新疆绵羊遗传多样性及主要经济性状候选基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一.新疆部分绵羊品种遗传多样性分析
     利用10个微卫星位点对新疆地区7个地方绵羊品种和1个育成品种进行了遗传学检测,初步探讨了新疆8个绵羊品种的遗传多样性和遗传分化关系。结果表明:10个微卫星位点在8个绵羊群体中的平均PIC为0.492,平均He为0.536,其基因多态性和遗传多样性相对贫乏;各个位点GST在0.017~0.182之间,平均为0.08;8个绵羊群体FIS在0.255~0.556之间,处于较高水平,说明这些绵羊群体内存在一定程度的近交。以中国美利奴(新疆军垦型)羊为外群,UPGMA聚类分析表明,阿勒泰羊、哈萨克羊和巴什拜羊遗传距离较近,首先聚在一起,然后和巴音布鲁克羊聚为一大类;和田羊和策勒黑羊先聚在一起,然后和多浪羊聚为另一大类,这与各绵羊群体的地理分布、起源及育成史基本一致。
     二.绵羊主要经济性状候选基因的研究
     1、利用SSCP或RFLP方法,以具有毛品质、生长和繁殖性状差异的中国美利奴羊、德国美利奴羊和德国美利奴羊公羊与中国美利奴羊母羊杂交F1代羊为研究对象,对绵羊羊毛性状(KAP8.2、KAP7、KAP5.4、KAP8.1、KAP1.3和Ⅰ型IF基因)、生长性状(PROP1、POU1F1、IGFBP3和MC4R基因)和繁殖性状(PRLR、RBP4、PGR、FSHβ、GnRHR、BMP4和BMP2基因)候选基因的部分序列进行了多态性检测。结果发现KAP8.1基因、KAP1.3基因、Ⅰ型IF基因、PROP1基因PROP1-1~PROP1-4引物、MC4R基因MC4R-3和MC4R-4引物、PRLR基因PRLR-1和PRLR-2引物和GnRHR基因扩增片段存在多态。
     2、利用荧光实时定量PCR技术,研究了中国美利奴羊KAP8.1基因、KAP1.3基因、PROP1基因和PRLR基因的表达情况。结果表明中国美利奴羊不同生长阶段(0、7、14、30、60和90日龄)皮肤组织中KAP8.1和KAP1.3基因的发育表达模式基本一致,在0日龄时最高,随后下降。KAP8.1基因表达量在0日龄时高于其他日龄(P<0.01),在14到90日龄间基本趋于平稳状态。KAP1.3基因表达量在0日龄时高于14到90日龄(P<0.01),在7日龄时高于14到90日龄(P<0.05)。PROP1基因仅在绵羊垂体组织中表达,而PRLR基因在绵羊各种组织中广泛表达,且在子宫和下丘脑组织中的表达量最高。垂体组织中的PROP1基因表达量较低,在7日龄时高于30(P<0.01)、14和60日龄(P<0.05),PRLR基因表达量呈现先波动上升后下降的趋势,各日龄间无差异(P>0.05)。PRLR基因表达量在卵巢组织中从7日龄起呈先下降后上升的趋势,90日龄高于0~30日龄(P<0.05);在睾丸组织中呈波动上升趋势,各日龄间无差异(P>0.05);在皮肤组织中0~14日龄高于30~90日龄(P<0.01)。
     3、对KAP8.1、KAP1.3和Ⅰ型IF基因不同基因型与中国美利奴羊羊毛性状进行关联分析,结果显示,KAP1.3基因Bsr I酶切多态性与羊毛细度极显著相关(P<0.01),AA基因型个体羊毛细度低于AB(P<0.05)和BB(P<0.01)基因型个体;KAP8.1基因SSCP多态性与羊毛细度显著相关(P<0.05),BC基因型个体羊毛细度低于AB和BB基因型个体(P<0.05)。KAP8.1和KAP1.3基因组合合并基因型对羊毛细度有显著影响,BC-AA为羊毛细度有利基因型,其个体羊毛细度低于BB-BB、BB-AB、AB-BB和AB-AB基因型个体(P<0.05)。
     4、PROP1和MC4R基因多态性与中国美利奴羊生长性状的关联分析结果显示: PROP1基因PROP1-4引物扩增片段多态性存在显著的基因型效应,BB基因型为生长性状有利基因型,其个体胸围和胸宽显著高于AA基因型个体(P<0.05),尻宽高于AB基因型个体(P<0.05),体斜长显著高于AA和AB基因型个体(P<0.05);MC4R基因MC4R-4引物扩增片段多态性与体斜长显著相关(P<0.05),BB基因型个体体斜长最大,高于AB、AC和BC基因型个体(P<0.05);PROP1-4和MC4R-4基因组合合并基因型与中国美利奴羊体斜长显著相关(P<0.05),两基因合并效应>单基因效应,合并基因型的效应不是各自基因型效应的简单相加,要高于单个基因型效应。
     5、利用χ~2检验进行中国美利奴羊单胎和多胎个体PRLR-1、PRLR-2和GnRHR引物扩增片段的基因型差异显著性检验,结果表明PRLR-2引物扩增片段AC(P<0.01)和CC(P<0.05)基因型在多胎个体中的频率高于单胎;GnRHR引物扩增片段BB基因型在多胎个体中的频率高于单胎(P<0.01),而AA基因型在多胎个体中的频率低于单胎(P<0.05),推测PRLR-2引物扩增片段AC和CC基因型、GnRHR基因扩增片段BB基因型可能为中国美利奴羊产羔数的有利基因型。
     6、在中国美利奴羊群体中,对羊毛性状和生长性状候选基因进行合并基因型分析,发现PROP1-4和KAP1.3基因组合合并基因型BB-AA个体胸围、体斜长和体重均最大,且胸围高于合并基因型AA-AA、AB-AA和AA-AB个体(P<0.05)。BB-AA合并基因型对体斜长、胸围和体重的有大的正向遗传贡献率,对羊毛细度的遗传贡献率较小。
一. Studies on the Genetic Diversity of Xinjiang Sheep Breeds
     To reveal the genetic diversity and systemic relationship of main sheep breeds in Xingjiang, the genetic polymorphisms of 10 microsatellites in 7 local and 1 improved sheep breeds were studied. The results showed that the average PIC (0.492) and He (0.536) of the whole population were all lower than those of other sheep breeds reported in the documents, which showed the gene polymorphisms and genetic diversity in these sheep breeds were relatively rare. The unbiased coefficients of gene differentiation (GST) of the loci varied from 0.017 to 0.182, with an average of 0.08. The high positive FIS value (ranging from 0.255 to 0.556) indicated inbreeding to be one of the main causes in all breeds. Using Chinese Merino as the out-group, UPGMA cluster analysis showed that Aletai, Kazak and Bashibai were clustered first due to a relatively small genetic distance among them,and then they clustered with the Bayinbuluke sheep; and Hetian and Qira black were clustered first and then they clustered with the Duolang sheep, which indicated that the relationship among breeds displayed some degree of consistency with their geographical distribution, origin and breeding history.
     二. Studies on the Candidate Genes of Major Economic Traits
     1、Using SSCP or RFLP methods, the polymorphisms of partial sequence of candiate genes of wool traits (KAP8.2, KAP7, KAP5.4, KAP8.1, KAP1.3 and TypeⅠIF genes), growth traits (PROP1, POU1F1, IGFBP3 and MC4R genes) and reproductive traits (PRLR, RBP4, PGR, FSHβ, GnRHR , BMP4 and BMP2 genes) were detected in Chinese Merino, German Merino and hybrid F1 generation of Germany Merino rams and Chinese Merino ewes (with different wool, growth and reproduction traits). The results showed that the PCR fragment of KAP8.1 gene, KAP1.3 gene, TypeⅠIF gene, PROP1-1~PROP1-4 primers of PROP1 gene, MC4R-3 and MC4R-4 primers of MC4R gene, PRLR-1 and PRLR-2 primers of PRLR gene and GnRHR gene have polymorphisms.
