动物性食品中酰胺醇类残留化学发光检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品中兽药等化合物残留是影响世界各国食品安全的主要因素,不断发展高效、广谱、高灵敏的残留检测技术是保障食品安全的有效途径。酰胺醇类药物因其广谱抗菌特点在兽医临床上使用非常广泛,但该类药物经食物链进入人体对人类健康构成威胁,其中氯霉素已在全球禁用于食品动物。本论文开展动物性食品中酰胺醇类残留的高灵敏化学发光免疫检测方法的研究,旨在为酰胺醇类残留监控提供快速、灵敏的检测手段。
     本论文建立了检测牛奶和鸡肉中氯霉素的间接竞争化学发光免疫分析方法,检测限分别为0.00092μg·kg-1和0.0010μg·kg-1。在0.005-0.1μg·kg-1三个浓度添加时,回收率为87.6%-118.8%,变异系数均小于15%;建立了检测猪肉中氟苯尼考和甲砜霉素的间接竞争化学发光免疫分析方法,检测限分别为0.015μg·kg-1和0.03μg·kg-1,在0.05-4.0μg·kg-1(氟苯尼考)或0.1-9.0μg·kg-1(甲砜霉素)三个浓度添加时,回收率均在83.0%-102.2%之间,变异系数小于15%;建立了检测鸡肉中氟苯尼考和氟苯尼考胺的间接竞争化学发光免疫分析方法,样本稀释10倍时,检测限分别为0.17μg·kg-1(氟苯尼考)和0.12μg·kg-1(氟苯尼考胺),样本稀释100倍时,检测限分别为1.63μg·kg-1(氟苯尼考)和1.18μg·kg-1(氟苯尼考胺)。以0.5-300μg·kg-1六个浓度添加,回收率在70.3%-102.0%范围内,变异系数小于15%。上述方法的灵敏度、检测限、回收率以及稳定性等指标均满足我国和欧盟兽药残留分析的要求,与传统ELISA方法相比,灵敏度提高了10倍左右。
     本论文研究建立了基于单酶和复酶标记的同时检测牛奶中氯霉素(酰胺醇类)和克伦特罗(β-兴奋剂类)残留的混合化学发光免疫分析方法。在辣根过氧化物酶(HRP)标记的反应体系中,氯霉素和克伦特罗的检测限分别为0.006μg·L-1和0.02μg·L-1。在HRP和碱性磷酸酶(ALP)标记的反应体系中,氯霉素和克伦特罗的检测限分别为0.008μg·L-1和0.023μg L-1。在氯霉素(0.01-0.3μg·L-1)和克伦特罗(0.05-1.0μg·L-1)单独以及共同添加中,回收率分别为80.0%—90.0%(HRP体系)和86.1%-96.7%(HRP和ALP体系),变异系数小于15%,满足我国和欧盟兽药残留分析的要求。
     本论文探索了基于磁珠分离和纳米金标记技术检测牛奶中氯霉素残留的新型化学发光免疫分析方法,与相同单克隆抗体建立的化学发光免疫分析方法相比,灵敏度提高了近30倍。合成了纳米金颗粒与酶标氯霉素单克隆抗体的偶联物,氯霉素抗原与磁珠的共价结合物,在此基础上建立了检测牛奶中氯霉素的直接竞争化学发光免疫分析方法。灵敏度IC50为0.017μg·L-1(乙酸乙酯提取)和0.17μg·L-1(直接稀释)。以0.01-0.3μg L-1三个浓度(乙酸乙酯提取)和0.1-3.0μg.L-1三个浓度添加时(直接稀释),回收率为80.0%-106.6%,且变异系数小于15%,符合我国和欧盟兽药残留分析的要求。
Residues of veterinary drugs in foods are the main factors affecting the global food safety, Development of efficient, reliable and high sensitive detection techniques in veterinary drug residues is an effective way to ensure food safety. Amphenicols were widely used in veterinary practices for the prevention and treatment of many bacterial infections, due to the broad-spectrum antibacterial characteristics. However, the residues of these drugs occuring in various animal origin products present a potential danger to human health, and chloramphenicol (CAP) was now forbidden in food producing animals in the world. This work aims to establish more sensitive chemiluminescent immunoassays to screen amphenicol residues in animal-derived food, and then provide rapid and sensitive analytical methods of monitoring amphenicol residues.
     Firstly, a competitive indirect chemiluminescent enzyme-liked immunoassay (CL-ciELISA) for chloramphenicol (CAP) residues in milk and chicken muscle has been developed, with a detection limit (LOD) of0.00092μg·kg-1(milk) and0.0010μg·kg-1(chicken muscle). When CAP was spiked in milk and chicken muscle at levels of0.05-0.1μg·kg-1, recoveries ranged from87.6%-118.8%, with coefficients of variation (CVs)<15%, respectively. Then, a CL-ciELISA for FF and TAP residues in pork has been developed, with LOD of0.015μg·kg-1for FF and LOD of0.015μg·kg-1for TAP. When FF and TAP was spiked in pork at levels of0.05-4.0μg·kg-1or0.1-9.0μg·kg-1, respectively, recoveries ranged from83.0%-102.2%, with CVs<15%. Finally, a CL-ciELISA for FF and FFA residues in chicken muscle has been developed, with LODs of0.17μg·kg-1(10-fold dilution) and1.63μg·kg-1(100-fold dilution) for FF,0.12μg·kg-1(10-fold dilution) and1.18μg·kg-1(100-fold dilution) for FFA. When FF and FFA were spiked in chicken muscle at levels of0.5-300μg·kg-1, respectively, recoveries ranged from70.3%-102.0%, and CVs<15%. The sensitivity, LOD, recovery and robustness of the three above CL-ELSIAs for amphenicols meet Chinese and EU's premises in detection methods of veterinary drug reidues. Compared with ELISA methods, the CL-ELISAs can improve the sensitivity about10times.
     Two novel hybrid chemiluminescent immunoassays using HRP-luminol chemiluminescence system and two different enzymatic systems—HRP and alkaline phosphatase (ALP) chemiluminescent systems were established and sucessfully applied to simultaneous detection of chloramphenicol (CAP) and clenbuterol (CLE) in milk, with LODs of0.006μg·kg-1for CAP and0.02μg·kg-1for CLE (HRP system),0.008μg·kg-1for CAP and0.023μg·kg-1for CLE (HRP and ALP system), respectively. When CAP (0.01-0.3μg·L-1) and CLE (0.05-1.0μg·L-1) were individually or simultaneously fortified in milk, the recoveries were found to be between80.0%and96.7%, with CVs<15%, meeting Chinese and EU's premises in detection methods of veterinary drug reidues.
