KIT基因与荣昌猪毛色相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通常人们对白毛色猪肉较为偏爱。自中世纪以来,人们就开始对白色家猪进行选育,在选育过程中,通常将有杂色斑点的白猪淘汰。但由于毛色形成的原因极为复杂,隐性杂毛色等位基因较多,所以经过近100年的努力,人们仍无法将无斑点白猪的基因型固定下来。KIT基因对猪的白毛色的形成起起非常重要的作用,为了阐明荣昌猪白毛色形成的分子机制,本研究以荣昌猪(包括全白色和其他各种类型毛色)、杜洛克、大白和长白猪为实验动物,以编码肥大细胞生长因子受体的KIT基因为候选基因,通过聚合酶链式反应单链构象多态性分析(PCR-SSCP)和焦磷酸测序(pyrosequencing),研究KIT基因的多态性和KIT基因的突变比例,分析KIT基因和荣昌猪毛色的相关性,为猪毛色遗传定向选育奠定基础。
     结果:(1)通过PCR-SSCP方法检测了105头不同毛色类型的荣昌猪、30头杜洛克、40头长白和10头大白每一个体的KIT基因多态性。结果发现,相同品种中不同个体都得到相同的KIT基因条带,其中长白和大白有同样的4条带,而荣昌猪和杜洛克为相同的2条带。
     (2)选择具有不同带型的样品,对其KIT基因17、18内含子进行双向测序,结果发现大白和长白猪17内含子第一核苷酸处发生了G→A的替换突变,18内含子内发生了4碱基的剪接突变,而荣昌猪和杜洛克上都没有发现这两种突变。
     (3)从PCR-SSCP检测过的样品中,选择10头荣昌猪进行焦磷酸测序,获得不同毛色类型的荣昌猪KIT基因内含子17的第一核苷酸处G→A突变比例都为0%,再次证实荣昌猪不存在G→A的突变。
     (4)对26头长白猪和4头大白猪的焦磷酸测序结果发现,白色猪种中不同个体G→A的突变比例差异较大,说明表型为全白的猪种不一定全为显性白基因型,很多个体中存在不同类型的杂合隐性基因。
     (5)对杜洛克进行PCR—SSCP检测和焦磷酸测序结果都证明在其KIT基因的17、18内含子中均没有突变产生。
     结论:(1)荣昌猪与长白、大白猪虽然在毛色上十分相似,但荣昌猪的白毛色可能不属于显性白毛色,推测它们的白色属于两种不同的毛色遗传体系,遗传本质上存在极大的差异。
     (2)KIT基因的G→A的突变和AGTT缺失可能不是导致白毛色产生的唯一决定性突变,也许在KIT基因的其他区域还存在别的未被发现的决定性突变位点,这可能是导致荣昌猪白毛色形成的原因。另外,影响黑色素形成的基因较多,各基因间存在互作,这可能也是影响
White-coated meat was favored by consumers, and the selection for white coat-color domestic pigs was started since medieval times through which the pigment spots are usually eliminated from breeding herds. Unfortunately, breeders have not been able to completely fix the desired phenotype so far in spite of nearly 100-year strong selection due to the diversity of recessive alleles of pigment spots and the complexity of coat-color forming. With the speedy development of molecular biology and biotechnologies, researchers have been studying the genetic characters of coat color on the level of molecule. For the purpose of studying the polymorphisms of KIT gene and quantification of the ratio of wild-type/mutant nucleotide at the splice site and exploring the relationship between KIT gene and Rongchang pig coat color, this study was conducted to apply single strand conformation polymorphism analysis of polymearase chain reaction products (PCR-SSCP) and pyrosequencing in Rongchang pigs (including white and other coat color), Duroc, Landrace and Large White pigs, and chose KIT gene of mast/stem cell growth factor receptor (MGF) as candidate gene.
    The results of polymorphisms of KIT gene showed that the genotypes of KIT gene were specific among the breeds. Electrophoresis patterns of PCR-SSCP for intron 17/18 of porcine KIT gene showed that the same breed detected individuals have the same strips of KIT gene; Landrace and Large White pig have an identical strips of KIT gene (4 strips) and Rongchang pig and Duroc have another identical strips of KIT gene(2 strips). KIT gene in pigs have different strips was sequenced. The result of sequencing KIT gene in a Rongchang pig showed that the mutations of KIT gene of Landrace and Large White pig (G→A and the deletion of AGTT) were not found in Rongchang Pig with the similar coat color, which was against that white coat color was controlled by traditional dominated white allele gene. Therefore, the conclusion was attained that the
引文
[1] Spillman WJ. Inheritance of coat color in swine.[J]. Science, 1906, 24: 441-443.
