牛脂肪代谢相关基因遗传分析及其与秦川牛经济性状关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以秦川牛、南阳牛、郏县红牛、夏南牛、鲁西牛、安格斯牛、安西牛7个品种的787个个体为材料,采用PCR-SSCP、PCR-RFLP、DNA测序技术及DNA序列分析技术,结合生物信息学方法,研究了影响牛脂肪代谢的leptin、MC4R、ApoA1、ApoA4 4个基因的全序列及MC4R和ApoA4基因的5'非翻译区及3'侧翼区的遗传变异,以探讨试验牛群的遗传结构和遗传多样性。测定了其中101头秦川牛的胴体组成和肉质性状等主要经济指标,对以上基因的遗传突变位点与秦川牛部分经济性状进行关联分析,以期筛选出显著影响秦川牛肉质性状的功能基因或分子标记,并利用生物信息学方法初步分析了部分分子标记的作用机理,为秦川牛胴体、肉质等经济性状选育的分子标记辅助选择和优质高产新品系(种)培育提供科学依据。试验得到以下主要结果:
     1、采用PCR-SSCP及测序的方法,研究了牛leptin基因第2、3外显子的遗传变异情况。在leptin基因第2外显子发现73 C>T的突变位点,7个试验牛群体在该位点均为中度多态;秦川牛、鲁西牛、南阳牛、郏县红牛四个群体在该位点处于Hardy-Weinberg非平衡状态,夏南牛、安格斯牛和安西牛在该位点处于Hardy-Weinberg平衡状态;该位点多态性与秦川牛宰前活重、背膘厚极显著相关(P<0.01),与眼肌面积显著相关(P<0.05),CC型和CT型的宰前活重、背膘厚极显著高于TT型(P<0.01),CC型的眼肌面积显著高于CT型和TT型(P<0.05);生物信息学研究发现该位点突变导致了编码蛋白的精氨酸突变为半胱氨酸,导致蛋白二级结构24、146处的α螺旋丢失和20、144处的β折叠丢失,改变了三级结构中β转角的空间位置,这些变化可能与该基因功能的改变有关;编码蛋白的氨基酸改变导致了疏水性结构改变,半胱氨酸编码蛋白的疏水性最小值为-1.689,位于第102个氨基酸处,精氨酸编码蛋白的疏水性最小值为-2.222,位于第29个氨基酸处,未引起最大值的改变;突变并未引起该蛋白松散度的改变。leptin基因第3外显子前段扩增片段呈现AA和AB两种带型,AA型在第3外显子95 bp处的C变为T,AB型第3外显子在267 bp处的T变为C,在252 bp和351 bp处的C均变为T;该位点在试验牛群体中均为低度多态、处于Hardy-Weinberg平衡状态,该位点不同基因型秦川牛个体之间与秦川牛肉质性状间无显著差异(P>0.05)。leptin基因第3外显子后段扩增片段没有多态性。
     2、生物信息学分析表明,不同物种MC4R基因编码蛋白质的氨基酸序列在中间部分的结构较为相似。通过DNA池测序技术发现牛MC4R基因存在5'端-293C>G、-193A>T、-192T>G、-129A>G、-84T>C以及位于外显子1069 C>G的突变位点。通过PCR-RFLP检测发现MC4R基因-293C>G和-129A>G位点为连锁突变,秦川牛、鲁西牛、南阳牛、夏南牛、郏县红牛、安格斯牛在-129A>G位点处于中度多态,安西牛群体处于低度多态;安西牛在该位点处于Hardy-Weinberg非平衡状态,其他牛群均达到平衡状态;-129A>G多态位点与秦川牛宰前活重之间存在显著相关,GG型的个体在宰前活重上显著高于AA型和AG型(P<0.05)。7个试验牛群体在1069 C>G位点处于中度多态,且均处于Hardy-Weinberg平衡状态;1069 C>G多态位点与秦川牛宰前活重、胴体重、背膘厚、大理石花纹等级显著相关。GG型的宰前活重和胴体重显著高于CC型(P<0.05)而CG型与CC、GG型之间差异不显著(P>0.05),GG、CG型的背膘厚显著高于CC型(P<0.05),GG型的大理石花纹等级显著高于CC型(P<0.05),而CG型与CC、GG型之间差异不显著(P>0.05);1069 C>G位点突变导致了编码氨基酸由亮氨酸突变为缬氨酸,缬氨酸编码的蛋白二级结构在280处产生α螺旋丢失,281处β折叠丢失,无规则卷曲没有发生变化,没有改变蛋白的三级结构、疏水性及松散度。
     3、通过PCR-SSCP及测序分析,发现APOA1基因第411碱基处C>G的突变,该突变位于第二内含子,秦川牛、鲁西牛、夏南牛、郏县红牛在该位点中处于中度多态,南阳牛、安格斯牛、安西牛群体在该位点为低度多态;秦川牛在该位点处于Hardy-Weinberg非平衡状态,其他牛群均达到平衡状态;该位点与肉质和胴体性状无相关性。通过6个随机个体测序及比对发现,在ApoA1基因第1523碱基处T>G的突变,第1572碱基处C>A的突变,均发生在ApoA1基因第3外显子,但未引起氨基酸的变化。通过PCR-RFLP检测发现,ApoA1基因1523 T>G位点在鲁西牛、南阳牛、郏县红牛群体中为中度多态,在秦川牛、夏南牛、安格斯牛、安西牛群体中为低度多态;鲁西牛、南阳牛、郏县红牛在该位点处于Hardy-Weinberg非平衡状态,其他牛群均达到平衡状态;该多态位点与秦川牛背膘厚显著相关,GT型个体显著高于TT型个体(P<0.05)。ApoA1基因1572 C>A位点除安西牛外其他牛种均处于中度多态;秦川牛、夏南牛在该位点处于Hardy-Weinberg非平衡状态,其他牛群均达到平衡状态;该多态位点与秦川牛背膘厚显著相关,CC基因型显著高于AC型和AA型(P<0.05)。
     4、采用电子克隆(e-PCR)及反转录PCR(RT-PCR),从秦川牛脂肪组织中克隆并鉴定了牛ApoA4基因cDNA的编码区,并用生物信息学方法对ApoA4蛋白进行了预测分析,发现该蛋白没有跨膜结构,在其20~21位氨基酸处很可能存在信号肽区域,并预测了其二级结构与三级结构。通过6个随机个体测序,并未发现该基因存在SNP位点。
To identify the genetic characteristics and to explore usable molecular markers with significant effects on economic important traits for efficient selection and improvement of Qinchuan cattle, PCR-SSCP, PCR-RFLP, DNA sequencing and bioinformatics techniques were applied to detect genetic variations of lipid metaboloism related genes among 787 individuals of seven breeds (Qinchuan, Nanyang, Jiaxian Red, Xianan, Luxi, Angus and Anxi). 4 genes (leptin、MC4R、ApoA1、ApoA4) , 5' untranslation region and 3' region of MC4R and ApoA4 had been analyzed. 101 indivduals among Qinchuan cattle were slaughted and some economic traits, i.e. meat quality and carcass composition, were determinated. Association analyses were carried out to evaluate the effects of genotypes of candidate genes on economic traits of Qinchuan cattle. And molecular markers function was analysed by bioinformation. The objects of this study were to discover the hereditary characteristics and to explore molecular markers with significant effects on economic important traits for efficient selection and improvement of Qinchuan breed. Finally, possible functions of variations identified in these candidiate genes were predicted by bioinformational methods. Results were shown as follows:
     1. PCR-SSCP and DNA sequencing method were used to study genetic variations of leptin gene exon 2 and exon 3. A 73C>T mutation was identified in exon 2, this SNP was moderate polymorphic in the seven populations; Qinchuan, Luxi, Nanyang, Jiaxian Red were at Hardy-Weinberg equiliabration and Xianan, Angus, Anxi were at Hardy-Weinberg disequiliabration; this SNP was high significantly associated with live weight and backfat thickness (P<0.01), was significantly associated with loin muscle area (P<0.05); CC type and CT type have high live weight and backfat thickness than TT type (P<0.01), CC type has high live weight and backfat thickness than CT type and TT type (P<0.05). This mutation lead Arg change into Cys, which hadα-helix lost in 24 and 146 position,β-sheet lost in 20 and 144 position in 2D structure and had aβ-turn change in 3D structure. The hydrophobicity structure min value change from -2.222 (29th AA) to -1.689 (102nd AA), and the loose degree did not change. The LP2 fragment in exon3 showed AA and AB type, AA has a mutation of 96 C>T, AB has 252C>T, 267T>C and 351C>T mutations. These SNPs were low polymorphic in the seven populations. The seven populations were at Hardy-Weinberg equiliabration in these SNPs. These SNPs were no significantly associated with economic in Qinchuan cattle (P>0.05). The LP3 fragment in exon3 showed no SNP.