     In this study, a competitive direct chemiluminescent immunoassay based on a magnetic beads (MBs) separation and gold nanoparticles (AuNPs) labeling technique to detect CAP in milk was explored and can improve the sensitivity about30times, compared with CL-ELISA method based on the same monoclonal antibody. Horseradish peroxidase (HRP)-labelled anti-CAP monoclonal antibody conjugated with AuNPs and antigen-immobilized MBs were prepared. Then, a competitive direct chemiluminescent immunoassay for CAP in milk was established. The IC50values of chemiluminescence magnetic nanoparticles immunoassay (CL-MBs-Nano-Immunoassay) were0.017μg·L-1for extract method I (ethyl acetate extraction) and0.17μg·L-1for extract method II (direct dilutions). When CAP was spiked in milk at levels of0.01-0.3μg·L-1(ethyl acetate extraction) and0.1-3.0μg·L-1(direct dilutions), recoveries were in the range of80.0%-106.6%, and CVs were all<15%, meeting meet Chinese and EU's premises in detection methods of veterinary drug reidues.
引文
[1]Erlich J, Bartz QR, Smith RM, et al. Chloromycetin, a New Antibiotic From a Soil Actinomycete. Science.1947,106:417.
    [2]Stolker, AAM, Brinkman, UAT. Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals—A review. J. Chromatogr A.2005,1067: 15-53.
    [3]胡顶飞,沈建忠。氯霉素类抗生素的残留分析。中国兽药杂志,2001,35(5):55-57.
    [4]刘永涛,李荣,袁科平,等。气相色谱法同时测定水产品中氯霉素、氟甲砜霉素和甲砜霉素残留量.淡水渔业,2007,37(2):44-52.
    [5]Commission Decision 2001/699/EC. Commission Decision of 19 September 2001 concerning certain protective measures with regard to certain fishery and aquaculture products intended for human consumption and originating in China and Vietnam.Off. J. Eur. Comm.2001, L251,11-12
    [6]Commission Decision 2001/705/EC. Commission Decision of 27 September 2001 concerning certain protective measures with regard to certain fishery and aquaculture products intended for human consumption and originating in Indonesia.Off. J. Eur. Comm.2001, L260,35-36.
    [7]Commission Decision 2002/249/EC. Commission Decision of 27 March 2002 concerning certain protective measures with regard to certain fishery and aquaculture products intended for human consumption and imported from Myanmar.Off. J. Eur. Comm.2001, L84,73-74.
    [8]Hanekamp JC, Frapporti G, Olieman K. Chloramphenicol, food safety and precautionary thinking in Europe.2003, Environ. Liability.6:209-221.
    [9]Berendsen B, Stolker L, de Jong J, et al. Evidence of natural occurrence of the banned antibiotic chloramphenicol in herbs and grass. Anal. Bioanal. Chem.2010,397:1955-1963.
    [10]Berendsen BJ, Zuidema T, de Jong J, et al. Discrimination of eight chloramphenicol isomers by liquid chromatography tandem mass spectrometry in order to investigate the natural occurrence of chloramphenicol. Anal. Chim. Acta.2011,700:78-85.
    [11]Commission Decision 2002/657/EC. Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods arid the interpretation of results. Off. J. Eur. Comm.2002, L221,8-36.
    [12]Commission Decision 2003/181/EC. Commission Decision of 13 March 2003 amending Decision 2002/657/EC as regard the setting of minimum required performance limits (MRPLs) for certain residues in food of animal origin. Off. J. Eur. Comm.2003, L71,17-18.
    [13]Horsberg TE, Martinsen B & Varma KJ. The disposition of 14C-florfenicol in Atlantic salmon. (Salmo salar). Aquaculture,1994,122:97-106.
    [14]The European Agency for the Evaluation of Medicinal Products (1999) MRL 589/99-FINAL, http://www.emea.eu.int/pdfs/vet/mrls/058999en. pdf.
    [15]Hormazabal V, Steffenak I, Yndestad M. Simultaneous extraction and determination of florfenicol and the metabolite florfenicol amine in sediment by high-performance liquid chromatography. J. Chromatography A.1996,724:364-366.
    [16]Hormazabal V, Sffenak I, Yndsad M. Simultaneous determination of residues of florfenicol and themetabolite florfenicol amine in fish tissuesby high performance liquid chromatography. Chromatography.1993,616:161-165.
    [17]Nagata T, Saeke M. Simultaneous determination of thiamphenicol, florfenicol, and chloramphenicol residue in muscles of animal and cultured fish by LC. J. Liquid Chromatography, 1995 (12):2045-2056.
    [18]李建成,氟苯尼考及其代谢物氟苯尼考胺在猪和鸡组织中检测方法及残留消除规律的研究:[博士学位论文],北京:中国农业大学,2007.
    [19]Allen PP. Madson, Jose ER, et al. Simultaneous determination of chloramphenicol, florfenicol, and thiamphenicol residues in milk by gas chromatography with electron capture detection. J. AOAC Int.1998,81:714-720.
    [20]Allen PP, Jose ER, Heidis R, et al.Simultaneous determination of residues of chloramphenicol, florfenicol, florfenicol amine, and thiamphenicol in shrimp tissue by gas chromatography with electron capture detection. J. AOAC Int.2000,83:26-30.
    [21]孙丰云,动物组织中氯霉素类药物多残留检测方法的研究:[中国农业大学硕士论文].2006.
    [22]陈小霞,岳振峰,吉彩霞,等。高效液相色谱-电喷雾电离三级四级杆质谱测定鸡肉中氯霉素、甲砜霉素和氟甲砜霉素的残留量[J].色谱,2005,23(1):92-95.
    [23]Jeffery M van de R, Ross AP, Melissa C-F. et al.Simultaneous determination of residues of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in farmed aquatic species by liquid chromatography/mass spectrometry. J. AOAC Int.2003,86:510-514.
    [24]Mottier P, Parisod V, Gremaud Eric G, et al.Determination of the antibiotic chloramphenicol in meat and seafood products by liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogra. A.2003,994:75-84.
