):845-847
    [7]You R, Kahn JM. Average Power Reduction Techniques for Multiple-subcarrier Intensity-modulated Optical Signals. IEEE Trans Commun,2001,49(12): 2164-2171
    [8]J B Carruthers, J M Kahn. Multiple-subcarrier modulation for nondirected wireless infrared communication. IEEE J. Sel. Areas Commun,1996,14(3): 538-546
    [9]B J Dixon, R D Pollard, et al. Orthogonal frequency division multiplexing in wireless communication systems with multimode fiber feeds. In:IEEE Radio and Wireless Conference. RAWCON,2000,79-82
    [10]Jolley N E, Kee H, Pickard P, et al. Generation and propagation of a 1550 nm 10 Gbit/s optical orthogonal frequency division multiplexed signal over 1000m of multimode fibre using a directly modulated DFB. In:Conference on Fiber Communication OFC/NFOEC,2005, OFP3
    [11]Gonzalez O, Perez Jimenez R, Rodriguez S, et al. Adaptive OFDM system for communications over the indoor wireless optical channel. IEE Proceedings Optoelectronics,2006,153(4):139-144
    [12]Djordjevic I B, Vasic, B.100-Gb/s transmission using orthogonal frequency division- multiplexing. IEEE Photonics Technology Letters,2006,18(15):1576-1578
    [13]Lowery A, Armstrong J. Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems. Optics Express,2006, 14(6):2079-2084
    [14]Barros D, Kahn J M. Optimized Dispersion Compensation Using Orthogonal Frequency-Division Multiplexing. Journal of Lightwave Technology,2008, 26(16):2889-2898
    [15]Jansen S L, Morita I, Forozesh K, et al. Optical OFDM, a hype or is it for real? In:Optical Communication,2008,1-4
    [16]Jansen S L, Morita I, Schenk T. C. W, et al. Optical OFDM-A Candidate for Future Long-Haul Optical Transmission Systems. In:Optical Fiber Communication Conference. San Diego CA,2008, OMU3
    [17]Ali A, Leibrich J, Rosenkranz W. Spectral Efficiency and Receiver Sensitivity in Direct Detection Optical-OFDM. In:Optical Fiber Communication Conference. San Diego CA,2009, OMT7
    [18]Dayou Q, Neda C, Junqiang H, et al. Optical OFDM transmission in metro/access networks. In:Optical Fiber Communication Conference. San Diego CA,2009, OMV1
    [19]Barbieri A, Colavolpe G, Foggi T, et al. OFDM versus Single-Carrier Transmission for 100 Gbps Optical Communication. Journal of Lightwave Technology,2010,28(17):2537-2551
    [20]Barros D, Kahn J M. OFDM vs. OOK with MLSD for IM/DD systems. In: Optical Fiber Communication Conference. San Diego, CA,2010, OThE1
    [21]Shi eh W. OFDM for adaptive ultra-high-speed optical networks. In:Optical Fiber Communication Conference. San Diego, CA,2010, OWO1
    [22]Shieh W. OFDM for Flexible High-Speed Optical Networks. Journal of Lightwave Technology,2011,29(10):1560-1577
    [23]Wong E. Next-Generation Broadband Access Networks and Technologies. Journal of Lightwave Technology,2012,30(4):597-608
    [24]T Okoshi, K. Kikuchi. Coherent Optical Fiber Communications. Boston: Kluwer Academic Publishers,1988
    [25]T Okoshi, KKikuchi. Frequency stabilization of semiconductor lasers for heterodyne-type optical communication schemes. Electronics Letters,1980, 16(4):179-181
    [26]F Favre, D LeGuen. High frequency stability of laser diode for heterodyne communication systems. Electron Letters,1980,16(18):709-710
    [27]Y Yamamoto. Receiver performance evaluation of various digital optical modulation-demodulation systems in the 0.5-IO-pm-wave-length region. IEEE J Quantum Electron,1980,16(11):1251-1259