     2. Bioinformatics analysis showed MC4R protein had highly similary strcture in AA sequence in differenet species. The result of DNA pool sequencing showed that 5' region (-293C>G, -193A>T, -192T>G, -129A>G, -84T>C) and exon (1069 C>G) SNPs in cattle MC4R gene. The PCR-RFLP result showed that -293C>G and -129A>G are linkage. Qinchuan, Luxi, Nanyang, Xianan, Jiaxian Red, and Angus populations were moderate polymorphic and were at Hardy-Weinberg equiliabration at -129A>G SNP. Anxi was low polymorphic and was at Hardy-Weinberg disequiliabration at -129A>G SNP. The -129A>G SNP was significantly associated with live weight in Qinchuan cattle (P<0.05), GG type had high live weight than AA type and AG type. All the 7 populations were moderate polymorphic and were at Hardy-Weinberg equiliabration at 1069 C>G SNP. The 1069 C>G SNP was significantly associated with live weight, carcass weight, backfat thickness and marbling scorce in Qinchuan cattle (P<0.05). GG type had high live weight, carcass weight than CC type (P<0.05), GG and CG type had high backfat thickness than CC type (P<0.05), GG type had high marbling scorce than CC type (P<0.05). The 1069 C>G mutation lead Leu change into Val, which hadα-helix lost in 280 position andβ-sheet lost in 281 in Val in 2D structure. The 3D structure, hydrophobicity structure and the loose degree did not change.
     3. PCR-SSCP and DNA sequencing method were used to detect a 411 C>G in APOA1 gene. This SNP located in intron 2 and was moderate polymorphic in Qinchuan, Luxi, Xianan and Jiaxian Red populations, was low polymorphic in Nanyang, Angus and Anxi populations. Qinchuan cattle were at Hardy-Weinberg disequiliabration at this SNP and other 6 populations were at Hardy-Weinberg equiliabration. The SNP was not significantly associated with economic in Qinchuan cattle (P>0.05). Through 6 random samples sequcening and alignment, 1523 T>G and 1572 C>A mutations were detected. These two SNPs were all located in exon 3 and did not lead to AA change. The 1523 T>G SNP was moderate polymorphic in Luxi, Nanyang and Jiaxian Red populations, was low polymorphic in Qinchuan, Xianan, Angus and Anxi populations. Luxi, Nanyang and Jiaxian Red populations were at Hardy-Weinberg disequiliabration at this SNP and other 4 populations were at Hardy-Weinberg equiliabration. The 1523 T>G SNP was significantly associated with backfat thickness in Qinchuan cattle. GT type had high backfat thickness than TT type (P<0.05). The 1572 C>A SNP was moderate polymorphic in all the 6 populations except Anxi population. Qinchuan and Xianan populations were at Hardy-Weinberg disequiliabration at this SNP and other 5 populations were at Hardy-Weinberg equiliabration. The 1572 C>A SNP was significantly associated with backfat thickness in Qinchuan cattle. CC type had high backfat thickness than AC and AA type (P<0.05).
     4. cDNA sequences of ApoA4 gene, which contained complete CDS, were e-cloned and identified from fat of Qinchuan cattle. ApoA4 protein had no transmembrane, probably has signal peptide in 20th to 21st AA. The 2D and 3D structure has been prediceted by bioinformatics methods. 6 random samples sequcening and alignment method were used to detect SNPs, no SNP was been found in ApoA4 gene.
引文
[1]农业部.肉牛养殖前景. http://www.agri.gov.cn, 2006.
    [2]昝林森,王卓,刘永峰.向奶牛要牛肉,构建资源节约型和谐牛业[J].中国奶牛, 2008(8): 3-6.
    [3]司智陟,聂凤英. 2007年中国牛羊肉市场回顾与展望[J].世界农业, 2008, 347(3): 31-33.
    [4]刘丑生,杨军香.我国肉牛业发展现状与对策[J].中国牧业通讯, 2007(20): 14-17.
    [5]张英汉.国际肉牛育种的新动向—小型肉牛培育[J].中国牛业科学, 2006, 32(1): 1-4.
    [6]昝林森.牛生产学(第二版) [M].北京:中国农业大学出版社, 2007 .
    [7] Semple R K, Chatterjee V K, O'Rahilly S. PPAR gamma and human metabolic disease [J]. J Clin Invest, 2006, 116(3): 581-589.
    [8] Green S. PPAR: a mediator of peroxisome proliferator action [J]. Mutat Res, 1995, 333(1-2): 101-109.
    [9] Lemberger T, Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology [J]. Annu Rev Cell Dev Biol, 1996, 12: 335-363.
    [10] Dreyer C, Krey G, Keller H, et al. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors [J]. Cell, 1992, 68(5): 879-887.
    [11] Juge-Aubry C E, Gorla-Bajszczak A, Pernin A, et al. Peroxisome proliferator-activated receptor mediates cross-talk with thyroid hormone receptor by competition for retinoid X receptor. Possible role of a leucine zipper-like heptad repeat [J]. J Biol Chem, 1995, 270(30): 18117-18122.