    [25]Philippe AG, Royer D, Mottier P, et al.Quantitative determination of chloramphenicol in milk powers by isotope dilution liquid chromatography coupled to tandem mass spectrometry. J. Chromatogra. A.2004,1054:365-371.
    [26]彭涛,李淑娟,侯晓刚,等。高效液相色谱/串联之谱法同时测定虾中氯霉素、甲砜霉素和氟甲砜霉素残留量[J].分析化学,2005,33:463-466.
    [27]郭霞,,动物组织中氯霉素类药物多残留确证分析方法的研究:[中国农业大学硕士文]。2007.
    [28]骆鹏杰,甲砜霉素、氟苯尼考及氟苯尼考胺残留检测方法研究:[中国农业大学博士论文]。2009.
    [29]Nagata T, Oka H. Detection of residual chloramphenicol, florfenicol, and thiamphenicol in yellow tail fish muscles by capillary gas chromatography-mass spectrometry. J. Agric. Food Chem.1996, 44:1280-1284
    [30]贺利民,曾振灵,黄显会,等。气相色谱-质谱联用法测定猪肉组织中氟苯尼考残留[J].华南农业大学学报,2005,26:100-102
    [31]李鹏,邱月明,蔡慧霞,等。气相色谱-质谱联用法测定动物组织中氯霉素、氟甲砜霉素和甲霉素的残留量[J].色谱,2006,24:14-18.
    [32]Wesongah JO, Murilla GA, Guantai AN, et al. A competitive enzyme-linked immunosorbent assay for determination of chloramphenicol. J. Vet Pharmacol. Therap.2007,30:68-73.
    [33]van de Water C, Haagsma N. A Sensitive Streptavidin-Biotin Enzyme-linked Immunosorbent Assay for Rapid Screening of Residues of Chloramphenicol in Milk. Food Agric. Immunol.1990, 2:11-19.
    [34]van de Water C, Haagsma N. Sensitive streptavidin-biotin enzyme-linked immunosorbent assay for rapid screening of chloramphenicol residues in swine muscle tissue. J. Assoc. Off. Anal. Chem. 1990,73:534-540.
    [35]Wang L, Zhang Y, Gao X. Determination of chloramphenicol residues in milk by enzyme-linked immunosorbent assay:improvement by biotin-streptavidin-amplified system. J. Agric. Food Chem. 2010,58:3265-3270.
    [36]Sai N, Chen Y, Liu N. A sensitive immunoassay based on direct hapten coated format and biotin-streptavidin system for the detection of chloramphenicol. Talanta2010,82:1113-1121.
    [37]Lin S, Han SQ, Liu YB. Chemiluminescence immunoassay for chloramphenicol. Anal. Bioanal. Chem.2005,382:1250-1255.
    [38]Xu C, Peng C, Hao K, et al. Chemiluminescence enzyme immunoassay (CLEIA) for the determination of chloramphenicol residues in aquatic tissues. Luminescence 2006,21:126-128.
    [39]Zhang S, Zhang Z, Shi W. Development of a chemiluminescent ELISA for determining chloramphenicol in chicken muscle. J. Agric. Food Chem.2006,54:5718-5722.
    [40]Scortichini G, Annunziata L, Haouet MN, et al. ELISA qualitative screening of chloramphenicol in muscle, eggs, honey and milk:Method validation according to the Commission Decision 2002/657/EC criteria. Anal. Chim. Acta.2005,535:43-48.
    [41]Posyniak A, Zmudzki J, Niedzielska J. Evaluation of sample preparation for control of chloramphenicol residues in porcine tissues by enzyme-linked immunosorbent assay and liquid chromatography. Anal. Chim. Acta.2003,483:307-311.
    [42]Impens S, Reybroeck W, Vercammen J, et al. Screening and confirmation of chloramphenicol in shrimp tissue using ELISA in combination with GC-MS/MS and LC-MS/MS. Anal. Chim. Acta 2003,483:153-163.
    [43]van de Water C, Haagsma N. Analysis of chloramphenicol residues in swine tissues and milk: comparative study using different screening and quantitative methods. J. Chromatogr.1991,566: 173-185.
    [44]Keukens HJ, Aerts MML, Traag WA, et al. Analytical strategy for the regulatory control of residues of chloramphenicol in meat:preliminary studies in milk. J. AOAC Int.1992, 75:245-256.
    [45]Shen HY, Jiang HL. Screening, determination and confirmation of chloramphenicol in seafood, meat and honey using ELISA, HPLC-UVD, GC-ECD, GC-MS-EI-SIM and GCMS-NCI-SIM methods. Anal. Chim. Acta 2005,535:33-41.
    [46]Gaudin V, Cadieu N, Maris P. Inter-laboratory studies for the evaluation of ELISA kits for the detection of chloramphenicol residues in milk and muscle. Food. Agric. Immunol.2003,15: 143-157.
    [47]Hao K, Guo SD, Xu CL. Development and Optimization of an Indirect Enzyme-Linked Immunosorbent Assay for Thiamphenicol. Anal. Lett.2006,39:1087-1100.
    [48]Luo PJ, Jiang HY, Wang ZH, et al. Simultaneous determination of florfenicol and its metabolite florfenicol amine in swine muscle tissue by a heterologous enzyme-linked immunosorbent assay. J. AOAC Int.2009,92:981-988.
    [49]Wu JE, Chang C, Ding WP. Determination of florfenicol amine residues in animal edible tissues by an indirect competitive ELISA. Agric. Food Chem.2008,56:8261-8267.
    [50]Luo P, Cao X, Wang ZH, et al. Development of an enzyme-linked immunosorbent assay for the detection of florfenicol in fish feed. J. Food Agric. Immunol.2009,20:57-65.
    [51]Luo PJ, Jiang WX, Chen X. Technical note:Development of an enzyme-linked immunosorbent assay for the determination of florfenicol and thiamphenicol in swine feed. J. Anim. Sci.2011,89: 3612-3616.
    [52]方肇伦等著,流动注射分析法,北京:科学出版社,1998,P280-281.
    [53]林金明,赵利霞,王栩等著,化学发光免疫分析,化学工业出版社,2008,pp1-2,P189.
    [54]Barni F, Lewis S W, Berti A, et al. Forensic application of the luminol reaction as a presumptive test for latent blood detection, Talanta 2007,72:896-913.
    [55]Nakayama T, Amachi T. Fungal peroxidase:its structure, function, and application. J. Mol. Catal. B:Enzym.1999,6:185-198.
