活塞式煤油发动机点火提前角仿真计算与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与汽油相比,煤油因具有闪点低、粘度大、不易挥发等特性,且使用安全性能高,在一些军事背景的特种车辆中有较广阔的应用前景。但是由于煤油的雾化效果差,与汽油相比燃烧特性发生了较大的变化,特别是煤油的燃烧速度慢,对应的点火特性与汽油相比区别较大。点火提前角对发动机的性能有着重要的影响,国内外对活塞式煤油发动机的燃烧特性,特别是点火提前角特性研究较少,所以对发动机燃烧煤油的点火特性进行研究,具有重要的理论指导意义和工程应用价值。本文结合某国防预研项目,完成了某小型二冲程汽油发动机燃烧航空煤油的点火提前角及相关问题研究,内容围绕点火控制器的开发、点火提前角的标定与控制加以展开,主要研究内容和创新如下:
     1.为获得原型机的相关参数,建立了发动机的测试系统,对二冲程发动机的点火参数进行了采集和提取,获得了发动机燃烧汽油时的点火提前角,为分析发动机燃烧煤油的工作性能提供了参考依据。
     2.采用数值计算方法研究了发动机缸内煤油燃烧状况以及NOx排放。对燃烧室进行了三维建模,并利用动网格技术模拟了缸体运动。分析了发动机正常热工况,不同点火提前角和不同进气压力参数下的燃烧状况,比较了发动机燃烧煤油的排气温度和NOx排放等;探讨了火花塞周围影响点火成功的湍动能和速度场。对相同工况下汽油和煤油的燃烧性能进行对比,结果表明,煤油比汽油燃烧速度慢,点火滞燃期长。通过试验分析,在转速为5500r/min节气门开度为50%工况点,发动机燃烧煤油的最佳点火提前角要比燃烧汽油时的最佳点火提前角大10°CA。
     3.利用GT-POWER对发动机燃烧煤油的整机性能进行了数值模拟,探讨了点火提前角对发动机动力性、排放性能等的影响;分析了压缩比、进气压力、进气温度和空燃比等对点火提前角的影响;针对不同的工况条件,充分考虑动力性而忽略经济性与排放性的前提下,通过计算获取了发动机初始点火数据图(MAP),为发动机燃烧煤油的点火提前角控制提供了重要的理论依据。
     4.为寻求发动机最佳点火提前角,以GT-POWER仿真的初始点火MAP为参考,通过台架试验进行了标定修正,获得了不同工况下的燃烧煤油最佳点火MAP。基于模糊自寻优控制算法,发展了点火提前角标定方法,以初始点火MAP为基值,在稳态工况条件下对点火提前角标定,并通过Simulink与GT-POWER联合仿真验证了该方法的可行性。
     5.针对发动机燃烧煤油的爆震问题,采用了小波分析方法对不同点火提前角的缸内压力信号进行爆震检测分析,提取发动机爆震特征,为发动机燃烧煤油的点火提前角控制提供了参考依据。
     6.以嵌入式16位微控制器为核心,设计了点火电控单元的数据采集和控制硬件电路,完成了控制软件设计,实现了发动机的点火控制,并解决了火花塞电磁抗干扰问题。基于VisualStudio/C++平台设计了点火参数调整和监控标定系统,实现了对试验数据的实时监测、保存及历史数据的回放,以及发动机点火MAP实时在线改写功能。
     7.建立了发动机试验台,对论文研制的点火系统的发动机性能进行试验,并与原型机进行了对比。结果表明,点火提前角的重新标定获得了较好的动力输出性能,所研制的点火系统有效地提高了发动机的输出扭矩。对比分析了数值计算与试验结果,验证了数值计算结果的正确性;分析了不同点火提前角的煤油发动机的燃烧循环变动,结果表明其燃烧变动率均小于10%,发动机工作在正常范围内。在试验数据分析过程中,利用最小二乘支持向量机对发动机的缸内压力进行回归分析,该方法在样本数较少的情况下能得到比较精确的结果,提高了分析精度。
Kerosene has more extensive application prospects in some special vehicles of military back-ground compared with gasoline, owing to its characteristics such as low flash point, high viscosity,not easily volatile and high safty performance.Great changes have take place in combustion charac-teristics of kerosene as its poor atomization compared with gasoline; especially in the slow combus-tion of kerosene, the corresponding difference of ignition characteristics vary widely. Spark advancehas important influence on the engine performance. The research and application of piston enginecombustion kerosene characteristics are still less in the world, especially on the spark advance, so theresearch on combustion kerosene characteristics of piston engine has a highly theoretical significanceand value in engineering. In this thesis, the study work about the ignition of a mini two-stroke gaso-line engine burning aviation fuel is accomplished, and the content is to open out around the develop-ment, calibration and control of ignition ECU, combining to a defense pre-research project, and themajor study work and innovation are as follows:
     (1) An engine test system is established in order to acquire the parameters of experimental engine,and then the spark advance of the experimental engine is obtained by collecting and extracting theignition parameters, providing reference information for analysis of work performance of keroseneengine.