     2、The real-time PCR technique was used to study the expression level of KAP8.1, KAP1.3, PROP1 and PRLR genes in Chinese Merino sheep. Results showed that: KAP8.1 and KAP1.3 genes showed the same developmental expression patterns at different growth stages (0, 7, 14, 30, 60 and 90 days) in skin tissue in Chinese Merino, the highest at 0 days of age, then decreased. KAP8.1 gene expression level at 0 days was higher than the other days (P<0.01), within 14 to 90 days tendency to stability state. KAP1.3 gene expression level at 0 day was higher than the 14-90 days of age (P<0.01), at 7 days of age is higher than the 14-90 days of age (P<0.05). PROP1 gene expressed only in sheep pituitary, while PRLR gene expressed widely in various tissues, and showed a high expression in uterus and pituitary gland tissues. A relatively lower expression occurred in pituitary of PROP1 gene, on the age of 7 days, the expression level of PROP1 gene was higher than that of 30 (P<0.01), 14 and 60 days (P<0.05); the PRLR gene expression level showed a rising trend with fluctuation, then downward, no significant difference between the ages (P>0.05). In ovarian tissue, the PRLR gene expression level from the 7 days of age showed a decline after the rise, at 90 days of age higher than the 0 to 30 days (P <0.05); fluctuations in the testis showed an upward trend among all age no difference (P>0.05); in skin tissue from 0 to 14 days of age higher than 30 to 90 days (P<0.01).
     3、The relationships between different genotypes of KAP8.1, KAP1.3 and TypeⅠIF genes and wool traits were analysed in Chinese Merino. Results showed that the Bsr I restriction polymorphism of KAP1.3 gene was significantly associated with fiber diameter (P<0.01). Individuals with genotype AA were significantly lower than those of individuals with genotype AB (P<0.05) and BB (P<0.01) in fiber diameter. The SSCP genetic polymorphism of KAP8.1 gene was significantly associated with fiber diameter (P<0.05). Individuals with genotype BC were significantly lower than those of individuals with genotype AB and BB (P<0.05) in fiber diameter. Combination genotype BC-AA was the favorable genotype for fiber diameter, individuals with genotype BC-AA were significantly lower than those of individuals with genotype BB-BB, BB-AB, AB-BB and AB-AB (P<0.05).
     4、The relationships between different genotypes of PROP1 and MC4R genes and growth traits were analysed in Chinese Merino sheep. Results showed that the significant genotype effects existed in PROP1-4 amplified fragment polymorphism, BB genotype was the favorable genotype for growth traits; individuals with genotype BB were significantly higher than those of individuals with AA genotype in girth and chest width(P<0.05), AB genotype in rump width(P<0.05) and AA and AB genotype in body length (P<0.05); The genetic polymorphism of MC4R-4 amplified fragment was significantly associated with body length (P<0.05), individuals with genotype BB were significantly higher than those of individuals with AB, AC and BC genotypes (P<0.05); Combination genotypes of PROP1-4 and MC4R-4 genes was significantly associated with body length (P<0.05), two gene effect > single gene effect, genetic effect of combination genotypes was not the simple addition of different genotypic effects, may higher than that of a single genotype effect.
     5、The genotype frequency of PRLR-1、PRLR-2 and GnRHR genes with different little size in Chinese Merino were analyzed byχ~2 test. Results showed that genotype frequencies of AC (P<0.01) and CC (P<0.05) on the locus of PRLR-2 as well as genotype frequencies of BB on GnRHR gene were higher in prolific individuals than in singleton pregnancy individuals of in Chinese Merino sheep. Whereas, genotype frequencies of AA on GnRHR gene in prolific individuals was lower than that in singleton pregnancy individuals of Chinese Merino sheep. These results indicated that genotypes of AC and CC on PRLR-2 locus as well as genotype BB on GnRHR gene were favorable genotypes for the number of little size in Chinese Merino sheep.
     6、The effect of combined genotypes of the candidate genes for wool and growth traits was tested by least square means in Chinese Merino sheep. The results showed that the combined genotype BB-AA of PROP1-4 and KAP1.3 genes was the predominant genotype on chest girth, body length and body weight, which is more effective on chest girth than AA-AA, AB-A and AA-AB combined genotypes (P<0.05). The contribute percentage(CP)of chest girth, body length and body weight with BB-AA genotype were high(4.08%, 10.50% and 7.63%, respectively), and the contribute percentage(CP)of fiber diameter was low(0.85%).
引文
[1]赵有璋.羊生产学.北京:中国农业出版社,1999.
    [2]汪松,陈灵芝.中国科学院生物多样性研讨会会议录.北京:中国科学院生物科学与技术局,1990.
    [3]马克平.试论生物多样性的概念[J].生物多样性,1993,1:20-22.
    [4]田兴军.生物多样性及其保护生物学.北京:化学工业出版社,2005.
    [5]吕慎金,马月辉,杨燕,耿社民.中国西部七个地方绵羊群体微卫星DNA的遗传多样性研究[J].家畜生态学报,2006,24(7):18-22
    [6]贾斌,陈杰,赵茹茜,雒秋江,剡根强,陈杰.等.新疆8个品种绵羊遗传多样性和系统发生关系的微卫星分析[J].遗传学报,2003, 30(9):847-854.
    [7]李祥龙,巩元芳,张建文,刘铮铸,Allessio Valentini.我国6个地方绵羊品种微卫星DNA多态性研究[J].遗传学报. 2004, 31(11):1203-121.
    [8]成述儒,罗玉柱,韩建林,Olivier Hanottea.利用微卫星DNA标记分析7个绵羊群体遗传多样性与系统发育[J].农业生物技术学报,2009,17(5):808-814.
    [9]曾检华,曹少先,舒邓群,宋宏绣,刘铁铮.五个绵羊品种的微卫星位点多样性分析[J].家畜生态学报,2010,31(1):25-29.
    [10]吕潇潇,李国林,郎侠,徐琳娜.五个绵羊品种遗传多样性的微卫星分析[J].甘肃农业大学学报,2009,44(5):6-10.
    [11]常爽,刘丑生,林峰,邱小田,韩旭,许丽梅,李晓霞. 9个绵羊品种的微卫星DNA多态性分析[J].中国农学通报,2010,26(11):13-17.
    [12] Santos-Silva F, Ivo R S, Sousa M C O, Carolino M I, Ginja C, Gama L T. Assessing genetic diversity and differentiation in Portuguese coarse-wool sheep breeds with microsatellite markers[J]. Small Ruminant Research, 2008, 78:32-40.
    [13] Sodhi M, Mukesh M, Bhatia S. Characterizing Nali and Chokla sheep differentiation with microsatellite markers[J]. Small Ruminant Research, 2008, 65:185-192.
    [14]瞿冬艳,陈仁金,毛永江,孙辰晨,耿岩,田黛君,陈亮,赵晓勇,杨章平.宁夏牧区主要绵羊品种遗传多样性分析及群体间杂种优势预测[J].畜牧兽医学报,2009,40(1):1-6.
    [15] Lawson Handley L J, Byrne K, Santucci F, Townsend S, Taylor M, Bruford M W, Hewitt G M. Genetic structure of European sheep breeds[J]. Heredity, 2007, 99:620-631.
    [16] Kusza S, Nagy I, Sasvári Z, Stágel A, Németh T, Molnár A, Kume K, B?sze Z, Jávor A,Kukovics S. Genetic diversity and population structure of Tsigai and Zackel type of sheep breeds in the Central-, Eastern- and Southern-European regions[J]. Small Ruminant Research, 2008, 78:13-23.