    [28]T Okoshi, K Emura, K Kikuchi. Computation of bit-error rate of various heterodyne and coherent-type optical communication schemes. Journal of Optical Communications,1981,2(3):89-96
    [29]Y Yamamoto, T. Kimura. Coherent optical fiber transmission systems. IEEE Journal of Quantum Electronics,1981,17(6):919-935
    [30]F Favre, L Jeunhomme, I Joindot, et al. Progress towards heterodyne-type single-mode fiber communication systems. IEEE Journal of Quantum Electronics,1981,17(6):897-906
    [31]T Okoshi. Heterodyne and coherent optical fiber communications:Recent progress, IEEE Trans. Microwave Theory Tech,1982,30(8):1138-1149
    [32]D W Smith, I W Stanley. The worldwide status of coherent optical fiber transmission systems. In:European Conference on Optical Communication, 1983,263-266
    [33]R C Hooper, J E Midwinter, D W Smith, et al. Progress in monomode transmission techniques in the United Kingdom. Journal of Lightwave Technology,1983,1(4):596-611
    [34]T Okoshi. Recent progress in heterodyne/coherent optical fiber communications. Journal of Lightwave Technology,1984,2(4):341-346
    [35]Chang-Hasnain, C J. Recent Progress of Semiconductor Slow Light Devices for Optical Communications. In:European Conference on Optical Communication, 2006,24-28
    [36]K Kikuchi, T Okoshi, M Nagamatsu, et al. Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and local oscillator. Journal of Lightwave Technology,1984,2(6):1024-1032
    [37]K Kikuchi, T Okoshi. Dependence of semiconductor-laser linewidth on measurement time:Evidence of predominance of 1/f noise. Electron Lett,1985, 21(22):1011-1012
    [38]H Ogawa, D Polifko, S. Banba. Millimeter-wave fiber optics systems for personal radio communication. IEEE Trans Microwave Theory Tech,1992, 40(12):2285-2292
    [39]D Wake, M Webster, G Wimpenny, et al. Radio over fiber for mobile communications. In:Topical Meeting Microwave Photonics(MWP),2004, 157-160
    [40]A Wiberg, P P Millan, M V Andres, et al. Fiber-optic 40 GHz mm-wave link with 2.5 G-b/s datatransmission. IEEE Photon Technol Lett,2005,17(9): 1938-1940
    [41]Yu J J, Chang G K, Jia Z S. A RoF downstream link with optical mm-wave generation using optical phase modulator for providing broadband optical wireless access service. In:Optical Fiber Communication Conference,2006, OFM3
    [42]Jia Z S, Yu J J, Ellinas G, et al. Key Enabling Technologies for Optical Wireless Networks:Optical Millimeter Wave Generation, Wavelength Reuse, and Architecture. Journal of Lightwave Technology,2007,25(11):3452-3471
    [43]Huang M F, Yu J J, Jia Z S. Simultaneous Generation of Centralized Lightwaves and Double/Single Sideband Optical Millimeter-Wave Requiring Only Low Frequency Local Oscillator Signals for Radio-Over-Fiber Systems. Journal of Lightwave Technology,2008,26(15):2653-2662
    [44]Bryn J. Dixon, Roger D. Pollard, Stavros Iezekiel, et al. Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds. IEEE Transactions on Microwave Theory and Techniques,2001,49(8):1404-1409
    [45]Wei-Ren Peng, Hidenori Takahashi, Itsuro Morita, et al. Direct-detection optical OFDM superchannel. In:European Conference and Exposition on Optical Communications,2011,1-3
    [46]Yang Gao, Jianjun Yu, Jiangnan Xiao, et al. Direct-Detection Optical OFDM Transmission System with Pre-emphasis technique. Journal of Lightwave Technology,2011,29(14):2138-2145