     (2) In order to know more about kerosene combustion status and the performance of NOx emis-sion, the method of numerical calculation is used.3D model of combustion chamber is established,and moving-mesh method is used to simulate cylinder body movement. The combustion status underdifferent spark advance and inlet pressure of normal heat engine is analyzed; its exhaust temperatureand NOx emissions are compared; the effect of kinetic energy field around the spark plug is analyzed.Finally, the combustion statuses of gasoline and kerosene combustion under the same parameters arecompared, and the results show that the combustion velocity of kerosene is slower than gasolion andignition delay of kerosene is longer than gasolion. Experiments show that the best spark advance ofkerosene is larger than that of gasoline10°CA when the engine runs in the speed of5500r/min,50%of throttle opening.
     (3) The numerical simulation of engine kerosene performance is carried out using GT-POWER,the influence of spark advance on engine power and emission performance are analyzed and discussed.And the influence on spark advance of the compression ratio, inlet air pressure, air temperature and air-fuel ratio are analyzed. Finally, through numerical calculation, initial spark advance MAP of dif-ferent working conditions is obtained based on power performance without regard to emissions andeconomic performance, providing reference for the control of spark advance of kerosene engine.
     (4) In order to make the engine work in optimal status, referencing to the initial spark advanceMAP obtained from GT-POWER simulation, the initial spark advance MAP is corrected by experi-ment platform and the best spark advance MAP is established under various working conditions. Incalibration method, based on the initial spark advance MAP, self-optimization fuzzy control of thespark advance is used under the engine working in steady-state conditions. Finially, the feasibility isvalided by Simulink and GT-POWER alliance simulation in algorithm.
     (5) Aiming at the knock problems of kerosene engine, the cylinder pressures of different sparkadvance are analyzed using the wavelet analysis method, and then extracted the knock characteristics,which gives reference to the control of kerosene engine spark advance.
     (6) With embedded16-bit micro-controller as the core, hardware circuit of data acquisition andcontrol is designed; the design of control software is completed; the engine spark ignition control isaccomplished and electromagnetic interference problem is solved. Based on the Visual Studio/C++platform, the ignition parameters calibration and experimental monitor systems are designed, enablingit to modify engine spark advance MAP in real-time, and realizing the experiment data real-time ob-servation, preservation and historical data playback.
     (7) Experimental platform of engine is established. After comparing with the engine performancebetween the original ignition system and the developed ignition system in this paper, the experimentalresults show that the last one can improve the engine power effectively and the re-calibration of sparkadvance is verified. The numerical simulation data and experimental data are compared and analyzed,and the numerical simulation results are validated. The engine performance and combustion cyclicvariation of different spark advance are analyzed using the cylinder pressure data acquired by experi-ment, the results show that the engine run well because the coefficient of variation is less than10%.During the processing of experimental data, the least squares support vector machine is proposed forthe regression analysis of the engine cylinder pressure data, which can acquire precision results, im-prove the analysis precision in the condition of few numbers of samples.
引文
[1] John W.. Status and prospects for two-stroke engines used in off-road recreational vehicles.Chrysalis Technology Group.2001:1-81.
    [2] W.W. Pulkarbek. Engineering Fundamentals of the Internal Combustion Engine. Prentice-Hall,Upper Saddle River, NJ,1997:1-10.