    [12] Landrier J F, Thomas C, Grober J, et al. Statin induction of liver fatty acid-binding protein (L-FABP) gene expression is peroxisome proliferator-activated receptor-alpha-dependent [J]. J Biol Chem, 2004, 279(44): 45512-45518.
    [13] McIntosh A L, Atshaves B P, Hostetler H A, et al. Liver type fatty acid binding protein (L-FABP) gene ablation reduces nuclear ligand distribution and peroxisome proliferator-activated receptor-alpha activity in cultured primary hepatocytes [J]. Arch Biochem Biophys, 2009, 485(2): 160-173.
    [14] Porras A, Valladares A, Alvarez A M, et al. Differential role of PPAR gamma in the regulation of UCP-1 and adipogenesis by TNF-alpha in brown adipocytes [J]. FEBS Lett, 2002, 520(1-3): 58-62.
    [15] Ito E, Ozawa S, Takahashi K, et al. PPAR-gamma overexpression selectively suppresses insulin secretory capacity in isolated pancreatic islets through induction of UCP-2 protein [J]. Biochem Biophys Res Commun, 2004, 324(2): 810-814.
    [16] Li L, Beauchamp M C, Renier G. Peroxisome proliferator-activated receptor alpha and gamma agonists upregulate human macrophage lipoprotein lipase expression [J]. Atherosclerosis, 2002, 165(1): 101-110.
    [17] Mandrup S, Lane M D. Regulating adipogenesis [J]. J Biol Chem, 1997, 272(9): 5367-5370.
    [18]刘美莲.过氧化物酶体增殖物激活受体研究的新进展[J].国外医学·生理、病理科学与临床分册, 2001, 21(5): 413-417.
    [19]孟和,李辉,王宇祥.鸡PPARs基因组织表达特性的研究[J].遗传学报, 2004, 31(7): 682-687.
    [20] Pelto G H, Freake H C. Social research in an integrated science of nutrition: future directions [J]. J Nutr, 2003, 133(4): 1231-1234.
    [21]孟和,王桂华,王启贵,等.鸡PPAR基因单核苷酸多态与脂肪性状相关的研究[J].遗传学报, 2002, 29(2): 119-123.
    [22] Schoonjans K, Watanabe M, Suzuki H, et al. Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter [J]. J Biol Chem, 1995, 270(33): 19269-19276.
    [23] Kadowaki T. PPAR gamma agonist and antagonist [J]. Nippon Yakurigaku Zasshi, 2001, 118(5): 321-326.
    [24] Agostini M, Gurnell M, Savage D B, et al. Tyrosine agonists reverse the molecular defects associated with dominant-negative mutations in human peroxisome proliferator-activated receptor gamma [J]. Endocrinology, 2004, 145(4): 1527-1538.
    [25]王国英,李琼芳,邓正照,等. PPARγ基因多态性与2型糖尿病相关性研究[J].中国糖尿病杂志, 2002, 10(2): 74-77.
    [26] Araki E, Igata M, Motoshima H, et al. Polymorphisms of PPARs and metabolic disorders [J]. Nippon Rinsho, 2005, 63(4): 617-622.
    [27] Tanko L B, Siddiq A, Lecoeur C, et al. ACDC/adiponectin and PPAR-gamma gene polymorphisms: implications for features of obesity [J]. Obes Res, 2005, 13(12): 2113-2121.
    [28] Evans D, de Heer J, Hagemann C, et al. Association between the P12A and c1431t polymorphisms in the peroxisome proliferator activated receptor gamma (PPAR gamma) gene and type 2 diabetes [J]. Exp Clin Endocrinol Diabetes, 2001, 109(3): 151-154.
    [29]解相林,王栋,王慧. PPAR基因多态性与肉鸡脂肪性状的相关性研究[J].畜牧兽医学报, 2005, 36(12): 1261-1264.
    [30] Chmurzynska A. The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism [J]. J Appl Genet, 2006, 47(1): 39-48.
    [31] Ockner R K, Manning J A, Poppenhausen R B, et al. A binding protein for fatty acids in cytosol of intesdnal mucosa,liver,myocardium,and other tissue [J]. Science, 1972, 177: 56-58.
    [32] Poirier H, Niot I, Degrace P, et al. Fatty acid regulation of fatty acid-binding protein expression in the small intestine [J]. Am J Physiol, 1997, 273(2 Pt 1): G289-295.
    [33] Ockner R K, Manning J A. Fatty acid-binding protein in small intestine. Identification, isolation, and evidence for its role in cellular fatty acid transport [J]. J Clin Invest, 1974, 54(2): 326-338.
    [34] Mallordy A, Poirier H, Besnard P, et al. Evidence for transcriptional induction of the liver fatty-acid-binding-protein gene by bezafibrate in the small intestine [J]. Eur J Biochem, 1995, 227(3): 801-807.
    [35] Niewold T A, Meinen M, Vander M J. Plasma intestinal fatty acid binding protein concentrations increase following in estinal ischemia in pigs [J]. Res Vet Sci, 2004, 77(1): 89-91.
    [36] Motohashi K, Yamamoto Y, Shioda N, et al. [Role of heart-type fatty acid binding protein in the brain function] [J]. Yakugaku Zasshi, 2009, 129(2): 191-195.
    [37] Veerkamp J H, Peeters R A, JMaatman R. Structural and functional features of different types ofcytoplasmic fatty acid-binding protein [J]. Biochem Biophys Acta, 1991(1081): 1-24.
    [38] Maeda K. Role of adiponectin and adipocyte fatty acid binding protein in the metabolic syndrome [J]. Diabetes Res Clin Pract, 2007, 77 Suppl 1: S17-22.
    [39] HVeerkamp J. Cytoplas mic fatty acid- binding proteins :their structure and genes [J]. Prog Lipid Res, 1995, 34(1): 17-20.
    [40] Binas B, Danneberg H, McWhir J, et al. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilizations [J]. FASEB, 1999(13): 805-812.
    [41] Schaap F G, Binas B, Danneberg H, et al. Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene [J]. Circ Res, 1999, 85(4): 329-337.
    [42] Gerbens F, Harders F L, Groenen M A, et al. A dimorphic microsatellite in the porcine H-FABP gene at chromosome 6 [J]. Anim Genet, 1998, 29(5): 408.
    [43] Gerbens F, van Erp A J, Harders F L, et al. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs [J]. J Anim Sci, 1999, 77(4): 846-852.
    [44] Gerbens F, de Koning D J, Harders F L, et al. The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs [J]. J Anim Sci, 2000, 78(3): 552-559.
    [45]林万华,黄路生,任军,等.中外十个猪种H-FABP基因遗传变异的研究[J].遗传学报, 2002, 29(1): 12-15.