    [47]Wei-Ren Peng, Xiaoxia Wu, Vahid Arbab. Experimental Demonstration of a Coherently Modulated and Directly Detected Optical OFDM System Using an RF-Tone Insertion. In:Optical Fiber Communication Conference.2008, OMU2
    [48]Zizheng Cao, Jianjun Yu, Wenpei Wang, et al. Direct-Detection Optical OFDM Transmission System Without Frequency Guard Band. Photonics Technology Letters, IEEE,2010,22(11):736-738
    [49]Wei-Ren Peng, Xiaoxia Wu, Vahid R. Arbab, et al. Theoretical and Experimental Investigations of Direct-Detected RF-Tone-Assisted Optical OFDM Systems. Journal of Lightwave Technology.2009,27(10):1332-1339
    [50]陈虹先,李凡,肖江南,等.基于压扩变换的直接检测O-OFDM系统的实验研究.光电子·激光,2011,22(7):1057-1060
    [51]陈林,曹子峥,董泽,等.直接检测的光正交频分复用信号光纤传输系统实 验研究.中国激光,2009,36(3):554-557
    [52]Zhou Xian, Long Keping, Li Rui, et al. A simple and efficient frequency offset estimation algorithm for high-speed coherent optical OFDM systems. Optics Express,2012,20(7):7350-7361
    [53]J Pan, C H Cheng. Nonlinear Electrical Predistortion and Equalization for the Coherent Optical Communication System. Journal of Lightwave Technology, 2011,29(18):2785-2789
    [54]Y London, D Sadot. Nonlinear Effects Mitigation in Coherent Optical OFDM System in Presence of High Peak Power. Journal of Lightwave Technology, 2011,29(21):3275-3281
    [55]Xingwen Yi, Jing Zhang, Mingliang Deng, et al. Significant Overhead Reduction of Multi-band Tb/s Coherent Optical OFDM Systems. In:Optical Fiber Communication Conference,2011, JWA034
    [56]X Yi, K Qiu. Estimation and compensation of sample frequency offset in coherent optical OFDM systems. Optics Express,2011,19(14):13503-13508
    [57]Shieh William, Tucker Rodney S, Chen Wei, et al. Optical performance monitoring in coherent optical OFDM systems. Optics Express,2007,15(2): 350-356
    [58]London Y Sadot D. Analysis of nonlinearity of Mach-Zehnder modulator in coherent optical OFDM in the presence of PAPR. In:IEEE 26th Convention of Electrical and Electronics Engineers in Israel (IEEEI),2010,795-797
    [59]Krongold B S, Yan T, Shieh W. Fiber nonlinearity mitigation by PAPR reduction in coherent optical OFDM systems via active constellation extension. In:the 34th European Conference on Optical Communication,2008,1-2
    [60]Chun Ting L, Chen J, Peng-Chun P, et al. Hybrid Optical Access Network Integrating Fiber-to-the-Home and Radio-Over-Fiber Systems. IEEE Photonics Technology Letters,2007,19(8):610-612
    [61]Almeida P, H Silva. Multiservices and multiband optical signal generation for hybrid access networks. In:15th International Conference on Optical Network Design and Modeling, Bologna,2011,1-6
    [62]Bao Linh D, I. Niemegeers. Analysis of IEEE 802.11 in Radio over Fiber Home Networks. In:IEEE Conference on 30th Anniversary in Local Computer Networks, Sydney, N S W,2005,744-747
    [63]Ramirez A, Polo V, Piqueras M A, et al. Full-duplex Wireless GbE Field Trial Employing Radio-over-Fiber Technologies. In:Optical Fiber Communication Conference, Anaheim, CA,2007, JWA87
    [64]Jun T, Xinyu J, Yu Z, et al. A Hybrid Radio over Fiber Wireless Sensor Network Architecture. In:International Conference on Networking and Mobile Computing in Wireless Communications, Shanghai,2007,2675-2678