    [17] Legaz E,álvarez I, Royo L J, Fernández I, Gutiérrez J P,Goyache F. Genetic relationships between Spanish Assaf (Assaf.E) and Spanish native dairy sheep breeds[J]. Small Ruminant Research, 2008, 80:39-44.
    [18] Sun W, Chang H, Ji D J, Liao X J, Du L, Lu S X, Kenji T. Analysis on Genetic Diversity and Isolation Mechanism by Distance of Different Ecological Type Sheep Breeds in Mongolia Sheep Group[J]. Journal of Genetics and Genomics, 2007, 34(11):1001-1009.
    [19] Ma Y H, Rao S Q, Lu S J, Hou G Y, Guan W J, Li H B, Li X, Zhao Q J,Guo J. Phylogeography and origin of sheep breeds in Northern China[J]. Conserv Genet, 2006, 7:117-127.
    [20] Glowatzki-Mullis M L, Muntwyler J, B?umle E, Gaillard C. Genetic diversity measures of Swiss goatbreeds as decision-making support for conservation policy[J]. Small Ruminant Research, 2008, 74:202-211.
    [21] Ligda C H, Altarayrah J, Georgoudis A,Econogene Consortium. Genetic analysis of Greek sheep breeds using microsatellite markers for setting conservation priorities[J]. Small Ruminant Research, 2009, 83:42-48.
    [22] Dalvit C, SaccàE, Cassandro M, Gervaso M, Pastored E, Piasentier E. Genetic diversity and variability in Alpine sheep breeds[J]. Small Ruminant Research, 2008, 80:45-51.
    [23] Henry H M, Dodds K G, Wuliji T. A genome screen for QTL for wool traits in a Merino×Rommey backcross flock [J]. Wool Technology and Sheep Breeding, 1998, 46:213-217.
    [24] Allain D. A Destign Aiming At Detecting QTL Controling Wool Traits and Other Traits in The Inra401 Sheep[J]. Line Proc. 6th WCGALP:52-54
    [25]管峰,石国庆,刘守仁,杨利国.角蛋白家族及其对羊毛生长发育的调控[J].生命的化学,2007,27(1):92-94.
    [26] Schweizer J, Bowden P E, Coulombe P A, Langbein L, Lane E B, Magin TM. New consensus nomenclature for mammalian keratins[J]. J Cell Biol, 2006, 174:169-174.
    [27] Powell B C. The keratin proteins and genes of wool and hair[J]. Wool Technol Sheep Breed, 1996, 44:100-118.
    [28] Robert J, McLaren, Geraldine R, Rogers, Kizanne P, Davies, Jill F, Maddox, Grant W. Montgomery. Linkage mapping of wool keratin and keratin-associated protein genes in sheep [J]. Mammalian Genome, 1997, (8):938-940
    [29] Marshall R C, Orwin D F C, Gillespie J M. Structure and biochemistry of mammalian hard keratin[J]. Electron Microsc Rev, 1991, 4:47-83.
    [30] Plowman J E. Proteomic database of wool components[J]. J Chromatogr B, 2003, 787:63-76.
    [31]李长青.绒山羊毛囊周期性变化与兴盛期毛囊KAP13-1基因的表达[M].甘肃农业大学硕士,2005.
    [32]孟进军,吴雪萍,陈善明,徐佩贤,丁宜生.中国美利奴羊羊毛角蛋白组成的研究[J].中国农业科学, 1991, 24(6):73-79.
    [33]孟伟星.内蒙古白绒山羊KAP基因克隆、序列分析及PCR-SSCP检测[M].甘肃农业大学硕士论文,2008.
    [34] Gillespie J M. Proteins rich in glycine and tyrosine from keratins[J]. Comp Biochem Physiol B, 1972, 41(4):723-734.
    [35] Adelson D L, Cam G R, DeSilva U, Franklin I R. Gene expression in sheep skin and wool (hair) [J]. Genomics, 2004, 83:95-105.
    [36] Yu Zhidong,Steven W. Gordon, Allan J. Nixon, C. Simon Bawden, Michael A. Rogers, Janet E. Wildermoth, Nauman J. Expression patterns of keratin intermediate filament and keratin associated protein genes in wool follicles[J]. Differentiation, 2009, 77(3):307-316.
    [37] Jin M, Wang L, Li S, Xing M X, Zhang X. Characterization and expression analysis of KAP7.1, KAP8.2 gene in Liaoning new-breeding cashmere goat hair follicle[J]. Mol Biol Rep, online first.
    [38] Bawden C S, Powell B C, Walker S K, Rogers G E. Expression of a wool intermediate filament keratin transgene in sheep fibre alters structure[J]. Transgenic Res, 1998, 7(4):273-287.
    [39]尹俊,扈廷茂,李金泉.内蒙古蒙古绒山羊6个与相似绵羊KAP6-1的cDNAs的克隆及特征分析[J].遗传学报,2004,31(5):502-507.
    [40] Safari E, Fogarty N M, Gilmour A R. A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep[J].Livest Prod Sci, 2005, 92:271-289.
    [41] Rhind S M, Memillen S R. Effects of methythiouracil treatment on the growth and moult of cashmere fibre in goats [J]. Animal Science, 1996, 62(3):513-520.
    [42] Zhou Huanmin, Allain D, Li Jinquan. Effects of non-genetic factors on production traits of Inner Mongolia cashmere goats in China[J]. Small Ruminant Research, 2003, 47:85-89.
    [43]赵俊星,任有蛇,岳文斌.3个山羊品种KAP6.2和KAP7基因的PCR-SSCP分析[J].中国畜牧兽医,2007,34(12):42-45.
    [44] Zhao M, Wang X, Chen H, Lan X Y, Guo Y K, Li J Y, Wei T B, Jing Y J, Liu S Q, Zhang M H, Gao Q W. The PCR-SSCP and DNA sequencing methods detecting a large deletion mutation at KAP6.2 locus in the cashmere goat[J]. Small Ruminant Research, 2008, 75:243-246.
    [45] Liu W J, Fang L, Shao Y G, Fang G X, Tian K C, Huang X X, Chen H, Zhang F Q. a novel 15bp deletion mutation at KAP16.5 locus in cashmere goat of China[J]. Asian Journal of Animal and Veterinary Advances, 2010, 5(6):402-409.
    [46] Yua H, Wang X, Chen H,Wang M, Zhao M, Lan X Y, Lei C Z, Wang K Y,Lai X S,Wang X L. The polymorphism of a novel 30 bp-deletion mutation at KAP9.2 locus in the cashmere goat[J]. Small Ruminant Research, 2008, 80:111-115.
    [47] Zhao M,Chen H,Wang X, Yu H, Wang M, Wang J, Lan X Y, Zhang C F, Zhang L Z, Gun Y K, Zhang B, Hu S R. aPCR-SSCP and DNA sequencing detecting two silent SNPs at KAP8.1 gene in the cashmere goat[J]. Mol Biol Rep, 2009, 36:1387-1391.
    [48] Gong H, Zhou H, Hickford J G H. Diversity of the glycine/tyrosine-rich keratin-associated protein 6 gene (KAP6) family in sheep[J]. Mol Biol Rep, 2010, online first.
    [49] Arora R, Bhatia S, Sehrawat A, Pandey A K, Sharma R, Mishra B P, Jain A, Prakash B. Genetic Polymorphism of Type 1 Intermediate Filament Wool Keratin Gene in Native Indian Sheep Breeds[J]. Biochem Genet, 2008, 46:549-556.