    [2] Hetzer HO. Inhertitance of coat color in swine. Ⅰ. General survey of major color variations in swine[J]. Journal of Heredity,, 1945a, 36: 121-128.
    [3] Hetzer HO. Inhertitance of coat color in swine. Ⅱ. Results of Landrace by Poland China crosses [J]. Journal of Heredity,, 1945b, 36: 187-192.
    [4] Hetzer HO. Inhertitance of coat color in swine. Ⅲ. Results of Landrace by Berkshire crosses[J]. Journal of Heredity, 1945c, 36: 255-256.
    [5] Hetzer HO. Inhertitance of coat color in swine. Ⅵ. Results of Yorkshire by Duroc-Jersey crosses [J]. Journal of Heredity, 1947, 38: 121-124.
    [6] Hetzer HO. Inhertitance of coat color in swine. Ⅴ. Results of Landrace by Hampshire crosses[J]. Journal of Heredity, 1948, 39: 123-128.
    [7] Hetzer HO. Effectiveness of selection for extension of black-spotting in Beltsille no 1 swinelnhertitance of coat color in swine.[J]. Journal of Heredity, 1954, 45: 215-223.
    [8] Hetzer HO. Inhertitance of coat color in swine. Ⅴ. Results of Landrace by Duroc-Jersey crosses[J]. Journal of Heredity, 1946, 37: 217-224.
    [9] 施启顺,马海明.猪的毛色遗传研究进展[J].国外畜牧科技,2000,27(6):29-33.
    [10] 张红卫.发育生物学[M].北京:科学出版社,2001.Pages.
    [11] 蔡文琴,李海标.发育神经生物学[M].北京:科学出版社,1999.Pages.
    [12] U.N.里德,H.魏纳.病理学(总论与各论)[M].北京:人民卫生出版社,1989.Pages.
    [13] 成令忠.组织学[M].人民出版社,1993.Pages.
    [14] Celia JC, Francisco S, Takeshi K. A new enzymatic fuction in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1).[J]. The Journal of biological chemistry, 1994, 269(27): 17993-18000.
    [15] 彭中镇.猪的遗传改良[M].北京:农业出版社,1994.Pages.
    [16] Ollivier, Sellier P. Pig genetics: a reviw[J]. Annales de Genetique et de Selection Animale, 1982, 14: 481-544.
    [17] Lauvergne JJ, Canope I. Etude de quelqwes variants colores du porc Creole de al Guadeloupe.[J]. Annales de Genetique et de Selection Animale, 1979, 11: 381-390.
    [18] 张仲葛,李炳坦.中国猪品种志[M].上海:上海科学技术出版社,1986.Pages.
    [19] Kijas J. M. A,Tornsten BC, Andersson. L. Porcine Agouti gene map position SSC17q21[J]. Chromosome Research, 1998, 6: 243.
    [20] Kim KS, Mendez EA, Marklund S. Rapid communication: Linkage mapping of the porcine Agouti gene[J]. JAnim Sci, 2000., 78: 1395-1396.
    [21] Bultman SJ, Michaud EJ, Woychik RE Molecular characterization of the mouse Agouti locus[J]. Cell, 1992, 71: 1195-1204.[22] Bultman SJ, Russell LB, Gutierrez-Espeleta GA. Molecular characterization of a region of DNA associated with mutations at the Agouti locus in the mouse[J]. Proc Natl Acad Sci USA, 1991, 88: 8062-8066.
    [23] Leeb T. Genomic structure and nucleotide polymorphisms of the porcine agouti signalling protein gene(ASIP)[J]. Animal Genetics, 2000, 31(5): 335-336.
    [24] Lush JL. Inheritance in swine [J]. Journal of Heredity, 1921, 12: 57-71.
    [25] Lauvergne JJ, Malynicz GL, Quartermain AR. Coat color variants of village pigs in Papua News Guinea[J]. Annales de Genetique et de Selection Animale, 1982, 14: 29-42.
    [26] Berge S. Heredity of color in pigs(in Norwegian)[J]. Tidsskiftr Norske Landbruk, 1961, 68: 159-188.