    [56]Sakharov IY, Alpeeva IS, Efremov EE. Use of Soybean Peroxidase in Chemiluminescent Enzyme-Linked Immunosorbent Assay. J. Agric. Food Chem.2006,54:1584-1587.
    [57]Tatsu Y, Yoshikawa S. Homogeneous Chemiluminescent Immunoassay Based on Complement-Mediated Hemolysis of Red Blood Cells. Anal. Chem.1990,62:2103-2106.
    [58]Lin JM, Shan X, Hanaoka S, et al. Luminol Chemiluminescence in Unbuffered Solutions with a Cobalt(Ⅱ)-Ethanolamine Complex Immobilized on Resin as Catalyst and Its Application to Analysis. Anal. Chem.2001,73:5043-5051.
    [59]Ding CF, Zhong H, Zhang SS. Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using nanoCuS tags. Biosens. Bioelectron.2008,23:1314-1318.
    [60]Fan A, Lau C, Lu J. Magnetic Bead-Based Chemiluminescent Metal Immunoassay with a Colloidal Gold Label. Anal. Chem.2005,77:3238-3242.
    [61]Segawa T, Kamidate T. Watanabe H, Determination of hydrogen peroxide with fluorescein chemiluminescence catalyzed by horseradish peroxidase, Anal. Sci.,1990,6:763-764.
    [62]Dodeigne C, Thunus L, Lejeune R, Chemiluminescence as a diagnostic tool, A review. Talant 2000,51:415-439.
    [63]Luo L, Zhang Z, Hou L, et al. The study of a chemiluminescence immunoassay using the peroxyoxalate chemiluminescent reaction and its application. Talanta,2007,72:1293-1297.
    [64]Kricka LJ, Clinical applications of chemiluminescence, Anal. Chim. Acta 2003,500:279-286.
    [65]Sudhaharan T, Reddy AR, A bifuntional luminogenic sustrate for two luminscent enzymes:firely luciferase and horseradish peroxidase. J. Anal. Biochem.1999,271:159-167.
    [66]Ito H, Suzuki H, Miki Y et al. Jpn. Patent,1996,08(038):196.
    [67]Mitoma Y, Hara K, Kumakura S. Jpn. Patent,1995,07(311):197.
    [68]Thorpe GH, Kricka LJ, Gillespie E et al. Enhanced of the horseradish peroxidase-catalyzed chemiluminescent oxidation of cyclic diacyl hydrazides by 6-hydroxybenzothiazoles. Anal. Biochem.1985,145:96-100.
    [69]Kricka LJ, US Patent,1996,5(512):451.
    [70]Nozaki O, Kricka LJ, Campbell LJ et al. Bioluminescnece and chemiluntinescene:Fundamental and applied aspects, Wiley, Chichester,1994,52.
    [71]Zhou Y, Zhang Y, Lau C, et al. Sequential Determination of Two Proteins by emperature-Triggered Homogeneous Chemiluminescent Immunoassay. Anal. Chem.2006,78: 5920-5924.
    [72]Sasamoto K, Deng G, Ushijima T, et al. Benzothiazole derivatives as substrates for alkaline phosphatase assay with fluorescence and chemiluminescence detection. Analyst.1995,120: 1709-1714.
    [73]Adam W, Bronstein I, Edwards B, et al. Electron Exchange Luminescence of Spiroadamantane-Substituted Dioxetanes Triggered by Alkaline Phosphatase. Kinetics and Elucidation of pH Effects. J. Am. Chem. Soc.1996,118:10400-10407.
    [74]Christofides ND, Sbeehan CP. Enhanced chemiluminescence labeled-anti-body immunoassay (Amerlite-MAB) for free thyroxcine:design, development, and Technical valiation. Clin. Chem. 1995,41:17-23.
    [75]Bronstein L, Voyta JC, Edwards B. Acomparision of chemiluminescent and colorimetric substrates in a hepatitis B virus DNA hybridization assay. Anal. Biochem.1989,180:95-98.
    [76]Thorpe GH, Bronstein I, Kricka LJ, et al. Chemiluminescence enzyme immunoassay of alpha-fetoprotein based on an adamantly dioxetane phenylphosphate substrate. Clin. Chem.1989, 35:2319-2321.
    [77]赵利霞,林金明,屈锋。微板式磁化学发光酶免疫分析法对人绒毛膜促性腺激素HCG的灵敏快速测定,化学学报,2004,62:71-77.
    [78]Zhao L, Lin JM, Li Z, et al. Development of a highly sensitive, second antibody format chemiluminescence enzyme immunoassay for the determination of 17β-estradiol in wastewater. Anal. Chim. Acta.2006,558:290-295.
    [79]Duford RT, Nightingale D, Gaddum LW. Luminescence of grignard compounds in electric and magnetic fields and related electrical phenomena, J. Am. Chem. Soc.1927,49:1858-1864.
    [80]Harvey N, Luminescence during electrolysis. J. Phys. Chem.1929,33:1456-1459.
    [81]Knight AW, Greenway GM. Occurrence, Mechanisms and analytical applications of electrogenerated chemiluminescence. Analyst 1994,119:879-890.
    [82]Zhang J, Qi H, Li Y, et al. Electrogenerated Chemiluminescence DNA Biosensor Based on Hairpin DNA Probe Labeled with Ruthenium Complex. Anal. Chem.2008,80:2888-2894.
    [83]Zanarini S, Rampazzo E, Ciana LD, et al. Ru(bpy)32+ Covalently doped silica nanoparticles as multicenter tunable structures for electrochemiluminescence amplification, J. Am. Chem. Soc. 2009,131:2260-2267.
    [84]Richter MM, Electrochemiluminescence (ECL). Chem. Rev.2004,104:3003-3036.
    [85]Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev.2008, 108:2506-2553.
    [86]Shi J, Zhu Y, Zhang X, et al. Recent developments in nanomaterial optical sensors. Trends in Anal. Chem.2004,23:351-340
    [87]Faulk WP, Taylor GM. An immunocolloid method for the electron microscope. Immunochemistry. 1971,8:1081-1083.
    [88]Gomez-Hens A, Fernandez-Romero JM. Aguilar-Caballos M P, Nanostructures as analytical tools in bioassays. Trends in Anal. Chem.2008,27:394-406.
    [89]Song S, Wang L, Li J et al. Aptamer-based biosensors. Trends in Anal. Chem.2008,27:108-117.