    [46]李祯,曹红鹤,储明星,等.中外11个猪种H-FABP基因PCR-RFLP的研究[J].畜牧兽医学报, 2003, 34(4): 313-317.
    [47]李武峰,许尚忠,曹红鹤,等. 23个杂交牛种H-FABP基因第二内含子的遗传变异与肉品质性状的相关分析[J].畜牧兽医学报, 2004, 35(3): 252-255.
    [48]王卓,昝林森.秦川牛H-FABP基因第1外显子SNP及其与部分肉用性状相关性的研究[J].西北农林科技大学学报(自然科学版), 2008, 36(11):1-15.
    [49]周国利,朱奇,郭善利,等.鲁西黄牛H-FABP基因的多态性及其与肉质性状关系的分析[J].西北农业学报, 2005, 14(3): 5-7.
    [50]滑留帅,固原本地黄牛及其利杂群体育肥屠宰性能与相关分子标记研究[D].陕西杨凌:西北农林科技大学, 2007.
    [51] Fisher R M, Eriksson P, Hoffstedt J, et al. Fatty acid binding protein expression in different adipose tissue depots from lean and obese individuals [J]. Diabetologia, 2001, 44(10): 1268-1273.
    [52] Hertzel A V, Bennaars-Eiden A, Bernlohr D A. Increased lipolysis in transgenic animals overexpressing the epithelial fatty acid binding protein in adipose cells [J]. J Lipid Res, 2002, 43(12): 2105-2111.
    [53]王启贵,鸡FABP基因克隆、表达特性及功能研究[D].哈尔滨:东北农业大学. 2004.
    [54]罗桂芬,陈继兰,文杰,等.鸡A-FABP基因多态性分析及其与脂肪性状的相关研究[J].遗传, 2006, 28(1): 39-42
    [55] Hu E, Liang P, Spiegelman B M. AdipoQ is a novel adipose-specific gene dysregulated in obesity [J]. J Biol Chem, 1996, 271(18): 10697-10703.
    [56] Saito K, Tobe T, Minoshima S, et al. Organization of the gene for gelatin-binding protein (GBP28)[J]. Gene, 1999, 229(1-2): 67-73.
    [57] Scherer P E, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes [J]. J Biol Chem, 1995, 270(45): 26746-26749.
    [58] Owecki M, Sowinski J. [Adiponectin and its role in the pathogenesis of obesity, diabetes mellitus and insulin resistance] [J]. Pol Merkur Lekarski, 2006, 20(117): 355-357.
    [59] Takahashi M, Arita Y, Yamagata K, et al. Genomic structure and mutations in adipose-specific gene, adiponectin [J]. Int J Obes Relat Metab Disord, 2000, 24(7): 861-868.
    [60] Shklyaev S, Aslanidi G, Tennant M, et al. Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats [J]. Proc Natl Acad Sci U S A, 2003, 100(24): 14217-14222.
    [61] Perez-Echarri N, Perez-Matute P, Martinez J A, et al. Serum and gene expression levels of leptin and adiponectin in rats susceptible or resistant to diet-induced obesity [J]. J Physiol Biochem, 2005, 61(2): 333-342.
    [62] Hotta K, Funahashi T, Bodkin N L, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys [J]. Diabetes, 2001, 50(5): 1126-1133.
    [63] Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity [J]. Nature Medicine, 2001(7): 941 - 946
    [64] Qi Y, Takahashi N, Hileman S M, et al. Adiponectin acts in the brain to decrease body weight [J]. Nat Med, 2004, 10(5): 524-529.
    [65] Fruebis J, Tsao T S, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice [J]. Proc Natl Acad Sci U S A, 2001, 98(4): 2005-2010.
    [66] Deepa S S, Dong L Q. APPL1: role in adiponectin signaling and beyond [J]. Am J Physiol Endocrinol Metab, 2009, 296(1): E22-36.
    [67] Combs T P, Berg A H, Obici S, et al. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30 [J]. J. Clin. Invest, 2001, 108(12): 1875-1881
    [68] Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase [J]. Nat Med, 2002, 8(11): 1288-1295.
    [69] Berg A H, Combs T P, Du X, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action [J]. Nat Med, 2001, 7(8): 947-953.
    [70] Ma K, Cabrero A, Saha P K, et al. Increased oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin [J]. J. Biol. Chem, 2002, 277, Issue 38(38): 34658-34661.
    [71] Kondo H, Shimomura I, Matsukawa Y, et al. Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome [J]. Diabetes, 2002, 51(7): 2325-2328.
    [72] Stumvoll M, Tschritter O, Fritsche A, et al. Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes [J]. Diabetes, 2002, 51(1): 37-41.
    [73] Hara K, Boutin P, Mori Y, et al. Genetic variation in the gene encoding adiponectin is associatedwith an increased risk of type 2 diabetes in the Japanese population [J]. Diabetes, 2002, 51(2): 536-540.
    [74] Vasseur F, Helbecque N, Dina C, et al. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians [J]. Human Molecular Genetic 2002, 11(21): 2607-2614.
    [75] Menzaghi C, Ercolino T, Di Paola R, et al. A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome [J]. Diabetes, 2002, 51(7): 2306-2312.
    [76] Zhang L, Chen H, Lan X, et al. The novel 5bp deletion polymorphism in the promoter region of bovine ACRP30 gene [J]. Mol Biol Rep, 2009, 36(5): 895-899.
    [77] Ricquier D, Bouillaud F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP [J]. Biochem J, 2000, 345 Pt 2: 161-179.
    [78] Fleury C, Sanchis D. The mitochondrial uncoupling protein-2: current status [J]. Int J Biochem Cell Biol, 1999, 31(11): 1261-1278.
    [79] Boss O, Samec S, Dulloo A, et al. Tissue-dependent upregulation of rat uncoupling protein-2 expression in response to fasting or cold [J]. FEBS Lett, 1997, 412(1): 111-114.
    [80] Larkin S, Mull E, Miao W, et al. Regulation of the third member of the uncoupling protein family, UCP3, by cold and thyroid hormone [J]. Biochem Biophys Res Commun, 1997, 240(1): 222-227.
    [81] Surwit R S, Wang S, Petro A E, et al. Diet-induced changes in uncoupling proteins in obesity-prone and obesity-resistant strains of mice [J]. Proc Natl Acad Sci U S A, 1998, 95(7): 4061-4065.
    [82] Antonio C M, Nunes M C, Refsum H, et al. A novel pathway for the conversion of homocysteine to methionine in eukaryotes [J]. Biochem J, 1997, 328 ( Pt 1): 165-170.
    [83] Affourtit C, Crichton P G, Parker N, et al. Novel uncoupling proteins [J]. Novartis Found Symp, 2007, 287: 70-80; discussion 80-91.
    [84] Boss O, Samec S, Paoloni-Giacobino A, et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression [J]. FEBS Lett, 1997, 408(1): 39-42.