    [3]林海英,龙向阳.某型增压航空活塞发动机仿真研究.航空动力学报,2009,24(6):1332-1338.
    [4] Gordon P. Blair. Design and simulation of two-stroke engines. Warrendale, PA:Society ofAutomotive Engineers,1996:1-40.
    [5]林在犁,巫波,刘清泉,本世纪我国内燃机燃料的发展分析.内燃机,2009,12(6):1-5.
    [6] L. Maurice, T. Edwards. Liquid hydrocarbon fuels for hypersonic propulsion. ScramjetPropulsion Progr. Astronaut. Aeronaut, Reston, AIAA,2000(189),757-822.
    [7] Dolbeer, C. H..Evaluation of heavy fuel engines for small unmanned air vehicles. The Degree ofMaster of Science in Mechanical Engineering in the Department of Mechanical and AerospaceEngineering of The university of Alabama in Huntsville.2006.
    [8]刘济瀛等编著.中国喷气燃料[专著].北京:中国石化出版社,1991,23-75.
    [9] G. Cathcart, G. Dickson, S. Ahern. The Application of Air-Assist Direct Injection forSpark-ignited Heavy Fuel2-Stroke and4-Stroke Engines. Society of Automotive Engineers ofJapan, SAE Paper:2005-32-0065.
    [10]陈林林.二冲程煤油发动机性能数值模拟与喷油控制研究.[博士学位论文],南京:南京航空航天大学,2010.
    [11] Hiroshi Koseki. Combustion properties of large liquid pool fires. Fire Technology,1989,25(3),241-255.
    [12]冯崇毅,鲁植雄,何丹娅.汽车电子控制技术.北京:人民交通出版社,2005:88-104.
    [13] J.B. Heywood. Internal Combustion Engines Fundamentals. McGraw-Hill, New York,1989.
    [14]董敬,庄志,常思勤.汽车拖拉机发动机.北京:机械工业出版社,1996:64-72.
    [15]王晓薇.点火提前角优化对汽油机工作的影响.移动电源与车辆,2002(2):35-38.
    [16] Farhad Salimi, Amir H. Shamekhi and Ali M. Pourkhesalian. Effects of Spark Advance, A/FRatio and Valve Timing on Emission and Performance Characteristics of Hydrogen InternalCombustion Engine. SAE Paper:2009-01-1424
    [17] Kwanhee Choi, Hyungmin Lee, In Goo Hwang et al. Effects of various intake valve timings andspark timings on combustion, cyclic THC and NOX emissions during cold start phase with idleoperation in CVVT engine. Journal of Mechanical Science and Technology,2008,22:2254-2262.
    [18] S. X. Chen, J. J. Moskwa. Application of nonlinear sliding mode observers for cylinder pressurereconstruction. IFAC Control Engineering Practice, August1997,5(8):1115-1121.
    [19] Michael D. Gerty. Effects of operating conditions, compression ratio and gasoline reformate onSI engine knock limits. The Degree of Master of Science in Mechanical Engineering at theMassachusetts Institute of Technology,2005.
    [20] Yuichi Shimasaki, Masaki Kanehiro, Shigeki Baba, et al. Spark plug voltage analysis formonitoring combustion in an internal combustion engine. SAE paper, No.930461.
    [21] Philippe Dagaut, Michel Cathonnet. The ignition, oxidation, and combustion of kerosene: Areview of experimental and kinetic modeling. Progress in Energy and Combustion Sci-ence,2006,(32):48-92.
    [22]杨致明,李隆强.汽油机改烧煤油或柴油的研究.中国内燃机学会特种发动机分会四届一次学术交流论文集,2006,01:44-48.
    [23]尹家骐,温廷栋,李树田.多种燃料转子发动机.中国:实用新型, CN2558773,2003-07-02.
    [24] G. Cathcart, G. Dickson, S. Ahern. The Application of Air-Assist Direct Injection forSpark-ignited Heavy Fuel2-Stroke and4-Stroke Engines. Society of Automotive Engineers ofJapan, SAE Paper:2005-32-0065.
    [25] David T.F, Duane L.A and Peck C. The Performance of a Spark-Ignited Stratified-Charge TwoStroke Engine Operating on a Kerosine Based Aviation Fuel. SAE Paper:972737.