    [90]Wang Y, Chen L. Quantum dots, lighting up the research and development of nanomedicine. Nanomedicine.2011,7:385-402.
    [91]Huang Z, Lee HK. Materials-based approaches to minimizing solvent usage in analytical sample preparation.2012,39:228-244.
    [92]Wang X, Lin JM, Ying X. Evaluation of carbohydrate antigen 50 in human serum using magnetic particle-based chemiluminescence enzyme immunoassay. Anal. Chim. Acta 2007,598:261-267.
    [93]Pale cek E, Fojta M. Magnetic beads as versatile tools for electrochemical DNA and protein biosensing. Talanta,2007,74:276-290.
    [94]Fu Z, Yan F, Liu H, et al. A channel-resolved approach coupled with magnet-captured technique for multianalyte chemiluminescent immunoassay, Biosens. Bioelectron.2008,23:1422-1428.
    [95]Wang X, Zhang QY, Li ZJ, et al. Development of high-performance magnetic chemiluminescence enzyme immunoassay for α-fetoprotein (AFP) in human serum, Clin. Chim. Acta.2008,393: 90-94.
    [96]Miao J, Cao Z, Zhou Y, et al. Instantaneous Derivatization Technology for Simultaneous and Homogeneous Determination of Multiple DNA Targets, Anal. Chem.2008,80:1606-1613.
    [97]Zhou X, Xing D, Zhu D, et al. Magnetic Bead and Nanoparticle Based Electrochemiluminescence Amplification Assay for Direct and Sensitive Measuring of Telomerase Activity. Anal. Chem. 2009,81:255-261.
    [98]Magliulo M, Simoni P, Guardigli M, et al. A Rapid Multiplexed Chemiluminescent Immunoassay for the Detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes Pathogen Bacteria. J. Agric. Food Chem.2007,55:4933-4939.
    [99]Edwards KA, Baeumner AJ. Liposomes in analyses. Talanta.2006,68:1421-1431.
    [100]Ja-an Annie H, Ming-Ray H. Application of a Liposomal Bioluminescent Label in the Development of a Flow Injection Immunoanalytical System. Anal. Chem.2005,77:3431-3436.
    [101]Zhan W, Bard AJ. Scanning Electrochemical Microscopy.56. Probing Outside and Inside Single Giant Liposomes Containing Ru(bpy)32+. Anal. Chem.2006,78:726-733.
    [102]Zhan W, Bard AJ. Electrogenerated Chemiluminescence.83. Immunoassay of Human C-Reactive Protein by Using Ru(bpy)32+-Encapsulated Liposomes as Labels. Anal. Chem.2007, 79:459-463.
    [103]Egashira N, Morita S, Hifumi E, et al. Attomole Detection of Hemagglutinin Molecule of Influenza Virus by Combining an Electrochemiluminescence Sensor with an Immunoliposome That Encapsulates a Ru Complex. Anal. Chem.2008,80:4020-4025.
    [104]Althaus RL, Torres A, Montero A, et al. Detection limits of antimicrobials in ewe milk by delvotest photometric measurements. Dairy. Sci.2003,86:457-463.
    [105]Calderon V, Gonzalez J, Diez P, et al. Evaluation of a multiple bioassay technique for determination of antibiotic residues in meat with standard solutions of antimicrobials. Food Addit. Contam.1996,13:13-19.
    [106]Gaudin V, Maris P, Fuselier R, et al. Validation of a microbiological method:the STAR protocol, a five-plate test, for the screening of antibiotic residues in milk. Food Addit. Contam.2004,21: 422-433.
    [107]Bogaerts R, Wolf F. standardized method for the detection of residues of antibacterial substances in fresh meat. Fleischwirtschaft.1980,60:672-674.
    [108]Lynas L, Currie D, Elliott CT, et al. Screening for chloramphenicol residues in the tissues and fluids of treated cattle by the four plate test, Charm Ⅱ radioimmunoassay and Ridascreen CAP-Glucuronid enzyme immunoassay. Analyst 1998,123:2773-2777.
    [109]Korsrud GO,Naylor JM, Salisbury CD, et al. A comparison of three bioassay techniques for the detection of chloramphenicol residues in animal tissues. J. Agric. Food Chem.1987,35:556-559.
    [110]Tajik H, Malekinejad H, Razavi-Rouhani SM, et al. Chloramphenicol residues in chicken liver, kidney and muscle:a comparison among the antibacterial residues monitoring methods of Four Plate Test, ELISA and HPLC. Food Chem. Toxicol.2010,48:2464-2468.
    [111]Koenen-Dierick K, Okerman L, de Zutter L, et al. A one-plate microbiological screening test for antibiotic residue testing in kidney tissue and meat:an alternative to the EEC four-plate method? Food Addit. Contam.1995,12:77-82.
    [112]Althaus RL, Torres A, Montero A, Balasch S, et al. Detection limits of antimicrobials in ewe milk by delvotest photometric measurements. Dairy Sci.2003,86:457-463.
    [113]Gaudin V, Hedou C, Rault A, Verdon E. Validation of a Five Plate Test, the STAR protocol, for the screening of antibiotic residues in muscle from different animal species according to European Decision 2002/657/EC. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.2010, 27:935-952.
    [114]Singer CJ, Katz SE. Microbiological assay for chloramphenicol residues. Assoc. Off. Anal. Chem. 1985,68:1037-1041.
    [115]Tsai CE, Kondo F. Improved agar diffusion method for detecting residual antimicrobial agents. J. Food Prot.2001,64:361-366.
    [116]Shakila RJ, Saravanakumar R, Vyla SAP, et al. An improved microbial assay for the detection of chloramphenicol residues in shrimp tissues. Innovat. Food Sci. Emerg. Tech.2007,8:515-518.
    [117]Arnold D, vom Berg D, Boertz AK, et al. Radioimmunological determination of chloramphenicol residues in muscles, milk and eggs. Arch. Lebensmittelhyg.1984,35:131-136.
    [118]Campbell GS, Mageau RP, Schwab B. Detection and quantitation of chloramphenicol by competitive enzyme-linked immunoassay. Antimicrob. Agents Chemother.1984,25:205-211.
    [119]Arnold D, Somogyi A. Trace analysis of chloramphenicol residues in eggs, milk, and meat: comparison of gas chromatography and radioimmunoassay. J. Assoc. Off. Anal. Chem.1985,68: 984-990.