    [65]Lin C, W. Hong, W. Shuangchun. A Radio-Over-Fiber System With a Novel Scheme for Millimeter-Wave Generation and Wavelength Reuse for Up-Link Connection. IEEE Photonics Technology Letters,2006,18(19):2056-2058
    [66]Jia Z S, Yu J J, Ellinas G, et al. Key Enabling Technologies for Optical Wireless Networks:Optical Millimeter Wave Generation, Wavelength Reuse, and Architecture. Journal of Lightwave Technology,2007,25(11):3452-3471
    [67]J Yu, Z Dong, N Chi. Generation, Transmission and Coherent Detectionof 11.2-Tb/s (112x100-Gb/s) Single Source Optical OFDM Superchannel. In:Optical Fiber Communication Conference,2011, PDPA6
    [68]T Richter, E Palushani, C Schmidt-Langhorst, et al, Single wavelength channel 10.2-Tb/s TDM-data capacity using 16-QAM and coherent detection. In: Optical Fiber Communication Conference,2011, PDPA9
    [69]D Hillerkuss, R Schmogrow, T Schellinger, et al,26 Tbit/s line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nature Photonics,2011,5(6):364-371
    [70]D Qian, M Huang, E Ip, et al.101.7-Tb/s(370x294-Gb/s) PDM-128QAM-OFDM Transmission over 3x55-km SSMF using Pilot-based Phase Noise Mitigation. In:Optical Fiber Communication Conference,2011, PDPB5
    [71]Djordjevic I B, Batshon H G., Lei X, et al. Modified progressive edge-growth algorithm based LDPC coded-modulation for 400-Gb/s optical transport. In: IEEE Photonics Society Summer Topical Meeting Series,2010,52-53
    [72]Djordjevic I B, Batshon H G. LDPC-Coded OFDM for Heterogeneous Access Optical Networks. IEEE Photonics Journal,2010,2(4):611-619
    [73]Djordjevic I B. PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM. Optics Express,2007,15(7): 3692-3701
    [74]Djordjevic I B. LDPC-Coded OFDM Transmission Over Graded-Index Plastic Optical Fiber Links. IEEE Photonics Technology Letters,2007,19(12): 871-873
    [75]Cao Z Z, Yu J J, Xia M M, et al. Reduction of Intersubcarrier Interference and Frequency-Selective Fading in OFDM-ROF Systems. Journal of Lightwave Technology,2010, (28):2423-2429
    [76]Cao Zizheng, Yu Jianjun, Wang Wenpei, et al. Direct-Detection Optical OFDM Transmission System Without Frequency Guard Band. IEEE Photonics Technology Letters,2010,22(11):736-738
    [77]Youn J, Jang H, Kim K, et al. BER performance due to irregularity of row-weight distribution of the parity-check matrix in irregular LDPC codes for 10-Gb/s optical signals. Journal of Lightwave Technology,2005,23(9): 2673-2680
    [78]江涛OFDM无线通信系统中峰均功率比的研究:[华中科技大学博士学位论文].武汉:华中科技大学,2004,20-23
    [79]胡苏,武钢,李少谦.高功率放大器非线性失真联合抑制方法.电子科技大学学报,2009,38(4):501-504
    [80]Krongold B S, Yah T',Shieh W. Fiber nonlinearity mitigation by PAPR reduction in coherent optical OFDM systems via active constellation extension. In:the 34th European Conference on Optical Communication,2008,1-2
    [81]DENG Shang-Kang, LIN Mao-Chao. OFDM PAPR Reduction Using Clipping with Distortion Control. In:International Conference on Communications,2005, 2563-2567
    [82]陈虹先,陈林,余建军,等.基于压扩变换的60GHz正交频分复用光载无线.光学学报,2012,32(32):35-42
    [83]Jiangnan Xiao, Jianjun Yu, Xinying Li, et al. Hadamard Transform Combined With Companding Transform Technique for PAPR Reduction in an Optical Direct-Detection OFDM System. Journal of Optical Communications and Networking,2012,4(10):37-41
    [84]Jacwoon Kim, Yoan Shin. An effective clipping companding scheme for PAPR reduction of OFDM signal. In:IEEE International Conference on Communications,2008,668-672