    [50] Parsons Y M, Cooper D W, Piper L R. Evidence of linkage between high-glycine-tyrosine keratin gene loci and wool fibre diameter in a merino half-sib family[J]. Anim Genet, 1994, 25:105-108.
    [51] Parsons Y M, Piper L R, Powell B C, Cooper D W. Wool keratin gene polymorphisms and production characters in Australian Merino[J]. Anim Genet, 1994, 21:113-116.
    [52] Beh K J, Callaghan M J, Leish Z, Hulme D J, Lenane I, Maddox J F. Agenomescan for QTL affecting fleece andwool traits inMerino sheep. Wool Technol[J]. Sheep Breed, 2010, 49:88-97.
    [53] Rogers G R, Hickford J G H, Bickerstaffe R. MspI RFLP in the gene for a Type I intermediate filament wool keratin[J]. Anim Genet, 1993, 24:218.
    [54] Rogers G R, Hickford J G H, Bickerstaffe R. Apotential QTL for wool strength located on ovine chromosome 11[J]. Proceedings of the Fifth World Congress on Genetics Applied to Livestock Production, vol. 21, pp. 291-294.
    [55] Purvis I W, Franklin I R. Major genes and QTL influencing wool production and quality: a review[J]. Genet Sel Evol, 2005, 37(Suppl.1): 97-107.
    [56]张亚妮,张恩平,吴迪,陈玉林. KAP基因的多态性与辽宁绒山羊经济性状的关系研究[J].中国农业科学,2007,40(9):2062-2067.
    [57]张亚妮,张恩平,吴迪,陈玉林.内蒙古绒山羊KAP基因与经济性状关系的研究[J].畜牧兽医学报, 2007,38(5):447-451.
    [58]许汉峰,赵宗胜,薛安永,阿米娜,李广录,班谦,张剑.绵羊KAP1.3基因的多态性及其与羊毛性状的关系[J].石河子大学学报(自然科学版),2008,26(1):60-63.
    [59]刘桂芳.新疆优质细毛羊遗传多样性及羊毛细度候选基因的分析[M].新疆农业大学硕士论文,2005.
    [60]姚毅.两个细毛羊品种羊毛细度及产量性状的分子遗传标记研究[M].西北农林科技大学硕士论文,2006.
    [61] Cushman L J, Showalter A D, Rhodes S J. Genetic defects in the development and function of the anterior pituitary gland[J]. Ann Med, 2002, 34:179-191.
    [62] Agarwal G, Bhatia V, Cook S, Thomas P Q. Adrenocorticotropin deficiency in combined pituitary hormone deficiency patients homozygous for a novel PROP1 deletion[J]. J Clin Endocrinol Metab, 2000, 85:4556-4561.
    [63] Kaffel N, Castinetti F, Reynaud R, Saveanu A, Mnif M, Fourati M, Kammoun H, Enjalbert A, Barlier A, Abid M, Brue T. Genetic anti-hypophyseal insufficiency by mutation of R73C of gene PROP1:on the case of a Tunisian family[J]. Diabetes Metab, 2007, 33:S101.
    [64] Nasonkin I O, Ward R D, Raetzman L T, Seasholtz A F, Saunders T L. Pituitary hypoplasia and respiratory distress syndrome in PROP1 knockout mice[J]. Hum Mol Genet, 2004, 13:2727-2735.
    [65] Ward R D, Raetzman L T, Suh H, Stone B M, Nasonkin I O. Role of PROP1 in pituitary gland growth[J]. Mol Endocrinol, 2005, 19:698-710.
    [66] Xekouki P, Sertedaki A, Livadas S, Argyropoulou M, Voutetakis A. PROP1 gene mutations and pituitary size: a unique case of two consecutive cycles of enlargement and regression[J]. Hormone Research, 2007, 67:109-113.
    [67] Sloop K W, Schiller A M, Smith T P L, Blanton J R, Rohrer G A, Meier B C, Rhodes S J. Biochemical and genetic characterization of the porcine Prophet of Pit-1 pituitary transcription factor[J]. Mol Cell Endocrinol, 2000, 168:77- 87.
    [68] Guy J C, Hunter C S, Showalter A D, Smith T P L, Charoonpatrapong K, Sloop K W, Bidwell J P, Rhodes S J. Conserved amino acid sequences confer nuclear localization upon the Prophet of Pit-1 pituitary transcription factor protein[J]. Gene, 2004, 336:263-273.
    [69] Duquesnoy P, Roy A, Dastot F, Ghali I, Teinturier C. Human Prop-1:cloning, mapping, genomic structure·Mutations in familial combined pituitary hormone deficiency[J]. FEBS Lett, 1998, 437: 216-220.
    [70] Asteria C, Oliveira J H A, Abucham J, etal. Centralhypo-cortisolism as part of combined pituitary hormone deficiency due tomutations of PROP-1 gnen[J]. European Journal of Endocrinology, 2000, 143: 347-352.
    [71] Lantinga-van Leeuwen I S, Kooistra H S, Mol J A, Renier C, Breen M, van Oost B A, Cloning, characterization, and physicalmapping of the canine Prop-1 gene (PROP-1): exclusion as a candidate for combined pituitary hormone deficiency in German shep-herd dogs[J]. Cytogenet Cell Genet, 2000, 88: 140 -144.
    [72] Showalter A D, Smith T P L, Bennett G L, Sloop K W, Whitsett J A, Rhodes S J. Differential conservation of transcriptional domains of mammalian Prophet of Pit-1 proteins revealed by structural studies of the bovine gene and comparative functional analysis of the protein[J]. Gene, 2002, 291:211-221.
    [73] Sornson M W, Wu W, Dasen J S, Flynn S, Norman D J, O’Connell S M, Gukovsky I, Carriere C, Ryan A K, Miller A P, Zuo L, Gleiberman A S, Andersen B, Beamer WG, Rosenfeld M G. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism[J]. Nature 1996, 384:327- 333.
    [74] Mody S, Brown M R, Parks J S. The spectrum of hypopituitarism caused by PROP1 mutations[J]. Clin Endocrinol Metab, 2002, 16:421-431.
    [75] Vieira T C, Dias da Silva M R, Cerutti J M, Brunner E, Borges M, Arnaldi L T, Kopp P, Abucham J.Familial combined pituitary hormone deficiency due to a novel mutation R99Q in the hot spot region of Prophet of Pit-1 presenting as constitutional growth delay[J]. J Clin Endocrinol Metab, 2003, 88:38-44.
    [76] Nakayama M, Kato T, Susa T, Sano A, Kitahara K, KatoY. Dimeric PROP1 binding to diverse palindromic TAAT sequences promotes its transcriptional activity[J]. Molecullar Cellular Endocrinology, 2009, 307:36-42.
    [77] Carvalho L, Ward R D, Brinkmeier M L, Anne Potok M, Vesper A H, Camper S A. Molecular basis for pituitary dysfunction: comparison of PROP1 and Pit1 mutant mice[J]. Developmental Biology, 2006, 295:340.
    [78] Reynaud R, Chadli-Chaieb M, Vallette-Kasic S, Saveanu A, Guillet M P. A familial form of congenital hypopituitarism due to a PROP1 mutation in a large kindred: phenotypic and in vitro functional studies[J]. Journal of Clinical Endocrinology and Metabolism, 2004, 89(11), 5779-5786.
    [79] Wu W, Cogan J D, Pfaffle R W, Dasen J S, Frisch H, O’Connell S M, Flynn S E, Brown M R, Mullis P E, Parks J S, Phillips J A, Rosenfeld M G. Mutations in PROP1 cause familial combined pituitary hormone deficiency[J]. Nature Genetics. 1998, 18(2):147-149.