    [120]Lynas L, Currie D, Elliott CT, et al. Screening for chloramphenicol residues in the tissues and fluids of treated cattle by the four plate test, Charm II radioimmunoassay and Ridascreen CAP-Glucuronid enzyme immunoassay. Analyst 1998,123:2773-2777.
    [121]McMullen SE, Lansden JA, Schenck FJ. Modifications and adaptations of the Charm II rapid antibody assay for chloramphenicol in honey. J. Food Prot.2004,67:1533-1536.
    [122]Rinken T, Riik H. Determination of antibiotic residues and their interaction in milk with lactate biosensor. J. Biochem. Biophys. Methods.2006,66:13-21.
    [123]Elliott CT, Baxter GA, Hewitt SA. Use of biosensors for rapid drug residue analysis without sample deconjugation or clean-up:a possible way forward. Analyst 1998,123:2469-2473.
    [124]Haughey SA, Baxter GA. Biosensor screening for veterinary drug residues in foodstuffs. J. AOAC Int.2006,89:862-867.
    [125]Porstmann T, Nugel E, Henklein P, et al. Two-colour combination enzyme-linked immunosorbent assay for the simultaneous detection of HBV and HIV infection. J Immunol Methods. 1993,158:95-106.
    [126]Li H, Cao Z, Zhang Y, et al. Combination of quantum dot fluorescence with enzyme chemiluminescence for multiplexed detection of lung cancer biomarkers. Anal. Methods.2010, 2:1236-1242.
    [127]Zhu K, Li J, Wang Z, Jiang H, et al. Simultaneous detection of multiple chemical residues in milk using broad-specificity antibodies in a hybrid immunosorbent assay. Biosens Bioelectron.2011, 26:2716-2719.
    [128]Fossdal K, Jacobsen E. Polarographic determination of chloramphenicol. Anal. Chim. Acta.1971, 56:105-115.
    [129]Schneider E, M" artlbauer E, Dietrich R, et al. Arch. Lebensmittelhyg.1994,45:43-48.
    [130]Ferguson J, Baxter A,Young P, Kennedy G, et al. Detection of chloramphenicol and chloramphenicol glucuronide residues in poultry muscle, honey, prawn and milk using a surface plasmon resonance biosensor and Qflex kit chloramphenicolAnal. Chim. Acta.2005,529: 109-113.
    [131]Byzova NA, Zvereva EA, Zherdev AV. Rapid pretreatment-free immunochromatographic assay of chloramphenicol in milk. Talanta.2010,81:843-848.
    [132]Kolosova AY, Samsonova JV, Egorov AM. Competitive ELISA of Chloramphenicol:Influence of Immunoreagent Structure and Application of the Method for the Inspection of Food of Animal Origin. Food Agric. Immunol.2000,12:115-125.
    [133]Lin S, Han SQ, Liu YB. Chemiluminescence immunoassay for chloramphenicol. Anal. Bioanal. Chem.2005,382:1250-1255.
    [134]Fernandez F, Hegnerova K, Piliarik M, et al. A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples. Biosens. Bioelectron.2010,26:1231-1238.
    [135]Su P, Liu N, Zhu M, et al. Simultaneous detection of five antibiotics in milk by high-throughput suspension array technology. Talanta.2011,85:1160-1165.
    [136]Gaudin V, Maris P, Fuselier R, et al. Validation of a microbiological method:the STAR protocol, a five-plate test, for the screening of antibiotic residues in milk. Food Addit. Contam.2004,21: 422-433.
    [137]van de Water C, Haagsma N. A Sensitive Streptavidin-Biotin Enzyme-linked Immunosorbent Assay for Rapid Screening of Residues of Chloramphenicol in Milk. Food Agric. Immunol.1990, 2:11-19.
    [138]Zhang D, Zuo P, Ye BC. Bead-based mesofluidic system for residue analysis of chloramphenicol. J Agric. Food Chem.2008,56:9862-9867.
    [139]Nouws JF, Laurensen J, Aerts MM. Monitoring milk for chloramphenicol residues by an immunoassay (Quik-card). Vet. Q.1988,10:270-272.
    [140]Ferguson J, Baxter A, Young P, et al. Detection of chloramphenicol and chloramphenicol glucuronide residues in poultry muscle, honey, prawn and milk using a surface plasmon resonance biosensor and Qflex kit chloramphenicol. Anal. Chim. Acta.2005.529:109-113.
    [141]Blais BW, Cunningham A, Yamazaki H. A Novel immunofluorescence capillary electrophoresis assay system for the determination of chloramphenicol in milk. Food Agric. Immunol.1994,6: 409-417.
    [142]Duda J, Kucharska U. Determination of Chloramphenicol (CAP) in Food Products by Differential Pulse Polarography. Anal. Lett.1999,32:1049-1064.
    [143]Agiii L, Guzman A, Yanez-Sedeno P, et al. Voltammetric determination of chloramphenicol in milk at electrochemically activated carbon fibre microelectrodes. Anal. Chim. Acta.2002,461: 65-73.
    [144]Chai C, Xu M, Liu G. Effec of Cationic surfactant on the voltammetric determination of chloramphenicol. Chin. J. Anal.Chem.2006,34:1715-1718.
    [145]Pezza L, Rios A, Nozal L, et al. Simultaneous determination of chloramphenicol, thiamphenicol and florfenicol residues in bovine milk by micellar electrokinetic. Quim. Nova 2006,29:926-931.
    [146]Xiao F, Zhao F, Li J, et al. Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube-gold nanoparticle-ionic liquid composite film modified glassy carbon electrodes. Anal. Chim. Acta.2007,596:79-85.
    [147]Zhang C, Wang S, Fang G. Competitive immunoassay by capillary electrophoresis with laser-induced fluorescence for the trace detection of chloramphenicol in animal-derived foods. Electrophoresis.2008,29:3422-3428.
    [148]Nouws JF, Laurensen J, Aerts MM. Monitoring milk for chloramphenicol residues by an immunoassay (Quik-card). Vet. Q.1988,10:270-272.
    [149]Song WW, Ding MX, Zhang NW, et al. Immuno-voltammetric Determination of Chloramphenicol Residues in Milk. J. Anal. Chem.2007,35:1731-1735.