    [85]薛世春,侯嘉.一种准优化PAPR编码在OFDM系统中的应用.通信技术,2008,41(12):218-220
    [86]Paterson KG. On codes with low Peak-to-average power ratio for muticode CDMA. IEEE Transactions on Information Theory,2004,50(3):550-559
    [87]Brian S. Krongold, Douglas L. Jones. An Active-Setup-proach for OFDM PAR Reduction via Tone Reservation. IEEE transactions on signal processing,2004, 52(2):495-504
    [88]邱绍峰,司亚楠,陈鹏.新预留子载波方法降低光OFDM系统的PAPR光通信研究,2011,163(1):9-11
    [89]Krongold B S, Jones D L. PAPR reduction in OFDM via active constellation extension. IEEE Trans on Broadcast,2003,49(3):258-268
    [90]Kurniawan T, et al. Performance Analysis of Optimized Millimeter-Wave Fiber Radio Links. IEEE Trans on Microwave Theory and Techniques,2006,54(2): 921-928
    [91]H Yang, J Zeng, Y Zheng, et al. Evaluation of effects of MZM nonlinearity on QAM and OFDM signals in RoF Transmitter. In:Proc IEEE Int Top Meeting Microw. Photon,2008,90-93
    [92]Yanir London, Dan Sadot. Nonlinear Effects Mitigation in Coherent Optical OFDM System in Presence of High Peak Power. Journal of Lightwave Technology,2011,29(21):3275-3281
    [93]F L, Jianjun Yu, Zizheng Cao, et al. Reducing the Peak-to-Average Power Ratio With Companding Transform Coding in 60 GHz OFDM-ROF Systems. Journal of Optical Communications and Networking,2012,4(3):202-209
    [94]B S Krongold, W Shieh. Fiber Nonlinearity Mitigation by PAPR Reduction in Coherent Optical OFDM Systems via Active Constellation Extension. In: European Conference on Optical Communication,2008,4-13
    [95]Bulakci, M Schuster, C-A Bunge, B Spinnler. Reduced Complexity Precoding Based Peak-to-Average Power Ratio Reduction Applied to Optical Direct-Detection OFDM. In:European Conference on Optical Communication,2008, 4-11
    [96]M Park, H Jun, J Cho, N Cho, D Hong, C Kang. PAPR reduction in OFDM transmission using Hadamard transform. In:IEEE International Conference on Communications,2000,430-433
    [97]Zhongpeng Wang, Shaozhong zhang, Binqing Qiu. PAPR Reduction of OFDM Signal by Using Hadamard Transform in Companding Techniques.12th IEEE International Conference on Communication Technology (ICCT),2010:320-323
    [98]X B Wang, T T Tjhung, C S Ng. Reduction of peak-to-average power ratio of OFDM system using a companding technique. IEEE Transactions on Broadcasting,1999,45(3):303-307
    [99]Zhongpeng Wang, Shaozhong zhang, Binqing Qiu. PAPR Reduction of OFDM Signal by Using Hadamard Transform. In:Companding Techniques Communication Technology (ICCT),2010,320-323
    [100]J Xiao, J Yu, X Li, Q Tang, et al. Hadamard transform combined with companding transform technique for PAPR reduction in an optical direct-detection OFDM system. IEEE Journal of Optical Communications and Networking,2012,4(10):709-714
    [101]J. Xiao, J. Yu, Z. Cao, et al. Flipped-exponential Nyquist pulse technique to optimize the PAPR in optical direct detection OFDM system, Optics Communications,2013,286(1):176-181
    [102]袁建国.高速超长距离光通信系统中超强FEC码型的研究:[重庆大学博士学位论文].重庆:重庆大学,2007,11-17
    [103]Zizheng Cao, Jianjun Yu, Minmin Xia, et al. Reduction of Intersubcarrier Interference and Frequency-Selective Fading in OFDM-ROF Systems. Journal of Lightwave Technology,2010,28(16):2423-2429
    [104]Mizuochi T. Recent progress in forward error correction and its interplay with transmission impairments. Selected Topics in Quantum Electronics, IEEE Journal of,2006,12(4):544-554