    [27] Searle AG. comparative Gentics of Coat Colr in Mammals[M]. London: Logos Press., 1968, Pages.
    [28] 师科荣.中国地方猪种毛色基因MC1R、KIT和ASIP的遗传研究[D],北京:中国农业大学2003.
    [29] Mariani P. The extension coat clout locaus and the loci for blood group 0 and tyrosine aminotransferase are on pig chromosome 6.[J]. Journal of Heredity, 1996, 87: 272-276.
    [30] Rempel WE, Marsh MN. Inhertitance of coat color in swine[A]. Paper presented at: Genetics of swine[C]. Roman L.Hruska U. S. Meat Animal Research Center, Claay Center, Nebraska.), Year.
    [31] Kisswig C, Ossent HP. Die Verebug der Haarfarben beim Schwein Zeitscbrift fur inductive Abstammungs-und Vereburgslebre[J]. Abstamm-u Vereblebre B, 1931, 22: 297-381.
    [32] kijas JW, Wales R, Tornsten A. Melanocortin receptor 1(MC1R) mutation and coat color in pigs.[J]. Genetics, 1998, 150(3): 1177-1185.
    [33] Kijas JW, Moller M, Plastow G. A frameshift mutations in MC1R and a high frequency of somatic reversions cause black spotting in pigs.[J]. Genetics, 2001, 158(2): 779-785.
    [34] Kathleen G, Mountjoy L, Robbins S. The cloning of a family of genes that encode the melanocortin receptor.[J]. Science, 1992, 257: 1248-1251.
    [35] 邓素华,黄路生,高军.黑素皮质激素受体1(MC1R)基因与猪的毛色[J].遗传,2001,23(1):89-92.
    [36] Legaut C. The Genetics of Pig[M]. Rome: Wallingford, UK. CAB international, 1998. Pages.
    [37] Wiseman J. A history of the British pig.[D], Worcester, UK.,1986.
    [38] Wright S. Color inheritance in mammals. Ⅷ. Swine. [J]. Journal of Heredity, 1918, 9: 33-38.
    [39] Johanssom Moller M. Pigs with the dominant white coat color phenotype carry a duplocation of the KIT gene encoding the mast/stem cell growth factor receptor.[J]. Mammalian Genome, 1996, 7: 882-830.
    [40] Stephenson DA, Mercola M, Anderson E. Platelet-derived growth factor receptor a-submit??gene(PDGFRA) is deleted in the mouse patch(Ph) mutation[J]. Proceedings of the National Academy of Sciences the United States of America, 1991, 88: 4811-4815.
    [41] Wehrle-Haller B, Weston JA. Receptor tyrosine kinase dependent neural crest migration in response to differentially localized growth factors.[J]. BioEssays, 1997, 19: 337-345.
    [42] Johansson M. The gene for dominant white color in the pig is closely linked to ALB and PDGFRA on chromosome 8.[J]. Genomics, 1992, 14: 965-969.
    [43] Tornsten A, Pawelek J. Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin[J]. Science, 1982, 217: 1163-1165.
    [44] Andersson. L. Genetic dissection of phenotypic diversity in farm animals.[J]. Genetics, 2001, 2: 130-138.
    [45] Chabot BDA, Stephensson VM, Chapman P, et al. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus.[J]. Nature, 1988, 335: 88-89.
    [46] Geissler EN, Ryan MA, Housman DE. The dominant white spotting (W) locus of the mouse encodes the c-kit proto-oncogene[J]. Cell, 1988, 55: 185-192
    [47] Fleischman RA, Saltman DL, Stastny V, et al. Deletion of the c-kit protooncogene in the human developmental defect piebald trait. [J]. Proc Natl Acad Sci, 1991, 88: 10885-10889.
    [48] Giebel LB, Spritz R. Mutation of the KIT (mast/stem cell growth factor receptor) protooncogene in human piebaldism.[J]. Proc Natl Acad Sci 1991., 88: 8696-8699.
    [49] Marklund S. Molecular basis for the dominant white phenotype in the domestic pig.[J]. Genome Research, 1998, 8: 826-833.
    [50] Hubbard SR, Wei L, Ellis L, et al. Crystal structure of the tyrosine kinase domain of the human insulin receptor.[J]. Nature, 1994, 372: 746-754.