    [80] Pan C Y, Lan X Y, Chen H, Hua L S, Guo Y K, Zhang B, Lei C Z. Five novel single nucleotide polymorphisms (SNPs) of the prophet of PIT1 (PROP1) gene in bovine[J]. Archiv Fur Tierzucht-archives of Animal Breeding, 2007, 50(4):421-423.
    [81]衡文娜,郭春华,张晓晖,张重庆,陈玉红.小型猪与梅山猪PROP1基因的比较分析[J].生物技术通报,2007,5:144-147.
    [82] Lan X Y, Pan C Y, Zhang L Z, Zhao M, Zhang C L, Lei C Z, Chen H. A novel missense (A79V) mutation of goat PROP1 gene and its association with production traits[J]. Molecular Biology Reports, 2009, 36:2069-2073.
    [83] Satoko, Aikawa, Takako Kato, et al. Pituitaty transcription factorPROP-1 stimulates porcine follicle-stimulating hormoneβsubunit gene expression[ J]. Science, 2004, 324:946-952.
    [84]龚振明,陈录勇,方心葵,俞沛初,华修国.梅山猪和香猪PROPl基因的初步比较[J].中国畜牧杂志,2004,41(11):14-17.
    [85]王兴群,罗卫星,刘若余,蔡惠芬,毛以智,高旺龙.小香羊POU1F1基因序列的测序及分析[J].贵州畜牧兽医,2008,32(2):4-5.
    [86] Bastos E, Santos I, Parmentier I, Castrillo J L, Cravador A, Guedes-PintoH, Renaville R. Ovis aries POU1F1 gene: cloning, characterization and polymorphism analysis[J]. Genetica,2006, 126(3): 303-314.
    [87] Lan X Y, Pan C Y, Li J Y, Guo Y W, Hu S, Wang J, Liu Y B, Hu S R, Lei C Z, Chen H. Twelve novel SNPs of the goat POU1F1 gene and their associations with cashmere traits[J]. Small Ruminant Res, 2009, 85(2):116-121.
    [88] Lan X Y, Shu J H, Chen H, Pan C Y, Lei C Z, Wang X, Liu S Q, Zhang Y B. A PstI polymorphism at 3/UTR of goat POU1F1 gene and its effect on cashmere production[J]. Mol Biol Rep, 2009, 36:1371-1374.
    [89] Yeo G S,Farooqi I S,Challis B G,Jackon R S, O’Rahilly S. The role of melanocortin signalling in the control of body weight:Evidence from hum an and murine genetic models[J]. Quarterly Journal of Medicine, 2000, 93(1):7-14
    [90]张菊,杜立新,李宏滨,魏彩虹.绵羊MC4R基因的半定量RT-PCR及生物信息学分析[J].畜牧兽医学报,2010,41(7):804-810.
    [91] Kim K S, Larsen, Rothschild M F. 1inkage and physical mapping of the porcine melanocortin-4receptor (MC4R) gene[J]. Journal of Animal Science, 2000, 78:791-792.
    [92] Haegemall A,Coopman F,Jacobs K,Mattheeuws M,Zeveren A V,Peelman L.Bovine melanocortin receptor 4:cDNA sequence,polymorphisms and mapping[J]. Anim Genet, 200l, 32:189-1921.
    [93]李海涛.猪PGC-1、MC4R基因的多态性及其与主要经济性状关系的研究[M].东北农业大学硕士论文,2008.
    [94] Cone R D. Studies on the physiological functions of the melanocortin system[J]. Endocr Rev, 2006, 27:736-749.
    [95] Bell C G, Walley A J, Froguel P. The genetics of human obesity[J]. Nature Review Genetics, 2005, (6):221-234.
    [96] Huszar D,Lynch C A,Fairchild-Huntress V,Dunmore J H,Fang Q,Berkemeier L R,Gu W,Kesterson R A,Boston B A,Cone R D,Smith F J,Campfield L A,Bum P,Lee F. Targeted disruption of the melanocortin-4 receptor results in obesity in mice[J]. Cell, 1997, 88:131-141.
    [97] Wang L, Yu T P, Tuggle C K, Liu H C, Rothschild M F. A directed search for quantitative trait loci on chromosomes 4 and 7 in pigs [J]. J Anim Sci, 1998, 76:2560-2567.
    [98] Loos R J, Lindgren C M, Li S, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity [J]. Nat Genet, 2008, 40:768-775.
    [99] Challis B G, Pritchard L E,Creemers JW, Delplanque J,Keogh J M, Luan J, Wareham N J, Yeo G S, Bhattacharyya S, Froguel P, White A, FarooqiI S, O′Rahilly S. A missense mutation. A missense mutation disrupting a dibasic prohormone processing site in proopiomelanocortin(POMC) increases susceptibility to early onset obesity through a novel molecular mechanism[J]. Hum Molec Genet, 2002, 11:1997-2004.
    [100]仇雪梅,李宁,邓学梅,赵兴波,孟庆勇,王秀利.鸡MC4R基因的SNPs及其与屠体性状的相关研究[J].中国科学C辑生命科学, 2006, 36(2):127-133.
    [101] Rosmond R,Chagnon M, Bouchard C, Bjorntorp P. A missense mutation in the human melanocortin-4 receptor gene in relation to abdominal obesity and salivary cortisol[J]. Diabetologia, 2001, 44(10):1335-1338.
    [102] Kim K S, Larsen, Short T, Plastow G, Rothschild M F. A missense variant of the porcine melanocortin-4 receptor(MC4R) gene is associated with fatness,growth and feed intake trait[J]. Mammalian Genome, 2000, 11(2):131-135.
    [103] Hernandez-Sanehez J, Visscher P, Plastow G, Haley C. Candidate gene analysis for quantitative traits using the transmission disequilibrium test: The example of the melanocortin four receptor in pigs[J]. Genetics, 2003, (164):637-644.
    [104] Houston R D, Cameron N D, Rance K A. A melanocortin four receptor(MC4R) polymorphism is associated with performancetraits in divergently selected large white pig populations[J]. Animal Genetics, 2004, 35(5):386-390.
    [105]杨晓慧,刘源,唐辉,张宁波,武英,魏述东,姜运良.猪MC4R基因Asp298Asn位点的多态性及其与商品猪背膘厚的关系[J].农业生物技术学报,2008, 5(3):251-255.
    [106]李长龙,潘玉春,孟和,王子林,黄雪根.H-FABP、MC4R、ADD1基因多态性在3个猪群中分布及其与肌内脂肪和背膘的相关研究[J].遗传, 2006, 28(2):159-164.
    [107]赵晓枫,聂光军,徐宁迎.金华猪促黑激素皮质素受体-4基因多态性分析[J].养猪, 2004,(5):22-24.
    [108]肖石军,颜瑛,任军,丁能,郭源梅,麻骏武,李琳,周利华,黄路生.MC4R基因主效位点在中外措种中的遗传多样性及其与生长肥育性状的关联性分析[J].畜牧兽医学报, 2006, 37(9):841-845.
    [109]刘桂兰,蒋思文,熊远著,郑嵘,屈彦纯.猪资源家系MC4R基因扫描及其与脂肪性状的相关分析[J].遗传学报, 2002, 29(6):497-501.
    [110] Jokubka R, Maak S, Kerziene S, Swalve H H. Association of a melanocortin 4 receptor(MC4R) polymorphism with performance traits in Lithuanina White pigs[J]. Journal of Animal Breeding and Geneitcs, 2006, (123):17-22.
    [111] Stachowiak M, Szydlowski M, Obarzanek-Fojt M, Switonski M. An effect of a missense mutation in the porcine melanocortin-4 receptor (MC4R) gene on production traits in Polish pig breeds is doubtful[J]. Animal Genetics, 2005, 37:55-57.
    [112]霍明东,王守志,李辉. MC4R基因多态性与鸡生长和体组成性状的相关研究[J].东北农业大学学报, 2006, 37(2):184-189.