    [105]Tychopoulos A, Koufopavlou O, Tomkos I. FEC in optical communications-A tutorial overview on the evolution of architectures and the future prospects of outband and inband FEC for optical communications. IEEE Circuits and Devices Magazine,2006,22(6):79-86
    [106]Moro P, Candiani D.565-Mb/s optical transmission system for repeaterless sections up to 200 km. In:IEEE International Conference on Conference Record,1991,1217-1221
    [107]Yamamoto S, Takahira H, Tanaka M, et al.5 Gbit/s optical transmission terminal equipment using forward error correcting code and optical amplifier. Electronics Letters,1994,30(3):254-255
    [108]Ungerboeck G. Channel Coding with Multilevel/Phase, IEEE Trans. Information Theory. Janu,1982,28(3):55-67
    [109]邹伟刚.基于OFDM信号的光载无线系统性能优化研究:[湖南大学硕士学位论文].长沙:湖南大学,2011,27-29
    [110]卢嘉.四波混频效应在Radio-over-Fiber系统和全光波长变换中的应用研究:[湖南大学博士学位论文].长沙:湖南大学,2011,22-27
    [111]张忠培,史治平,王传丹.现代编码理论与应用.北京:电子工业出版社,2007,105-107
    [112]张宗橙.纠错编码原理和应用.北京:国防工业出版社,2003,209-213
    [113]J G Proakis. Distal Communications. New York:McGraw-Hill,3rd Edition, 1995
    [114]E Biglieri, J Proakis, S Shamai. Fading channels:information-theoretic and communications aspects. IEEE Trans. Inform. Theory,1998,1(6):2619-2692
    [115]G D Forney, Jr, Maximum likelihood sequence estimation of digital sequences in the presence of intersymbol interference, IEEE Trans Inform Theory,1972, 1(18):636-678
    [116]C A Belfiore, J H Park. Decision feedback equalization. IEEE Proc,1979,1(67): 1143-1156
    [117]Douillard C, Jezequel M, Berrou C, et al. Iterative Correction of Intersymbol Interference:Turbo Equalization. Eur. Trans. Telecommun,1995,6(5):507-511
    [118]Bauch G, Khorram H, Hagenauer J. Iterative Equalization and Decoding in Mobile Communications Systems. IRG TATHBERICHT,1997,307-312
    [119]Proakis J G. Digital Communications.5 ed. McGraw Hill,2007
    [120]Marcin Sikora, Daniel J, Costello, Jr. A new SISO algorithm with application to Turbo equalization. IEEE Proceedings International Symposium on Information Theory,2005,2031-2035
    [121]Fabian Bogelbruch, Sven Haar. Recuded Complexiry Turbo Equalization by Means of Hard Outgut Channel Decoding. Signals. In:Conference on Systems and Computers,2001,290-294
    [122]Thomas Woerz, Joachim Hagenauer. Multistage Coding and Decoding for a M-psk System. In:Multistage Coding and Decoding for a M-psk System,1990, 698-703
    [123]Kyeongyeon Kim, Jun Won Choi, Andrew C. Singer, et al. A New Aadptive Turbo Equalizer Withsoft Information Classification. In:IEEE International Conference on Acoustics Speech and Signal Processing(ICASSP),2010,3206-3209
    [124]Jun Tao, Jingxian Wu and Yahong Rosa Zheng. Low-Complexity Turbo Block Decision Feedback Equalization for MIMO Systems. In:IEEE Communications Society subject matter experts for publication in the IEEE ICC 2010 proceedings,2010,978-983
    [125]Kok Ann Donny Teo, Shuichi Ohno and Takanori Ishii. Turbo Equalization and Channel Re-estimation in OFDM over Doubly-Selective Channel. In:Wireless Communications, Networking and Information Security(WCNIS),2010,137-141
    [126]Marcus Grossmann. Outage Performance Analysis and Code Design for Three-Stage MMSE Turbo Equalization in Frequency-Selective Rayleigh Fading Channels. IEEE Transactions on Vehicular Technology,2012,60(2): 642-646