    [51] Guiffa E. The belt mutation in pigs is an allele at eht dominant white(I/KIT) locus.[J]. Mammalian Genome, 1999, (10): 1132-1136.
    [52] Pielberga G, Olssonb C, Syvanenb A-C, et al. Unexpectedly High Allelic Diversity at the KIT Locus Causing Dominant White Color in the Domestic Pig [J]. Genetics, 2002, 160: 305-311.
    [53] Smith ADB, Robinson oj, Bryant DM. The genetics of the pig.[J]. Bibliograpbia Genetica, 1938, 12: 1-160.
    [54] Hayashi K. PCR Methods and Application[M]. Vol 1 New York: Karger,1991. Pages.
    [55] 戚豫,黄丽英.DNA单链构象多态性原理[J].北京医科大学学报,1997,15(5):354-355.
    [56] 白小青.荣昌猪毛色分子遗传标记的研究[D],杨凌:西北农林科技大学,2004.
    [57] Nyren P. Anal Biochem, 1987, 167: 235.
    [58] Nyren P, Karamohamed S, Ronaghi M. Detection of singlebase changes using a bioluminometric primer extension assay[J]. Anal Biochem, 1997, 244(2): 367-373.
    [59] Ronaghi M, Karamohamed S, Pettersson B. Real-time DNA sequencing using detection of??pyrophosphate release.[J]. Anal Biochem, 1996, 242(1): 84-89.
    [60] Ronaghi M. Science, 1998, 281: 363.
    [61] White HE, Durston VJ, Seller A, et al. Accurate detection and quantitation of heteroplasmic mitochondrial point mutations by pyrosequencing.Genet Test.[J]. Fall, 2005, 9(3): 190-199.
    [62] Andreasson H, Asp A, Alderborn A. Mitochondrial sequence analysis for forensic identification using pyrosequencing technology[J]. Biotechniques, 2002, 32(1): 124-126, 128, 130-133.
    [63] Gustafsson AC, Kijas JM, Alderborn A. Screening and scanning of single nucleotide polymorphisms in the pig melanocortin 1 receptor gene (MCIR) by pyrosequencing[J]. Anim Biotechnol, 2001, 12(2): 145-153.
    [64] Wasson J, Skolnick G, Love-Gregory L. Assessing allele frequencies of single nucleotide polymorphisms in DNA pools by pyrosequencing technology[J]. Biotechniques, 2002, 32(5): 1144-1146, 1148, 1150
    [65] Clarke SC. Pyrosequencing: nucleotide sequencing technology with bacterial genotyping applications. [J]. Expert Rev Mol Diagn, 2005, 5(6): 947-953.
    [66] Jonasson J, Olofsson M, Monstein HJ. Classification, identification and subtyping of bacteria based on pyrosequencing and signature matching of 16S rDNA fragments[J]. APMIS, 2002, 110(3): 263-272.
    [67] Monstein H, Nikpour-Badr S, Jonasson J. Rapid molecular identification and subtyping of Helicobacter pylori by pyrosequencing of the 16S rDNA variable V1 and V3 regions.[J]. FEMS Microbiol Lett, 2001, 199(1): 103-107.
    [68] Kijas JM, Juneja RK, Gafvert S. Detection of the causal mutation for canine leukocyte adhesion deficiency (CLAD) using pyrosequencing.[J]. Anim Genet, 2000, 31(5): 326-328.
    [69] Nilsson TK, Johansson CA. A novel method for diagnosis of adult hypolactasia by genotyping of the -13910 C/T polymorphism with Pyrosequencing technology[J]. Scand J Gastroenterol, 2004, 39(3): 287-290.
    [70] 马永平,易发平.焦磷酸测序技术及其在分子生物学领域的应用[J].国外医学分子生物学分册,2003,25(2):115-118.
    [71] 刘署光,孙玉英,奚永志.焦磷酸测序——HLA基因高分辨分型的新策略[J].中华器官移植杂志,2005,26(9):574-576.
    [72] 师科荣,王爱国,李宁.白色基因座(Ⅰ)在中国地方猪种毛色遗传中的作用研究[J]'遗传学报,2005,32(3):275-281.
    [73] 阎隆飞,张玉麟.分子生物学[M].北京:中国农业大学出版社,1997.Pages.
    [74] Hetzer HO. Inhertitance of coat color in swine. Ⅳ. Analysis of hybrid of Landrace and Large Black[J]. Journal of Heredity, 1945d, 36: 309-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700