    [26] O. Obodeh and N. C. Akhere. Experimental study on the effects of kerosene-doped gasoline ongasoline-powered engine performance characteristics. Journal of Petroleum and GasEngineering, June2010,1(2):37-40.
    [27] Tomás de Almeida Formosinho Sanchez. Experimental study of a kerosene fuelled internalcombustion engine. A dissertation of the degree of Master,Lausanne: Industrial Energy SystemsLaboratory of the Federal Institute of Technology in Lausanne,2008.
    [28] HOOPER, P. Initial development of a multi-fuel stepped piston engine for unmanned aircraftapplication. Aircraft Engineering and Aerospace Technology,2001:459.
    [29] P. J. Suhy, L. W. Evers, Edward J et al. The Feasibility of Kerosene Fueled Spark IgnitedTwo-Stroke Engine. SAE Paper:911846.
    [30] Hardenberg H. O. The Middle Ages of the Internal-Combustion Engine SAE International.Warrendale,1999:1794-1886.
    [31] Obert, G. Internal Combustion Engines. International Textbook Company, Scranton,1968.
    [32]陈家瑞.汽车构造,上册(第二版).北京:机械工业出版社,2005:251-291.
    [33] Tran X. Phuoc. Laser-induced spark ignition fundamental and applications. Optics and Lasers inEngineering,2006,44:351-397.
    [34] WANG ChangJian, XU ShengLi, JIA GuangMing. Laser-induced spark ignition of H2/O2/Armixtures. Science in China (Technological Sciences),2007,50(6):797-806.
    [35] J. Kiefer. J.W. Tr ger. Z.S. Li. M. Aldén. Laser-induced plasma in methane and dimethyl etherfor flame ignition and combustion diagnostics. Applied Physics B: Lasers and Optics,2010,103(1),229-236.
    [36] Eric R, Mark S. Simulation-Based Engine Calibration: Tools, Techniques, and Applications.SAEPaper2004-01-1264.
    [37]周广猛,刘瑞林,李骏,等.基于模型的电控发动机标定技术.汽车技术,2011,1(1):1-5.
    [38] Helmuth Hochschwarzer and Wolfgang Kriegler Fullyl Automatic Determination andOptimization of Engine Conrtol Charactristics. SAE Paper.:920255
    [39] G.Schmitz,U.Oligschlger,G.Eifler.Automated System for Optimized Calibration of EngineManagement System.SAE Paper:940151.
    [40] S.N.M.Hains, et al..The Application of an Automatic Calibration Optimization Tool toDirect-injection Diesels. ImechE International Conference on Statistics and Modeling inAutomotive Engineeering, London,2000:123-126.
    [41]嵇翠华,孔峰,赵不贿,等.基于CAN总线的电控发动机标定系统的开发.内燃机工程,2006,27(5):24-28.
    [42]戴绪愚.自寻最优控制.北京:科学出版社,1986:12-25.
    [43] K. Johnson, L. Pao, M. Balas, et al. Control of variable-speed wind turbines: standard andadaptive techniques for maximizing energy capture. Control Systems Maga-zine, IEEE,2006,26(3):70–81.
    [44] Krstic, M., Wang, H.. Stability of extremum seeking feedback for general nonlinear dynamicssystems. Automatica,2000(36),595-601.
    [45] Guay, M., Zhang, T.. Adaptive extremum seeking control of nonlinear dynamic systems withparametric uncertainties. Automatica,2003(39),1283-1293.
    [46] A.A. Malikopoulos, P.Y. Papalambros, D. N. Assanis. A Learning Algorithm for Optimal InternalCombustion Engine Calibration in Real Time. Proceedings of the ASME2007InternationalDesign Engineering Technical Conferences&Computers and Information in EngineeringConference. Las Vegas, Nevada, USA.2007:4-7.
    [47] Meyer, S., Greff, A.. New Calibration Methods and Control Systems with Artificial NeuralNetworks. SAE Paper2002-01-1147.
    [48] G. Thompson, C.M. Atkinson, N.N. Clark. Neural Network Modeling of the Emissions andPerformance of a Heavy-Duty Diesel Engine. Proc. Inst. Mech. Engrs., Part D, Journal ofAutomobile Engineering,2000,214:111-126.