    [127]Michael Tuchler, Andrew C. Singer. Turbo Equalization:An Overview. IEEE Transactions on Information Theory,2011,57(2):920-952
    [128]Atif Raza Jafri, Amer Baghdadi, and Michel Jezequel. Parallel MIMO Turbo Equalization. IEEE Comunications Letters,2011,15(3):290-292
    [129]Jun Tao, Jingxian Wu, Yahong Rosa Zheng, et al. Enhanced MIMO LMMSE Turbo Equalization:Algorithm, Simulations, and Undersea Experimental Results. IEEE Transactions on Signal Processing,2011,59(8):3813-3823
    [130]Jian Zhang, Yahong Rosa Zheng. Frequency-Domain Turbo Equalization with Soft Successive Interference Cancellation for Single Carrier MIMO Underwater Acoustic Communications. IEEE Transactions on Wireless Comunications, vol. 10, no.9, September,2011,2872-2882
    [131]Aleksandar Purkovic, Mingjian Yan. Turbo Equalization in an LTE Uplink MIMO Receiver. The 2011 Military Communications Conference Trackl Waveforms and Signal Processing,2011,489-494
    [132]Nakamura. Y. Bandai, Y. Okamoto, Y. Osawa, et al. Turbo Equalization Effect for Nonbinary LDPC Code in BPM R/W Channel. IEEE Transactions on Magnetics,2012,48(11):4602-4605
    [133]Do-Hoon Kim, Heugn-Gyoon Ryu, RahmanT A. Analysis and performance evaluation of Turbo equalizer for fast equalization in single-carrier system. International Conference on ICT Convergence (ICTC),2012,642-646
    [134]Marcel Jar, Christian Schlegel. Extended Jointly Gaussian Approach for Iterative Equalization. In:IEEE Communications Society subject matter experts for publication in the IEEE ICC,2010,1-5
    [135]赵晓群.现代编码理论.武汉:华中科技大学出版社,2007,193-195
    [136]韩双双.无线通信系统中的迭代接收技术:[山东大学硕士学位论文].济南:山东大学,2009,9-19
    [137]罗天放.通信系统中的Turbo码及Turbo均衡问题研究:[哈尔滨工程大学博士学位论文].哈尔滨:哈尔滨工程大学,2003,30-40
    [138]金奕丹.移动通信系统Turbo迭代接收及关键技术研究:[北京邮电大学博士学位论文].北京:北京邮电大学,2006,34-35
    [139]Seb J Savory. Digital filters for coherent optical receivers. Optics Express, 2008,16(2):804-817
    [140]唐进,陈林,肖江南.偏振复用QPSK相干光数字通信系统实验研究.光电子激光,2012,23(10):1895-1900
    [141]A Leven, N Kaneda, Ut-Va Koe, et al. Frequency Estimation in Intradyne Reception, IEEE Photonics Technology Letters,2007,19(6):366-388
    [142]李智宇100-Gb/s PM-QPSK相干光接收机载波频偏估计和相位恢复算法的研究:[北京邮电大学硕士学位论文].北京:北京邮电大学,2010,14-40
    [143]曹寅文.相干检测中载波同步DSP算法和仿真:[北京邮电大学硕士学位论文].北京:北京邮电大学,2011,27-44
    [144]Li Lei, Tao Zhenning, T Hoshida, et al, Wide-range, Accurate and Simple Digital Frequency Offset Compensator for Optical Coherent Receivers. In: Optical Fiber Communication Conference 2008, paper OWT4
    [145]A J Viterbi, A M Viterbi. Nonlinear estimation of PSK-modulated carder phase with application to burst digital transmission. IEEE Transactions on Information Theory,1983,29(4):543-5511
    [146]T. Pfau, S. Hoffmann, R. Noe. Hardware-Efficient Coherent Digital Receiver Concept with Feedforward Carrier Recovery for M-QAM Constellations. Journal of Lightwave Technology,2011,27(8):989-999
    [147]Xiang Zhou. An Improved Feed-Forward Carrier Recovery Algorithm for Coherent Receivers with M-QAM Modulation. Photonics Technology Letters, 2010,22(6):1051-1053
    [148]Xin Li, Yi wen Cao. A Simplified Feedforward Carrer Recovery Algorithm for Coherent Optical QAM System. Journal of Lightwave Technology,2011,29(3): 801-807
    [149]L. Chen, H. Kusaka, M. Kominami. Blind Phase Recovery in QAM Communication Systems Using Higher Order Statistics, IEEE Signal Processing Letters,1996,3(5):147-149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700