    [85] Jimenez M, Yvon C, Lehr L, et al. Expression of uncoupling protein-3 in subsarcolemmal and intermyofibrillar mitochondria of various mouse muscle types and its modulation by fasting [J]. Eur J Biochem, 2002, 269(12): 2878-2884.
    [86] Pedersen S B, Nyholm B, Kristensen K, et al. Increased adiposity and reduced adipose tissue mRNA expression of uncoupling protein-2 in first-degree relatives of type 2 diabetic patients: evidence for insulin stimulation of UCP-2 and UCP-3 gene expression in adipose tissue [J]. Diabetes Obes Metab, 2005, 7(1): 98-105.
    [87] Millet L, Vidal H, Andreelli F, et al. Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans [J]. J Clin Invest, 1997, 100(11): 2665-2670.
    [88] Tu N, Chen H, Winnikes U, et al. Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene [J]. Life Sci, 1999, 64(3): PL41-50.
    [89] Urhammer S A, Dalgaard L T, Sorensen T I, et al. Organisation of the coding exons and mutational screening of the uncoupling protein 3 gene in subjects with juvenile-onset obesity [J]. Diabetologia, 1998, 41(2): 241-244.
    [90] Schrauwen P, Xia J, Walder K, et al. A novel polymorphism in the proximal UCP3 promoter region: effect on skeletal muscle UCP3 mRNA expression and obesity in male non-diabetic Pima Indians [J]. Int J Obes Relat Metab Disord, 1999, 23(12): 1242-1245.
    [91] Bouchard C, Perusse L, Chagnon Y C, et al. Linkage between markers in the vicinity of the uncoupling protein 2 gene and resting metabolic rate in humans [J]. Hum Mol Genet,, 1997(6): 1887-1889.
    [92] Walder K, Norman R A, Hanson R L, et al. Association between uncoupling protein polymorphisms (UCP2-UCP3) and energy metabolism/obesity in Pima indians [J]. Hum Mol Genet,, 1998, 7(9): 1431-1435.
    [93] Campbell D A, Sundaramurthy D, Gordon D, et al. Association between a marker in the UCP-2/UCP-3 gene cluster and genetic susceptibility to anorexia nervosa [J]. Mol Psychiatr, 1999, 4(1): 68-70.
    [94] Schrauwen P, Xia J, Bogardus C, et al. Skeletal muscle uncoupling protein 3 expression is a determinant of energy expenditure in Pima Indians [J]. Diabetes, 1999, 48(1): 146-149.
    [95] Larsen N J, Marklund S, Kelly K A, et al. New insights into porcine-human synteny conservation [J]. Mammalian Genome, 1999, 10(5): 488-491.
    [96] Werner P, Neuenschwander S, Stranzinger G. Characterization of the porcine uncoupling proteins 2 and 3 (UCP2 & UCP3) and their localization to chromosome 9 p by somatic cell hybrids [J]. Anim Genet, 1999, 30(3): 221-224.
    [97] Mostyn A, Linen J C, Perkins K S, et al. Influence of size at birth on the endocrine profiles and expression of uncoupling proteins in subcutaneous adipose tissue, lung, and muscle of neonatal pigs [J]. Am J Physiol Regul Integr Comp Physiol, 2005, 288(6): 1536-1542.
    [98] Patrick H, Annie V, Marie D. Effect of breed and body weight on thermoregulatory abilities of European (Pietrain×(Landrace×Large White)) and Chinese(Meishan) piglets at birth[[J]. Livestock Production Science, 2004, 88: 17-26.
    [99] Ramsay T G, Rosebrough R W. Regulation of uncoupling proteins 2 and 3 in porcine adipose tissue [J]. Domest Anim Endocrinol, 2005, 28(4): 351-366.
    [100]方美英,赵兴波,李宁,等.不同品种猪解耦联蛋白基因3'调控区的遗传变异[J].科学通报, 2002, 47(13): 1010-1012.
    [101]涂荣剑,邓昌产,熊远著.猪UCP3基因部分编码区序列分析及其单核苷酸多态与胴体、质性状的遗传效应[J].遗传学报, 2004, 31(8): 807-812.
    [102]韩瑞华.秦川牛及其杂种牛UCP3、IGF2、CAPN1基因多态性与胴体、肉质性状的关系研究[D].陕西杨凌:西北农林科技大学, 2008.
    [103] Wolins N E, Quaynor B K, Skinner J R, et al. S3-12, Adipophilin, and TIP47 package lipid in adipocytes [J]. J Biol Chem, 2005, 280(19): 19146-19155.
    [104] Gao J, Serrero G. Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake [J]. J Biol Chem, 1999, 274(24): 16825-16830.
    [105] Subramanian V, Rothenberg A, Gomez C, et al. Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes [J]. J Biol Chem, 2004, 279(40): 42062-42071.
    [106] Prats C, Donsmark M, Qvortrup K, et al. Decrease in intramuscular lipid droplets and translocationof HSL in response to muscle contraction and epinephrine [J]. J Lipid Res, 2006, 47(11): 2392-2399.
    [107] Wang X, Reape T J, Li X, et al. Induced expression of adipophilin mRNA in human macrophages stimulated with oxidized low-density lipoprotein and in atherosclerotic lesions [J]. FEBS Lett, 1999, 462(1-2): 145-150.
    [108] Schultz C J, Torres E, Londos C, et al. Role of adipocyte differentiation-related protein in surfactant phospholipid synthesis by type II cells [J]. Am J Physiol Lung Cell Mol Physiol, 2002, 283(2): L288-296.
    [109] Jiang H P, Serrero G. Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein [J]. Proc Natl Acad Sci U S A, 1992, 89(17): 7856-7860.
    [110] Buechler C, Ritter M, Duong C Q, et al. Adipophilin is a sensitive marker for lipid loading in human blood monocytes [J]. Biochim Biophys Acta, 2001, 1532(1-2): 97-104.
    [111] Nakamura N, Fujimoto T. Adipose differentiation-related protein has two in dependent domains for targeting to lipid droplets [J]. Biochem Biophys Res Commun, 2003, 306: 333-338.
    [112]赵雪莲,猪ADFP基因的克隆、染色体定位及其生物学功能研究[D].湖北武汉:华中农业大学, 2005.
    [113] Adams M, Reginato M J, Shao D, et al. Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site [J]. J Biol Chem, 1997, 272(8): 5128-5132.
    [114] Mishra R, Emancipator S N, Miller C, et al. Adipose differentiation-related protein and regulators of lipid homeostasis identified by gene expression profiling in the murine db/db diabetic kidney [J]. Am J Physiol Renal Physiol, 2004, 286(5): F913-921.
    [115] O'Rahilly S, Wainscoat J S, Turner R C. Type 2 (non-insulin-dependent) diabetes mellitus. New genetics for old nightmares [J]. Diabetologia, 1988, 31(7): 407-414.