    [49]龚进峰,袁大宏.浅谈我国汽车电子产业现状及发展建议.汽车工程,2004,26(3):363-366.
    [50]周龙保.内燃机学.北京:机械工业出版社,1999:27-104.
    [51]龚金科,翟立谦,谭理刚,等.电控摩托车发动机喷油及点火控制建模与仿真.内燃机工程,2005,26(10):49-53.
    [52]沙超群,张付军,黄英,等.电控汽油机初始MAP图的仿真计算.车辆与动力技术,2000,80(04):45-48
    [53]谭理刚,龚金科,翟立谦,等.电控发动机喷油控制MAP的建模与仿真.汽车工程,2006,28(07):630-633.
    [54]刘金武,龚金科,谭理刚,等.基于多维模型的电喷汽油机MAP图的数值生成.汽车工程,2006,28(08):719-724.
    [55] S. X. Chen, J. J. Moskwa. Application of nonlinear sliding mode observers for cylinder pressurereconstruction. IFAC Control Engineering Practice, August1997,5(8):1115-1121.
    [56] Yuh-Yih Wu, Bo-Chiuan Chen, Feng-Chi Hsieh. Development of Hardware-In-the-LoopSimulation for Scooter Engine Control. SAE Paper2006-01-0614
    [57]李志军,陶俊卫,刘健,等.摩托车用二冲程汽油机智能点火器的研制.小型内燃机与摩托车,2004,34(6):9-11.
    [58] Lars Nielsen. Automotive Control Systems. For Engine, Driveline, and Vehicle. Second edition.Berlin:Springer.2005:56-146.
    [59] Norbert Muller, Oliver Nelles, Rolf Isermann. Closed-loop ignition control using online learningof locally-tuned radial basis function networks. Proceedings of the American Control conference,San Diego, California, June1999:1356-1360.
    [60] Paljoo Yoon, Seungbum Park, Myoungho Sunwoo. Closed-Loop Control of Spark Advance andAir-Fuel Ratio in SI Engines Using Cylinder Pressure. SAE Paper2000-01-0933.
    [61] Guoming G. Zhu, Chao F. Daniels, James Winkelman. Mbt Timing Detection and ItsClosed-Loop Control Using In-Cylinder Pressure Signal. SAE Paper2003-01-3266.
    [62] Hongwei Cui. Research of Optimizing Ignition Control System in Gaseous Fuel Engine Basedon RBF Neural Network. International Conference on Intelligent Computation Technology andAutomation,2008,1:399-403.
    [63] A. H Shamekhi, Ghaffri. Fuzzy control of spark advance by ion current sensing. Proc. IMechEPart D: J. Automobile Engineering,2007,221:335-342.
    [64] L. Eriksson, L. Nielsen. Ionization current interpretation for ignition control in internalcombustion engines. Control Engine Practice,1997,5(8):1107-1113.
    [65] Magnus Hellring, Ulf Holmberg. An Ion Current-Based, Peak-Finding Algorithm for PressurePeak Position Estimation. Society of Automotive Engineers. Society of Automotive Engineers1998,1-6.
    [66] Michael Wagner, S nke Carstens–Behrens, Johann F. B hme. In-cylinder pressure estimationusing structural vibration measurements of spark ignition engines. IEEE Signal ProcessingWorkshop on Higher Order Statistics,1999,6:0174-0177.
    [67] Lars Eriksson. Spark Advance Modeling and Control. Department of Electrical Engineering Linkoping University, SE-58183Linkoping, Sweden Linkoping,1999.
    [68] Iulian Raducanu, Dragos A rotaritei, Laurentiu Dimitriu. Adaptive Control of the Fuel InjectedPer Cycle and of the Ignition Advance for the Spark Ignition Engine Using Fuzzy InferentialSystem. SAE Paper No.2001-01-3384.
    [69] A. H Shamekhi, Ghaffri. Fuzzy control of spark advance by ion current sensing. Proc. IMechEPart D: J. Automobile Engineering,2007,221:335-342.
    [70] W Wang, E C Chirwa, E Zhou. Fuzzy ignition timing control for a spark ignition engine. Proc.IMechE Part D2000,214:297-306.