    [113]陶勇,李国辉,胡玉萍, Dafalla Mekki M,陈宽维,王金玉. MC4R、POU1F1基因对京海黄鸡生长性能的遗传效应分析[J].遗传, 2008, 30(7):900-906.
    [114]陈宏权,黄华云,陈华,张同燕.鹅MC4R基因RFLP及其与胴体和羽绒性状的关联性[J].畜牧兽医学报,2008, 39(7):885-890.
    [115] Zhang C L, Wang Y H, Chen H, Lan X Y, Lei C Z, Fang X T. Association between variants in the 50-untranslated region of the bovine MC4R gene and two growth traits in Nanyang cattle. Mol Biol Rep, 2009, 36:1839-1843.
    [116] Liu H, Tia W, Zan L, Wang H, Cui H. Mutations of MC4R gene and its association with economic traits in Qinchuan cattle. Mol Biol Rep, 2010, 37:535-540.
    [117] Huang M, Gao X, Li J Y, Ren H Y, Chen J B, Xu S Z. Polymorphisms in MC4R gene and correlations with economic traits in cattle[J]. Mol Biol Rep, 2010, online first.
    [118] Lan X Y, Pan C Y, Chen H, Lei C Z, Liu S Q, Zhang Y B, Min L J , Yu J, Li J Y, Zhao M , Hu S R. The HaeIII and XspI PCR-RFLPs detecting polymorphisms at the goat IGFBP-3 locus[J]. Small Ruminant Research, 2007, 73:283-286
    [119]郭玉姣,唐国庆,李学伟,朱砺,李明洲.猪脂肪组织中IGF2和IGFBP3基因表达的发育性变化及其品种差异[J].遗传,2008,30(5):602-606.
    [120] Bole-Feysot C, Goffin V, Edery M, et al. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice[J]. Endocrine Reviews, 1998, 19:225-268.
    [121]曹果清,李步高,石建中,刘宏,刘建华,周忠孝.猪PRLR基因多态性及其与产仔性能的关联分析[J].畜牧兽医学报,2009,40(4):476-480.
    [122]胡雪松,王希彪.民猪、长白猪及其杂种母猪催乳素受体(PRLR)基因的NaeI多态性与繁殖性状的相关分析[J].畜牧兽医学报,2006,37(11):11135-1140.
    [123]孙延晓,曾勇庆,唐辉,樊新忠,陈其美,李华,钱源,宋一萍.猪PRLR和RBP4基因多态性与产仔性能的关系[J].遗传,2009,31(1):63-68.
    [124] Rose J, Kennedy M, Johnston B, et al. Serum prolactin and dehydroepiandrosterone concentrations during the summer and winter hair growth cycles of mink (Mustela vison), Comparative Biochemistry and Physiology[J]. Part A: Molecular & Integrative Physiology, 1998, 121 (3): 263-271.
    [125] Santiago-Moreno J, López-Sebastián A, del Campo A, González-Bulnes. Effect of constant-release melatonin implants and prolonged exposure to a long day photoperiod on prolactin secretion and hair growth in mouflon (Ovis gmelini musimon) [J]. Domestic Animal Endocrinology, 2004, 26 (4): 303-314.
    [126] Hu Z Z, Zhuang L, Meng J, et al. The human prolactin receptor gene structure and alternative promoter utilization:the generic promoter HpⅢand a novel human promoter Hp (N)[J]. J Clin Endocrinol Metab, 1999, 84(3):1153-1156.
    [127] Arden K C, Boutin J M, Djiane J, et al.The receptors for prolactin and growth hormone arelocalized in the same region of human chromosome 5[J]. Cytogenet Cell Genet, 1990, 53(2-3):161-165.
    [128] Moody D E, Pomp D, Breendse W, et al. Assignment of the growth hormone receptor gene to bovine chromosome 20 using linkage analysis and somatic cell mapping[J].Animal Genetics, 1995, 26:3413
    [129] Vincent A L,Wang L,Tuggle C K,Robic A, Rothschild M F. Prolactin receptor mapsto Pig chromosome 16[J]. Manmm Genome, 1997, 8(10):793-794.
    [130] Jeknins Z A,Henry H M,Sise J A,et al. Follistatin(FST), growth hormone recepto(rGHR)and prolactin recepto(rPRLR)genes map onto sheep chromosome 16[J]. Anim Genet, 1998, 29(Suppl.l):37.
    [131] Jenkins Z A , Henry H M , Sise J A , Montgomery G W. Follistatin ( FST), growth hormone receptor (GHR) and prolactin receptor( PRLR)genes map to the same region of sheep chromosome 16[J ]. Anim Genet, 2000, 31:280.
    [132] Choy V J, Nixon A J, Pearson A J. Distribution of prolactin receptor immunoreactivity in ovine skin and changes during the wool follicle growth cycle [J]. Joumal of Endocrinology, 1997, 155:265-275.
    [133]牟玉莲,储明星,孙少华,方丽,叶素成.绵羊催乳素受体基因PCR-SSCP分析[J].畜牧兽医学报,2006,37(10):956-960.
    [134]张跟喜,储明星,王金玉,方丽,叶素成.催乳素受体基因外显子10多态性及其济宁青山羊高繁殖力关系的研究[J].遗传,2007,29(3):329-336.
    [135]储明星,张跟喜,王金玉,方丽,叶素成.催乳素受体基因多态性及其与部分山羊品种产羔数关系[J].农业生物技术学报,2008,16(4):725-726.
    [136] Isler B J,Irvin K M,Rothschild M F, Evans G J. Association between the prolactin receptor gene and reproductive components in swine[J]. 27th International Conferrence on Animal Genetics, Minneapolis, MN, 2000, 22-26.
    [137] Van Rens B T,van der Lende T. Litter size and piglet traits of gilts with different prolactin receptor genotypes[J]. Theriogenology, 2002, 57(2):883-893.
    [138] Van Rens B T,Evans G J,van der Lende T. Components of litter size in gilts with different pro1actin receptor genotypes[J]. Theriogenology, 2003, 59(3-4):915-926.
    [139] Nurwakagari P, Breit A, Hess C A. conformational contribution of the luteinizing hormone- receptor ectodomain to receptor activation[J]. Endocrinology, 2007, 38(1-2): 259-275.
    [140]孙洁,储明星,陈宏权. GnRHR基因多态性及其与小尾寒羊高繁殖力关系[J].农业生物技术学报, 2008, 16(2):230~236.
    [141]韩丹,李广,曹斌云,等.促性腺激素释放激素受体基因(GnRHR)多态性及其与西农萨能奶山羊产羔性状关系的研究[J].中国农业大学学报,2009, 14(5):93-97.
    [142]储明星,肖杰文,狄冉,等.促性腺激素释放激素受体(GnRHR)基因多态性及其与济宁青山羊高繁殖力关系[J].农业生物技术学报,2009, 17(2):218-223.
    [143]赵伟. RBP4,RARG,MYOG基因多态性及其与猪繁殖性能关系的研究[M].东北农业大学硕士论文,2008.
    [144] Blowe C D, Boytte K E, Ashwell M S, et al. Characterization of a line of pigs previously selected for increased litter size for RBP4 and follistatin[J]. J Anim Breed Genet, 2006, 123(6):389?395.
    [145] Dore J J, Roberts M P, Godkin J D. Early gestational expression of retinal binding protein mRNA by the ovine conceptus and endometrium[J]. Mol Reprod Dev, 1994, 38(1):24-29.
    [146]何远清,郭晓红,王金玉,方丽,叶素成.小尾寒羊高繁殖力候选基因RBP4的研究[J].畜牧兽医学报, 2006, 37(7):646-649.