    [116] Heid H W, Moll R, Schwetlick I, et al. Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases [J]. Cell Tissue Res, 1998, 294(2): 309-321.
    [117]吴刚,李果,骆天红,等.脂肪分化相关蛋白基因与2型糖尿病相关[J].中华内分泌代谢杂志, 2004, 20: 304-306.
    [118] Kim T H, Choi B H, Chang G W, et al. Molecular characterization and chromosomal mapping of porcine adipose differentiation-related protein (ADRP) [J]. J Anim Breed Genet, 2005, 122(4): 240-246.
    [119]赵小玲,刘益平,李亮,等.脂肪性状相关蛋白基因多态性与优质鸡屠宰性状和肌间脂肪含量的相关性研究[J].遗传, 2007, 29(12): 1483-1490.
    [120] Umapathy E, Makinde M, Huang Z. Effect of chronic under nutrition on growth, serum insulin-like growth factor-Ⅰ(IGF-Ⅰ) and insulin-like growth factor -binding proteins (IGFBP) in pigs [J]. Nutr Res, 2000, 20(4): 537-546.
    [121] Froesch E R, Buergi H, Ramseier E B, et al. Antibody-Suppressible and Nonsuppressible Insulin-Like Activities in Human Serum and Their Physiologic Significance. an Insulin Assay with Adipose Tissue of Increased Precision and Specificity [J]. J Clin Invest, 1963, 42: 1816-1834.
    [122] Merkel M, Eckel R H, Goldberg I J. Lipoprotein lipase: genetics, lipid uptake, and regulation [J]. J Lipid Res, 2002, 43(12): 1997-2006.
    [123] Preiss-Landl K, Zimmermann R, Hammerle G, et al. Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism [J]. Curr Opin Lipidol, 2002, 13(5): 471-481.
    [124] Casas E, White S N, Riley D G, et al. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle [J]. J Anim Sci, 2005, 83(1): 13-19.
    [125] Otsu K, Khanna V K, Archibald A L, et al. Cosegregation of porcine malignant hyperthermia and a probable causal mutation in the skeletal muscle ryanodine receptor gene in backcross families [J]. Genomics, 1991, 11(3): 744-750.
    [126]徐秀容. DGAT1和DGAT2基因多态性与牛部分经济性状相关性的研究[D].陕西杨凌:西北农林科技大学, 2004.
    [127] Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue [J]. Nature, 1994, 372(6505): 425-432.
    [128] Sasaki S, Clutter A C, Pomp D. Assignment of the porcine obese (leptin) gene to chromosome 18 by linkage analysis of a new PCR-based polymorphism [J]. Mamm Genome, 1996, 7(6): 471-472.
    [129] Stone R T, Kappes S M, Beattie C W. The bovine homolog of the obese gene maps to chromosome 4 [J]. Mamm Genome, 1996, 7(5): 399-400.
    [130] Pfister-Genskow M, Hayes H, Eggen A, et al. Chromosomal localization of the bovine obesity (OBS) gene [J]. Mamm Genome, 1996, 7(5): 398-399.
    [131] Vogel G. Leptin: a trigger for puberty? [J]. Science, 1996, 274(5292): 1466-1467.
    [132] Lord G M, Matarese G, Howard J K, et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression [J]. Nature, 1998, 394(6696): 897-901.
    [133] Barinaga M. Leptin sparks blood vessel growth [J]. Science, 1998, 281(5383): 1582.
    [134] Lebrethon M C, Aganina A, Fournier M, et al. Effects of in vivo and in vitro administration of ghrelin, leptin and neuropeptide mediators on pulsatile gonadotrophin-releasing hormone secretion from male rat hypothalamus before and after puberty [J]. J Neuroendocrinol, 2007, 19(3): 181-188.
    [135] Paczoska-Eliasiewicz H E, Proszkowiec-Weglarz M, Proudman J, et al. Exogenous leptin advances puberty in domestic hen [J]. Domest Anim Endocrinol, 2006, 31(3): 211-226.
    [136] Shan T, Wang Y, Guo J, et al. The Body Weight-related Differences of Leptin and Neuropeptide Y (NPY) Gene Expression in Pigs [J]. J. Anim. Sci., 2008, 85(Suppl): 77-78.
    [137] Prolo P, Wong M, Licinio J. Molecules in focus leptin [J]. The International Journal of Biochemistry & Cell Biology, 1998, 30: 1285-1290.
    [138]杨东英.黄牛生长性能候选基因多态性及其与生长发育相关性研究[D].陕西杨凌:西北农林科技大学, 2006.
    [139] Liefers S C, te Pas M F, Veerkamp R F, et al. Association of leptin gene polymorphisms with serum leptin concentration in dairy cows [J]. Mamm Genome, 2003, 14(9): 657-663.
    [140] Nkrumah J D, Li C, Yu J, et al. Polymorphisms in the bovine leptin promoter associated with serum leptin concentration, growth, feed intake, feeding behavior, and measures of carcass merit [J]. J Anim Sci, 2005, 83(1): 20-28.
    [141] Liefers S C, Veerkamp R F, te Pas M F, et al. Leptin promoter mutations affect leptin levels and performance traits in dairy cows [J]. Anim Genet, 2005, 36(2): 111-118.
    [142] Liefers S C, Veerkamp R F, Te Pas M F, et al. Genetics and physiology of leptin in periparturient dairy cows [J]. Domest Anim Endocrinol, 2005, 29(1): 227-238.
    [143] Liefers S C, te Pas M F, Veerkamp R F, et al. Associations between leptin gene polymorphisms and production, live weight, energy balance, feed intake, and fertility in Holstein heifers [J]. J Dairy Sci, 2002, 85(6): 1633-1638.
    [144] Buchanan F C, VanKessel A G, Waldner C, et al. Hot Topic : An association between a Leptin Single Nucleotide Polymorphism and Milk and Protein Yield [J]. Dairy Sci, 2003, 86(10): 3164-3166.
    [145] Fitzsimmons C J, Schmutz S M, Bergen R D, et al. A potential association between the BM 1500 microsatellite and fat deposition in beef cattle [J]. Mammalian Genome, 1998, 9: 432-434.
    [146] Buchanan F C, Fitzsimmons C J, Van Kessel A G, et al. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels [J]. Genet Sel Evol, 2002, 34(1): 105-116.
    [147] Kononoff P J, Deobald H M, Stewart E L, et al. The effect of a leptin single nucleotide polymorphism on quality grade, yield grade, and carcass weight of beef cattle [J]. J Anim Sci, 2005, 83(4): 927-932.
    [148] Barendse W, Bunch R J, Harrison B E. The leptin C73T missense mutation is not associated with marbling and fatness traits in a large gene mapping experiment in Australian cattle [J]. Animal Genetics, 2005, 36(1): 86-88.
    [149] Abbott C R, Rossi M, Kim M. Investigation of the melanocyte stimulating hormone on food intake.Lack of evidence to support a role for the melanocortin-3-receptor [J]. Brain Res, 2000, 869(1-2): 203-210.