    [150]Santos SM, Henriques M, Duarte AC, et al. Development and application of a capillary electrophoresis based method for the simultaneous screening of six antibiotics in spiked milk samples. Talanta 2007,71:731-737
    [151]Chuanuwatanakul S, Chailapakul O, Motomizu S. Electrochemical analysis of chloramphenicol using boron-doped diamond electrode applied to a flow-injection system. Anal. Sci.2008,24: 493-498.
    [152]Mena ML, Agui L, Martinez-Ruiz P. Molecularly imprinted polymers for on-line clean up and preconcentration of chloramphenicol prior to its voltammetric determination. Anal. Bioanal. Chem.2003,376:18-25.
    [153]Vera-Candioti L, Olivieri AC, Goicoechea HC. Development of a novel strategy for preconcentration of antibiotic residues in milk and their quantitation by capillary electrophoresis. Talanta2010,82:213-221.
    [154]van de Water C, Haagsma N, van Kooten PJ. An enzyme-linked immunosorbent assay for the determination of chloramphenicol using a monoclonal antibody. Application to residues in swine muscle tissue. Lebensm. Unters. Forsch.1987,185:202-207.
    [155]Nouws JFM, Laurensen J, Aerts MML. Monitoring of chloramphenicol residues in eggs by HPLC and an immunoassay (Quick-card). Arch. Lebensmittelhyg.1987,38:7-9.
    [156]Posyniak A, Zmudzki J, Niedzielska J. Evaluation of sample preparation for control of chloramphenicol residues in porcine tissues by enzyme-linked immunosorbent assay and liquid chromatography. Anal. Chim. Acta.2003,483:307-311.
    [157]Ashwin HM, Stead SL, Taylor JC, et al. Development and validation of screening and confirmatory methods for the detection of chloramphenicol and chloramphenicol glucuronide using SPR biosensor and liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta. 2005,529:103-108.
    [158]Kowalski P, Plenis A, Oledzka I. Optimization and validation of capillary electrophoretic method for the analysis of amphenicols in poultry tissues. Acta Pol. Pharm.2008,65:45-50.
    [159]Kowalski P, Plenis A, Oledzka I. Optimization and validation of the micellar electrokinetic capillary chromatographic method for simultaneous determination of sulfonamide and amphenicol-type drugs in poultry tissue. J. Pharm. Biomed. Anal.2011,54:160-167.
    [160]Laurensen JJ, Nouws JF. Monitoring of chloramphenicol residues in muscle tissues by an immunoassay (La Carte test). Vet. Q.1990,12:121-123.
    [161]Impens S, Reybroeck W, Vercammen J, et al. Screening and confirmation of chloramphenicol in shrimp tissue using ELISA in combination with GC-MS/MS and LC-MS/MS. Anal. Chim. Acta 2003,483:153-163.
    [162]Chullasat K, Kanatharana P, Limbut W. Ultra trace analysis of small molecule by label-free impedimetric immunosensor using multilayer modified electrode. Biosens. Bioelectron.2011,26: 4571-4578.
    [163]Yuan J, Oliver R, Aguilar MI, et al. Surface plasmon resonance assay for chloramphenicol. Anal. Chem.2008,80:8329-8333.
    [164]Yuan J, Addo J, Aguilar MI. Surface plasmon resonance assay for chloramphenicol without surface regeneration. Anal. Biochem.2009,390:97-99.
    [165]Ashwin HM, Stead SL, Taylor JC, et al. Development and validation of screening and confirmatory methods for the detection of chloramphenicol and chloramphenicol glucuronide using SPR biosensor and liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta. 2005,529:103-108.
    [166]Thongchai W, Liawruangath B, Liawruangrath S, et al. A microflow chemiluminescence system for determination of chloramphenicol in honey with preconcentration using a molecularly imprinted polymer. Talanta 2010,82:560-566.
    [167]Arnold D, Somogyi A. Trace analysis of chloramphenicol residues in eggs, milk, and meat: comparison of gas chromatography and radioimmunoassay. J. Assoc. Off. Anal. Chem.1985,68: 984-990.
    [168]Posyniak A, Zmudzki J, Niedzielska J. Evaluation of sample preparation for control of chloramphenicol residues in porcine tissues by enzyme-linked immunosorbent assay and liquid chromatography. Anal. Chim. Acta.2003,483:307-311.
    [169]Zhang C, Wang S, Fang G. Competitive immunoassay by capillary electrophoresis with laser-induced fluorescence for the trace detection of chloramphenicol in animal-derived foods. Electrophoresis 2008,29:3422-3428.
    [170]Shen J, Zhang Z, Yao Y. A monoclonal antibody-based time-resolved fluoroimmunoassay for chloramphenicol in shrimp and chicken muscle. Anal. Chim. Acta.2006,575:262-266.
    [171]Zhang D, Zuo P, Ye BC. Bead-based mesofluidic system for residue analysis of chloramphenicol. J Agric. Food Chem.2008,56:9862-9867.
    [172]Jafari MT, Khayamian T, Shaer V, et al. Determination of veterinary drug residues in chicken meat using corona discharge ion mobility spectrometry. Anal. Chim. Acta 2007,581:147-153.
    [173]Vera-Candioti L, Olivieri AC, Goicoechea HC. Development of a novel strategy for preconcentration of antibiotic residues in milk and their quantitation by capillary electrophoresis. Talanta2010,82:213-221.
    [174]Ge S, Yan M, Cheng X, et al. On-line molecular imprinted solid-phase extraction flow-injection fluorescence sensor for determination of florfenicol in animal tissues. J. Pharm. Biomed. Anal. 2010,52:615-619.
    [175]Kowalski P, Oledzka I, Lamparczyk H. Capillary electrophoresis in analysis of veterinary drugs. J. Pharm. Biomed. Anal.2003,32:937-947.
    [176]Zhang SX, Liu ZW, Guo X, et al. Simultaneous determination and confirmation of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in chicken muscle by liquid chromatography-tandem mass spectrometry. J. Chromatogr B.2008,875:399-404.
    [177]Xu DM, Yu XY, Liu YQ, et al. Development of an enzyme-linked immunosorbent assay for podophyllotoxin. Int. Immunopharmacol.2005,5:1583-1592.
    [178]Diener, U, Knoll E, Wisser H. Preparation of antibodies to catecholamines and metabolites-syntheses of various immunogens and characterization of the resulting antibodies. Clin. Chim. Acta.1981,109:1-11.