    [147]王伟,王少兵,徐银学. BMP/Smad信号通路与哺乳动物卵泡发生[J].遗传,2009,31(3):245-254.
    [148] Fang X T, Xu H X, Zhang C L, Zhang J M, Lan X Y, Gu C W, Chen H. Polymorphisms in BMP-2gene and their associations with growth traits in goats[J]. Genes & Genomics, 2010, 32:29-35.
    [149] Fang X T, Xu H X, Zhang C L, Chen H,Hu X C, Gao X Y, Gu C W, Yu W P. Polymorphism in BMP4 gene and its association with growth traits in goats[J]. Mol Biol Rep, 2009, 36:1339-1344.
    [150]储明星,周文然,孙少华,方丽,叶素成.小尾寒羊BMP4基因多态性及其与高繁殖力关系[J].农业生物技术学报,2008,16(2):237-241.
    [151]常国斌,周琼,雷黎立,张学余,王克华,陈蓉,栾德琴,陈国宏.鸡肌内脂肪性状的多基因聚合效应分析[J].中国家禽,2009,31(19):25-28.
    [152]黄冬维,张元跃,蒋隽,等.基因聚合在猪育种中的应用现状[J].猪与禽,2008,28(3):60-62.
    [153] Yadav R D S, Singh S B, Singh A, et al. Gene Pyramiding and Horizontal Resistanceto Diara Stressin Mustards[J]. National Academy Science Letters-India, 1990, 13(9): 325-327.
    [154]刘志文,傅廷栋,刘雪平,等.作物分子标记辅助选择的研究进展、影响因素及其发展策略[J]植物学通报, 2005,22(增刊):82-90.
    [155] Collard B C Y, Mackill D J. Marker-assisted selection:an approach for precision plant breeding in the twenty-first century [J]. Phil Trans R .Soc B, 2008,363,557-572.
    [156] Hittalmani S, Parco A, Mew T V, Huang N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice[J]. Theoretical and Applied Genetics, 2000, 100:1121-1128.
    [157] Huang N, Angeles E R, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush G S. Pyramiding of bacterial blight resistance genes in rice, marker-assisted selection using RFLP and PCR[J]. Theoretical and Applied Genetics, 1997, 95:313-320.
    [158] Jiang G H, Xu C G, Tu J M, Li X H, He Y Q, Zhang Q F. Pyramiding of insect- and disease-resistant genes into an elite indica, cytoplasm male sterile restorer line of rice,‘Minghui 63’[J]. Plant Breeding, 2004, 123:112-116.
    [159] Saghai Marrof M A, Jeong S C, Gunduz I, Tucker D M, Buss G R, Tolin S A. Pyramiding of soybean mosaic virus resistance genes by marker-assisted selection[J]. Crop Science, 2008, 48:517-526.
    [160] Wang X Y, Chen P D, Zhang S Z. Pyramiding and marker-assisted selection for powdery mildew resistance genes in common wheat[J]. Acta Genetica Sinica, 28, 640-646.
    [161] Singh S,Sidhu J S,Huang N,Vikal Y,Li Z, Brar D S,Dhaliwal H S,Khush G S. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106[J]. Theor Appl Genet, 2001, 102:1011-1015.
    [162] Servin B, Martin O C, Mézard M, Hospital F. Toward a Theory of Marker-Assisted Gene Pyramiding[J]. Genetics, 2004, 168: 513-523.
    [163] Jiang L, Zhao F P, Zhang Q. Simulation of gene pyramiding in Drosophila melanogaster. J. Genet[J]. Genomics, 2008, 35:737-742.
    [164] Zhao F P, Jiang L, Gao H J, Ding X D, Zhang Q. Design and comparison of gene-pyramiding schemes in animals[J].Animal, 2009, 3(8):1075-1084.
    [165]束婧婷,吉文林,包文斌,陈国宏,张学余,季从亮.鸡ADSL和GARS-AIRS-GART基因对鸡肉肌苷酸(IMP)含量的影响[J].畜牧兽医学报.2007,38(8):786-791.
    [166]张学余,李国辉,韩威,屠云洁,苏一军.PRL和POU1F1基因及基因聚合对白耳鸡产蛋数的效应分析[J].安徽农业大学学报, 2010, 37(2): 249-252.
    [167]李国辉,张学余,韩威,屠云洁,苏一军.催乳素和神经肽Y基因及基因聚合对白耳鸡产蛋数的遗传效应[J].湖北农业科学,2010,49(5):1029-1032.
    [168]李广,安小鹏,李玲,韩丹,侯金星,王娅娜,朱广琴,王建刚,宋宇轩,曹斌云.西农萨能奶山羊多胎基因位点的遗传聚合效应分析[J].西北农林科技大学学报(自然科学版), 2009,37(10):47-54.
    [169]刘轩,强巴央宗,王强,凌遥,辜雪冬,吴克亮,张浩.藏猪繁殖性状多基因效应分析[J].遗传,2010,32(5):480-485.
    [170]刘婵娟,曾勇庆,魏述东,唐辉,樊新忠,孙延晓,陈其美,李华.8个猪种ESR和FSHβ基因合并基因型与繁殖性状关系的研究[J].畜牧兽医学报,2009,40(3):291-295.
    [171] Chen K F, Li N, Huang L S, et al. The combined genotypes effect of ESR and FSHβgenes on litter size traits in five different pig breeds[J]. Chinese Science Bulletin, 2001, 46(2): 22-25.
    [172]常国斌,周琼,雷黎立,张学余,王克华,陈蓉,栾德琴,陈国宏.鸡肌内脂肪性状的多基因聚合效应分析[J].中国家禽,2010,31(19):25-29.
    [173]洪坤月,汪峰,虞德兵,杜文兴.太湖鸡PRL、PRLR和FSHβ基因多态与前期产蛋性状关系研究[J].西北农业学报,2007,16 (5): 11-14.
    [174]于吉英,陈宽维,肖小君,等.ESR、POU1F1基因对文昌鸡繁殖性状的遗传效应分析[J].畜牧与兽医, 2008, 40(4): 49-51.
    [175]刘俊.ESR、RYRl基因多态对猪产活仔数影响的研究及四个基因SNP位点的检测[D].华中农业大学博士论文,2006.
    [176]赵西彪. AREG、ESR和FSHβ亚基基因与猪产仔数关系研究[M].扬州大学硕士论文,2008.
    [177] Crawford A M, Dodds K G, Ede A J, Pierson C A, Montgomery G W, Garmonsway H G, Beattie A E, Davies k, Maddox J F, Kappes S W, Stone R T, Nguyen T C, Penty J M, Lord E A, Broom J E, Buitkamp J, Schwaiger W, Epplen J T, Matthew P, Matthews M E, Hulme D J, Beh K J, McGraw R A, Beattie C W. An autosomal genetic linkage map of the sheep genome[J]. Genetics, 1995, 140:703-724.
    [178] Arora, R. and S. Bhatia. 2009. Evaluation of genetic effects of demographic bottleneck in Muzzafarnagri sheep from india using microsatellite markers[J]. Asian-Aust. J. Anim. Sci. 22(1):1-6.
    [179]郝怀志,咎林森,刘丑生,等. 13个绵羊品种的遗传多样性分析[J].西北农林科技大学学报(自然科学版),2009,3(3):7-14.
    [180]杨燕,马月辉,吕慎金,等.中国7个地方绵羊品种遗传多样性的微卫星分析[J].生物多样性, 2004, 12(6):586-593.
    [181] Itenge-Mweza T O , Forrest R H J, McKenzie G W, Hogan A, Abbott J, Amoafo O and. Hickford J G H. Polymorphism of the KAP1.1, KAP1.3 and K33 genes in Merino sheep[J]. Molecular and Cellular Probes, 2007, 21:338-342.