    [150] Gantz I, Miwa H, Konda Y, et al. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor [J]. J Biol Chem, 1993, 268(20): 15174-15179.
    [151] Mountjoy K G, Mortrud M T. Localization of the melanocortin4 receptor (MC4R) in neuroendocrine and autonomic control circuitsin the brain [J]. Mol Endocrinol, 1994, 8(1): 1298- 1308.
    [152] Butler A A, Kesterson R A, Khong K, et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse [J]. Endocrinology, 2000, 141(9): 3518-3521.
    [153] Chen A S, Marsh D J, Trumbauer M E, et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass [J]. Nat Genet, 2000, 26(1): 97-102.
    [154] Lee Y S, Poh L K, Kek B L, et al. The role of melanocortin 3 receptor gene in childhood obesity [J]. Diabetes, 2007, 56(10): 2622-2630.
    [155] Kim K S, Larsen N, Short T, et al. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits [J]. Mamm Genome, 2000, 11(2): 131-135.
    [156] Huszar D, Lynch C A, Fairchild-Huntress V, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice [J]. Cell, 1997, 88(1): 131-141.
    [157] Haegeman A, Coopman F, Jacobs K, et al. Bovine melanocortin receptor 4: cDNA sequence, polymorphisms and mapping [J]. Anim Genet, 2001, 32(4): 189-192.
    [158]刘桂兰,蒋思文,熊远著,等.猪资源家系MC4R基因扫描及其与脂肪性状的相关分析[J].遗传学报, 2002, 29(6): 497-501.
    [159]李长龙,潘玉春,孟和,等. H-FABP、MC4R、ADD1基因多态性在3个猪群中分布及其与肌内脂肪和背膘的相关研究[J].遗传, 2006, 28(2): 159-164.
    [160] O'vilo C, Fernandez A, Rodr?guez M C. Association of MC4R gene variants with growth, fatness, carcass composition and meat and fat quality traits in heavy pigs [J]. Meat Science, 2006, 73: 42-47.
    [161] Li C L, Pan Y C, Meng H. Polymorphism of the H-FABP, MC4R and ADD1 genes in the Meishan and four other pig populations in China [J]. South African Journal of Animal Scinece, 2006, 36: 1-6.
    [162] Han S H, Lee S S, Ko M S. Effects of a porcine MC4R polymorphism (892G > A) on carcass traits in commercial pigs [J]. Journal of Animal Science and Technology, 2007, 49(10): 569-576.
    [163] Jokubka R, Maak S, Kerziene S, et al. Association of a melanocortin 4 receptor (MC4R) polymorphism with performance traits in Lithuanian White pigs [J]. J Anim Breed Genet, 2006, 123(1): 17-22.
    [164] Houston R D, Cameron N D, Rance K A, et al. A melanocortin-4 receptor (MC4R) polymorphism is associated with performance traits in divergently selected large white pig populations [J]. Animal Genetics, 2004, 35(5): 386-390.
    [165]张春雷.黄牛能量平衡调控候选基因变异及其与生长性状相关分析[D].陕西杨凌:西北农林科技大学, 2007.
    [166] Sherman E L, Nkrumah J D, Murdoch B M, et al. Polymorphisms and haplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-like growth factor 2, and uncoupling proteins 2 and 3 genes and their associations with measures of growth, performance, feed efficiency, and carcass merit in beef cattle [J]. J Anim Sci, 2008, 86(1): 1-16.
    [167] Steinberg D, Gotto A M. Preventing Coronary Artery Disease by Lowering Cholesterol Levels Fifty Years From Bench to Bedside [J]. JAMA, 1999, 282( 21): 2043-2050.
    [168]刘合,张思仲,苏智广,等. APOA1/C3/A4/A5基因簇的新载脂蛋白基因:APOA5及其研究进展[J].遗传, 2004, 26(6): 953-956.
    [169] Chien K L, Chen M F, Hsu H C, et al. Genetic association study of APOA1/C3/A4/A5 gene cluster and haplotypes on triglyceride and HDL cholesterol in a community-based population [J]. Clin Chim Acta, 2008, 388(1-2): 78-83.
    [170] Brown C M, Rea T J, Hamon S C, et al. The contribution of individual and pairwise combinations of SNPs in the APOA1 and APOC3 genes to interindividual HDL-C variability [J]. J Mol Med, 2006, 84(7): 561-572.
    [171] Eichenbaum-Voline S, Olivier M, Jones E L, et al. Linkage and association between distinct variants of the APOA1/C3/A4/A5 gene cluster and familial combined hyperlipidemia [J]. Arterioscler Thromb Vasc Biol, 2004, 24(1): 167-174.
    [172] Payseur B A, Clark A G, Hixson J, et al. Contrasting multi-site genotypic distributions among discordant quantitative phenotypes: the APOA1/C3/A4/A5 gene cluster and cardiovascular disease risk factors [J]. Genet Epidemiol, 2006, 30(6): 508-518.
    [173] Antonarakis S E, Oettgen P, Chakravarti A, et al. DNA polymorphism haplotypes of the human apolipoprotein APOA1-APOC3-APOA4 gene cluster [J]. Hum Genet, 1988, 80(3): 265-273.
    [174]王云龙,卢恕来,陈保生.载脂蛋白A-I结构及其功能[J].生命的化学, 2008, 28(3): 279-282.
    [175] Tregouet D A, Ricard S, Nicaud V, et al. In-depth haplotype analysis of ABCA1 gene polymorphisms in relation to plasma ApoA1 levels and myocardial infarction [J]. Arterioscler Thromb Vasc Biol, 2004, 24(4): 775-781.
    [176]李辉,徐贵发, Patrick T.载脂蛋白ApoA4的研究进展[J].预防医学文献信息, 2004, 10(2): 196-199.
    [177] Tso P, Yao L, Zheng S, et al. Regulation of intestinal apolipoprotein ApoA4 synthesis [J]. J of Gatroenterology and Hepatology, 1998, 13: 270-274.
    [178] Doi T, Liu M, Tso P, et al. Effect of leptin on intestinal apolipoprotein ApoA4 in response to lipid feeding [J]. Am J Physiol Regulatory Interative Comp Physiol, 2001, 281: 753-759.
    [179] Kamboh M I, Crawford M H, Aston C E, et al. Population distributions of APOE, APOH, and APOA4 polymorphisms and their relationships with quantitative plasma lipid levels among the Evenki herders of Siberia [J]. Hum Biol, 1996, 68(2): 231-243.
    [180] Herron K L, Lofgren I E, Adiconis X, et al. Associations between plasma lipid parameters and APOC3 and APOA4 genotypes in a healthy population are independent of dietary cholesterol intake [J]. Atherosclerosis, 2006, 184(1): 113-120.