    [179]Mercader JV, Montoya A. Development of monoclonal ELISAs for azinphos-methyl.2. Assay optimization and water sample analysis. J. Agric. Food Chem.1999,47:1285-1293.
    [181]Dodeigne C, Thunus L, Lejeune R. Chemiluminescence as diagnostic tool. A review. Talanta. 2000,51(3):415-439.
    [182]胥传来,彭池方,郝凯,等。化学发光酶免疫方法检测克伦特罗残留。分析化学研究简报,2005,33:699-702.
    [183]Fodey TL, George SE, Traynor IM, et al. Approaches for the simultaneous detection of thiamphenicol, florfenicol and florfenicol amine using immunochemical techniques. J. immunol. Methods.2013,393:30-37.
    [184]Zhang MZ, Wang MZ, Chen ZL, et al. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of clenbuterol and ractopamine in swine urine. Anal. Bioanal. Chem.2009,395:2591-2599.
    [185]Han J, Gao HF, Wang WW, et al. Time-resolved chemiluminescence strategy for multiplexed immunoassay of clenbuterol and ractopamine. Biosens. Bioelectron.2013,48:39-42.
    [186]Adrian J, Pinacho DG, Granier B, et al. A multianalyte ELISA for immunochemical screening of sulfonamide, fluoroquinolone and ss-lactam antibiotics in milk samples using class-selective bioreceptors. Anal Bioanal Chem.2008,391:1703-1712.
    [187]Bi S, Yan YM, Yang XY, et al. Gold nanolabels for new enhanced chemiluminescence immunoassay of alpha-fetoprotein based on magnetic beads. Chem. Eur. J.2009,15:4704-4709.
    [188]Ambrosi A, CastaCeda MT, Killard AJ, et al. Double-codified gold nanolabels for enhanced immunoanalysis. Anal. Chem.2007,79,5232-5240.
    [189]汪家政,范明。蛋白质技术手册.北京:科学出版社,2000,77-90。
    [190]Rosi NL, Giljohann DA, Thaxton CS, et al. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science,2006,312:1027-1030.
    [191]Chen Z, Zu Y, Gold Nanoparticle-Modified ITO Electrode for Electrogenerated Chemiluminescence:Well-Preserved Transparency and Highly Enhanced Activity. Langmuir, 2007,23:11387-11390.
    [192]Fan A, Lau C, Lu J, et al. Magnetic Bead-Based Chemiluminescent Metal Immunoassay with a Colloidal Gold Label. Anal. Chem.2005,77:3238-3242.
    [193]樊爱萍,刘彩云,廖志新,等。基于金纳米微粒的化学发光金属免疫分析,分析化学,2006,34(1):35-37.
    [194]Li ZP, Wang YC, Liu CH, et al. Development of chemiluminescence detection of gold nanoparticles in biological conjugates for immunoassay, Anal. Chim. Acta 2005,551:85-91.
    [195]Wang Z, Hu J, Jin Y, et al. In Situ Amplified Chemiluminescent Detection of DNA and Immunoassay of IgG Using Special-Shaped Gold Nanoparticles as Label. Clin. Chem.2006,52: 1958-1961.
    [196]Liu CH, Li ZP, Du BA, et al. Silver Nanoparticle-Based Ultrasensitive Chemiluminescent Detection of DNA Hybridization and Single-Nucleotide Polymorphisms, Anal. Chem.2006,78: 3738-3744.
    [197]Li ZP, Liu CH, Fan YS, et al. A chemiluminescent metalloimmunoassay based on silver deposition on colloidal gold labels, Anal. Biochem.2006,359:247-252.
    [198]Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science.2003,301:1884-1886.
    [199]Yang XY, Guo YS, Bi S, et al. Ultrasensitive enhanced chemiluminescence enzyme immunoassay for the determination of alpha-fetoprotein amplified by double-codified gold nanoparticles labels. Biosens Bioelectron.200915;24(8):2707-11.
    [200]Hock C, Liemann F. Development of a radioimmunoassay for the detection of chloramphenicol and 3'-chloramphenicol-beta-D-monoglucuronid. Arch. Lebensmittelhyg.1985,36:138-142.
    [201]Freebairn KW, Crosby NT, Landon J. InImmunoassays for Veterinary and Food Analysis-1; Morris BA, Clifford MN, Jackman R. Ed.; Elsevier Applied Science:London,1988; pp.305-309.
    [202]Dumont V, Huet AC, Traynor I, et al. A surface plasmon resonance biosensor assay for the simultaneous determination of thiamphenicol, florefenicol, florefenicol amine and chloramphenicol residues in shrimps. Anal. Chim. Acta.2006,567:179-183.
    [203]Peng Z, Bang CY. Small molecule microarrays for drug residue detection in foodstuffs. J. Agric. Food Chem.2006,54:6978-6983.
    [204]Gao Z, Liu N, Cao Q, et al. mmunochip for the detection of five kinds of chemicals:Atrazine, nonylphenol,17-beta estradiol, paraverine and chloramphenicol. Biosens. Bioelectron.2009,24: 1445-1450.
    [205]Liu N, Su P, Gao Z, et al. Simultaneous detection for three kinds of veterinary drugs: chloramphenicol, clenbuterol and 17-beta-estradiol by high-throughput suspension array technology. Anal. Chim. Acta 2009,632:128-134.
    [206]Rebe Raz S, Bremer MG, Haasnoot W, et al. Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor. Anal. Chem. 2009,81:7743-7749.
    [207]Park IS, Kim DK, Adanyi N, et al. Development of a direct-binding chloramphenicol sensor based on thiol or sulfide mediated self-assembled antibody monolayers. Biosens. Bioelectron.2004,19: 667-674.
    [208]Park IS, Kim N. Development of a chemiluminescent immunosensor for chloramphenicol. Anal. Chim. Acta 2006,578:19-24.
    [209]Adanyi N, Varadi M, Kim N, et al. Development of new immunosensors for determination of contaminants in food. Curr. Appl. Phys.2006,6:279-286.
    [210]Kim DM, Rahman MA, Do MH, et al. An amperometric chloramphenicol immunosensor based on cadmium sulfide nanoparticles modified-dendrimer bonded conducting polymer. Biosens. Bioelectron.2010,25:1781-1788.
    [211]Tan W, Huang Y, Nan T, et al. Development of protein A functionalized microcantilever immunosensors for the analyses of small molecules at parts per trillion levels. Anal. Chem.2010, 82:615-620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700