    [182]赵俊星,任有蛇,岳文斌.三个山羊品种KAP8基因的PCR-SSCP分析[J].生物技术,2007,16(5):3-5.
    [183]赵俊星,任有蛇,岳文斌. 3个山羊品种KAP6.2和KAP7基因的PCR-SSCP分析[J].中国畜牧兽医,2007,34(12):42-45.
    [184]门正名.动物遗传学.甘肃:兰州大学出版社,1999.
    [185] Rogers G R, Hickford J G H, Bickerstaffe R. Polymorphisms in two genes for B2 high sulphur proteins of wool[J]. Anim Genet, 1994, 25:407-415.
    [186]孙立萍.羊POU1F1基因多态性及其与凉山半细毛羊体重性状的相关研究[M].四川农业大学硕士论文,2007.
    [187]张沅.家畜育种学.北京;中国农业出版社,2001.
    [188] Woollard J, Tuggle C K, Ponce de Leon F A. Ponce de Leo’n Rapid communication: Localization of POU1F1 to bovine, ovine, and caprine 1q21-22[J]. J Anim Sci, 2000, 78: 242~243.
    [189]邱国宇,陈宏,潘传英,王居强,牛晖.郏县红牛POU1F1基因第6外显子HinfⅠ、AluⅠ和PstⅠ位点遗传变异及其与生长发育的关系[J].西北农林科技大学学报(自然科学版),2009,37(5):43-48.
    [190] Zakizadeh S, Reissmann M, Rahimi G, Javaremi A N, Reinecke P, . Mirae-Ashtiani S R, Shahrbabak M M. Polymorphism of the Bovine POU1F1 Gene: Allele Frequencies and Effects on Milk Production in Three Iranian Native Breeds and Holstein Cattle of Iran[J]. Pakistan Journal of Biological Sciences, 2007, 10 (15):2575-2578.
    [191] Xue K, Chen H, Wang S, Cai X, Liu B, Zhang C F, Lei C Z, Wang X Z, Wang Y M, Niu H. Effect of Genetic Variations of the POU1F1 Gene on Growth Traits of Nanyang Cattle[J]. Acta Genetica Sinica, 2006, 33 (10):901-907.
    [192] Lan X Y, Pan C Y, Chen H, Lei C Z. A DdeI PCR–RFLP detecting genetic variation of goat POU1F1 gene[J]. Canadian Journal Animal Science, 2007, 87 (1):13-14.
    [193] Lan X Y, Pan C Y, Chen H, Lei C Z, Hua L S, Yang X B, Qiu G Y, Zhang R F, Lun Y Z. DdeI polymorphism in coding region of goat POU1F1 gene and its association with production traits[J]. Asian-Australian Journal of Animal Sciences, 2007, 20 (9):1342-1348.
    [194] Lan X Y, Pan C Y, Chen H, Zhang C L, Li J Y, Zhao M, Lei C Z, Zhang A L, Zhang L. An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits[J]. SmallRuminant Research, 2007, 73:8-12.
    [195] Lan X Y, Li M J, Chen H, Zhang L Z, Jing Y J,Wei T B, Ren G,Wang X, Fang X T, Zhang C L, Lei C Z. Analysis of caprinepituitary specific transcription factor-1 gene polymorphismin indigenous Chinese goats[J]. Molecular Biology Reports, 2009, 36 (4):705-709.
    [196] Gao X, Shi M Y, Xu X R, Li J Y, Ren H Y, Xu S Z. Sequence Variations in the Bovine IGF-I and IGFBP3 Genes and Their Association with Growth and Development Traits in Chinese Beef Cattle[J]. Agricultural Sciences in China, 2009, 8(6): 717-722.
    [197]党瑞华,魏伍川,陈宏. IGFBP3基因多态性与鲁西牛和晋南牛部分屠宰性状的相关性[J].中国农学通报.2005,21(3):19-22.
    [198]孙维斌.秦川牛肉用性状及八个黄牛品种遗传关系的DNA分子标记研究场凌[D].西北农林科技大学博士论文,2004.
    [199]沈敏,王文君,杨永林,甘尚权,何其宏,张永胜,王建华,,马春萍,刘正山,刘守仁,李宁. IGFBP-3基因多态性及其与中国美利奴羊部分羊毛性状的关联性分析[J].遗传,2008,30(9):1182-118.
    [200]张春香.南江黄羊生长轴主要基因多态性与生长性状关系的研究[D].中国农业大学博士论文,2007.
    [201] Kumar P, Choudhary V, Ganesh Kumar K, Bhattacharya T K, Bhushan B, Arjava S, Mishra A. Nucleotide sequencingand DNA polymorphism studies on IGFBP-3 gene in sheep and its comparison with cattle and buffalo[J]. Small Ruminant Research, 2006, 64:85-292
    [202]李广录.与绵羊繁殖性状相关的几个功能基因的多态性分析[M].石河子大学硕士论文,2008.
    [203]宋素芳.生物统计学.北京:中国农业大学出版社, 1999, 103-109.
    [204]冷丽,王启贵,王守志,李辉.鸡BMP-2基因的组织表达规律及其与体脂和骨骼性状的相关研究[J].第十五次全国动物遗传育种学术讨论会论文集, 2009.
    [205]束婧婷.鸡肌苷酸候选基因遗传效应及表达规律研究[D].扬州大学博士论文,2008.
    [206]吕利民.中国美利奴羊肉用品系羔羊性腺轴部分基因表达的发育性变化[M].石河子大学硕士毕业论文,2010.
    [207]张俊霞.山羊HGT KAP基因家族成员的克隆及其mRNA在皮肤中的表达[M].内蒙古农业大学硕士论文,2007.
    [208]孙丽亚.猪PROP-1及POU1F1基因mRNA前体不同剪接形式发育性表达规律研究[M].扬州大学硕士毕业论文,2009.
    [209] Picazo R A, García Ruiz J P, Santiago Moreno J, et al. Cellular localization and changes in expression of prolactin receptor isoforms in sheep ovary throughout the estrous cycle[J]. Reproduction, 2004, 128(5):545-553.
    [210] Cassy S, Charlier M, Belair L, et al. Increase in Prolactin receptor (PRLR) mRNA level in the mammary gIand after hormonal induction of lactation in virgin ewes [J]. Domest Anim Endocrinol, 2000, 18(1):41-55.
    [211] Pi X, Voogt J L. Sex diference and estrous cycle: expression of Prolactin receptor mRNA in rat brain[J]. Brain Ros Mol Brain Research, 2002, 103(1-2):130-139.
    [212] Pearce s, mostyn a, alves-guerra m c, et al. Prolactin, prolactin receptor and uncoupling proteins during fetal and neonatal development [J]. Proceedings of the Nutrition Society, 2003, 62:421-427.
    [213] Tortonese D J, Brooks J, Ingleton P M, et al. Detection of Prolactin Receptor Gene Expression in the Sheep Pituitary Gland and Visualization of the Specific Translation of the Signal in Gonadotrophs [J]. Endocrinology, 1998, 139:5215-5223.
    [214]张娟,张利平,连正兴,吴建平,王欣荣,张子军.孕酮受体基因外显子4作为小尾寒羊多胎候选基因的研究[J].中国畜牧兽医,2008,35(10):50-53.
    [215]陈勇,雒秋江,菊清,杨风云,张亚军,李登忠,朱文渊.绵羊PRL R基因内含子9和外显子10多态性与产羔数的关系研究[J].中国畜牧兽医,2010,37(1):100-107.
    [216]曾献存,贾斌,赵宗胜,王遵宝,惠文巧.新疆绵羊品种Ⅰ型IF基因的遗传多态性分析[J].石河子大学学报(自然科学版),2010,28(2):177-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700