    [181] Ellegren H. Linkage mapping of the apolipoprotein A-I (APOA1) gene to pig chromosome 9 [J]. Mamm Genome, 1994, 5(1): 58-59.
    [182] Bryne P F, McMullen M D. Defining genes for agricultural traits: QTL analysis and the candidate gene approach [J]. Probe, 1996, 7: 24-27.
    [183] Blum E, Mazourek M, O'Connell M, et al. Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum [J]. Theor Appl Genet, 2003, 108(1): 79-86.
    [184]吴艳.肉鸭脂肪性状相关候选基因的克隆、表达及其与胴体和脂肪性状的关联分析[D].陕西杨凌:西北农林科技大学, 2008.
    [185] Li N, Zhao Y F, Xiao L, et al, Candidate gene approach for identification of loci controlling litter size in swine [A]. 6th World Congress on Genetics Applied to Livestock Production [C]. Armidale: Australia, 1998, 26: 183-186.
    [186]蓝贤勇.山羊重要功能基因遗传分析及其与经济性状的关系[D].陕西杨陵:西北农林科技大学, 2007.
    [187] Lagziel A, Lipkin E, Soller M. Associations between SSCP haplotypes at the boving growth hormone and milk protein percentage [J]. Genetics, 1996, 142: 945-951.
    [188] Lebowitz R, Beckman S M. Trait based designs for determination of linkage between marker loci and quantitative trait loci [J]. Theor Appl Genet, 1986, 72: 556-562.
    [189]宋九洲,张沅. DNA片段多态性与标记基因辅助选择(MAS) [J].中国畜牧杂志, 1994, 30(5): 49-51.
    [190] Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits [J]. Genetics, 1990, 124: 743-765.
    [191] Brookes A J. The essence of SNPs [J]. Gene, 1999, 234(2): 177-186.
    [192] Gan Q F, Zhang L P, Li J Y, et al. Association analysis of thyroglobulin gene variants with carcass and meat quality traits in beef cattle [J]. J Appl Genet,, 2008, 49(3): 251-255.
    [193]阮庆国,陆春叶.基因突变分析技术综述[J].国外医学遗传学分册, 1998, 21(5): 225-231.
    [194] Hoshino S, Kimara A, Fukuda Y, et al, Human immunology [M], NEW YORK USA, ELSEVIER SCIENCE PUBLISHERS, 1992, 33: 98.
    [195] Wang D G, Fan J B, Siao C J, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome [J]. Science, 1998, 280(5366): 1077-1082.
    [196] Krawetz S A, Womble D D. Design and implementation of an introductory course for computer applications in molecular genetics. A case study [J]. Mol Biotechnol, 2001, 17(1): 27-41.
    [197] Achard F, Vaysseix G, Barillot E. XML, bioinformatics and data integration [J]. Bioinformatics, 2001, 17(2): 115-125.
    [198]张德礼,马大龙,钱敏平.人类新基因电子克隆的自动化软件系统建立和实验验证与功能研究[J].科技导报, 2002, 8: 23-27.
    [199] Karolchik D, Hinrichs A S, Furey T S, et al. The UCSC Table Browser data retrieval tool [J]. Nucleic Acids Res, 2004, 32(Database issue): D493-496.
    [200] Kuhn R M, Karolchik D, Zweig A S, et al. The UCSC Genome Browser Database: update 2009 [J]. Nucleic Acids Res, 2009, 37(Database issue): D755-761.
    [201] Thompson J D, Plewniak F, Poch O. A comprehensive comparison of multiple sequence alignment programs [J]. Nucleic Acids Res, 1999, 27(13): 2682-2690.
    [202] Gasteiger E, Gattiker A, Hoogland C, et al. ExPASy: The proteomics server for in-depth protein knowledge and analysis [J]. Nucleic Acids Res, 2003, 31(13): 3784-3788.
    [203] Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000 [J]. Nucleic Acids Res, 2000, 28(1): 45-48.
    [204] Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments [J]. Comput Appl Biosci, 1995, 11(6): 681-684.
    [205]庄志尧,赵吉林,魏春耕,等, GB/T 17238-1998鲜、冻分割牛肉.北京:中国标准出版社, 1998.
    [206] Sambrook J, Fritsch E F, Maniatis T, Molecular Cloning A Laboratory Manual. 1999, Beijing: Science Press.
    [207] Yoon D H, Cho B H, Park B L, et al. Highly polymorphic bovine leptin gene [J]. Asian-australas J .Anim. Sci., 2005, 18(1): 1548-1551.
    [208]杨东英,陈宏,张良志,等.中国5个牛种leptin基因外显子3的多态性分析[J].西北农林科技大学学报(自然科学版), 2006, 34(8): 17-22.
    [209] Vaiman D, Mercier D, Moazami-Goudarzi K, et al. A set of 99 cattle microsatellites: characterization, synteny mapping, and polymorphism [J]. Mamm Genome, 1994, 5(5): 288-297.
    [210]刘新武,昝林森,张佳兰.中国荷斯坦奶牛Leptin基因第2外显子多态性及其与产奶性状的相关性[J].西北农林科技大学学报(自然科学版), 2008, 36(11): 6-11.
    [211] Delavaud C, Ferlay A, Faulconnier Y, et al. Plasma leptin concentration in adult cattle: effects of breed, adiposity, feeding level, and meal intake [J]. J Anim Sci, 2002, 80(5): 1317-1328.
    [212] Sham P, Bader J S, Craig I, et al. DNA Pooling: a tool for large-scale association studies [J]. Nat Rev Genet, 2002, 3(11): 862-871.
    [213] Jones A C, Sampson J R, Cheadle J P. Low level mosaicism detectable by DHPLC but not bydirect sequencing [J]. Hum Mutat,, 2001, 17(3): 233-234.
    [214] Shiman S, Pisante-Shabm A, Yakir B. Quantitative technologies for allele frequency estination of SNPs in DNA pools [J]. Mol Cell Probes, 2002, 16: 429-434.
    [215] Zhang C L, Che H, Wang Y H, et al. Association of a missense mutation of the MC4R gene with growth traits in cattle [J]. Arch. Tierz., Dummerstorf, 2006, 49: 515-516.
    [216] Qiu X, Li N, Deng X, et al. The single nucleotide polymorphisms of chicken melanocortin-4 receptor (MC4R) gene and their association analysis with carcass traits [J]. Sci China C Life Sci, 2006, 49(6): 560-566.
    [217]李国辉,王金玉,陶勇,等.京海黄鸡MC4R基因新突变位点的分析[J].畜牧兽医杂志, 2008, 27(2): 28-30.
    [218]霍明东,王守志,李辉. MC4R基因多态性与鸡生长和体组成性状的相关研究[J].东北农业大学学报, 2006, 37(2): 184-189.
    [219] Zhang C L, Wang Y H, Chen H, et al. Association between variants in the 5'-untranslated region of the bovine MC4R gene and two growth traits in Nanyang cattle [J]. Mol Biol Rep, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700