    [71] E. Pipitone, A. Beccari. A Study on the Use of Combustion Phase Indicators for MBT SparkTiming on a Bi Fuel Engine. SAE Paper2007-24-0051.
    [72] E.Pipitone.A Comparison between Combustion Phase Indicators for Optimal Spark Timing.Journal of Engineering for Gas Turbines and Power,2008,130:052808-1-052808-11.
    [73] J. David Powell. Engine Control Using Cylinder Pressure: Past, Present, and Future. Journal ofDynamic Systems, Measurement, and Control,1993,115:343-350.
    [74] S. Leonhardt, N. Muller, R. Isermann. Methods for engine supervision based on cylinderpressure information, IEEE/ASME Trans Mechatron1999,(4):425-435.
    [75] H. Cho1, J. Lee, J. Yoo. A study of the adaptive control of spark timing using cylinder pressure ina spark ignition engine. Proc Instn Mech Engrs Part D.1999,213:435-440.
    [76] Rolf Isermann, Norbert Muller. Modeling and adaptive control of combustion engine with fastneural networks. European Symposium on Intelligent Technologies, Hybrid Systems and theirImplementation on Smart Adaptive Systems, Tenerife, Spain.2001:566-582.
    [77] W Wang, E C Chirwa, E Zhou et al. Fuzzy ignition timing control for a spark ignition engine.Proc Inst Mech Engnr, Part D: J Automobile Engng,2000,214(D3):297-306.
    [78] Po LI, Tielong SHEN, Junichi KAKO, et al. Cyclic moving average control approach to cylinderpressure and its experimental validation. Control Theory Application,2009,7(4):345-351.
    [79] Iulian Raducanu, Dragos Arotaritei. Adaptive Control of the Fuel Injected Per Cycle and of theIgnition Advance for the Spark Ignition Engine Using Fuzzy Inferential Systems. SAE Paper2007-24-0051
    [80] Z. Oveisi, S.S. Mohtasebi, V. Esfehanian. An Introduction of a New Spark Advanced ControlAlgorithm Using Boost Simulation and Cylinder Pressure. Journal of Applied Sciences,2009,9(3):573-577.
    [81] Robert G. Prucka. An Experimental Characterization of a High Degree of FreedomSpark-Ignition Engine to Achieve Optimized Ignition Timing Control. A dissertation of thedegree of Doctor of Philosophy, The University of Michigan.2008.
    [82] Shiva Om Bade Shrestha. A predictive model for gas fueled spark ignition engine applications. Adissertation of the degree of Doctor of Philosophy, The University of Calgary,1999.
    [83]吴筱敏,李福明,蒋德明.离子电流法爆震强度信号的评价分析.内燃机学报,2001,19(3):222-224.
    [84] Chun K. M., Kim K. W..Measurement and Analysis of Knock in a SI Engine Using the CylinderPressure and Block Vibration Signals, SAE Paper No:940146.
    [85] Kiencke, U., Nielsen, L.. Automotive control systems for engine, driveline, and vehicle, Berlin:Springer-Verlag,2005.
    [86] C. Hudsona, X. Gaoa, R. Stone. Knock measurement for fuel evaluation in spark ignitionengine.Fuel,2001,(80):395-407.
    [87] J.Fiolka. A Fast Method for Knock Dectection using Wavelet Transform. InternationalConference MIXDES2006, Gdynia, POLAND22-24June2006:621-626.
    [88]杨建国,林波,周瑞.基于分形的汽油机爆震边缘检测.内燃机学报,2006,24(1):78-81.
    [89]张力,李玉华,朱长友,等,时域缸压信号爆震识别及强度评价的动态窗口域方法.内燃机工程,2009,30(6):88-91.
    [90] M.M. Ettefagh, M.H. Sadeghi, V. Pirouzpanah. Knock detection in spark ignition engines byvibration analysis of cylinder block: A parametric modeling approach. Mechanical Systems andSignal Processing,2008,(22)1495-1514.
    [91]杨文宏,王珂,刘成材.基于高阶累积量的点燃式发动机爆震检测及爆震强度判定.吉林大学学报(工学版),2010,40(2):376-380.
    [92] Ribbens W., Badalament M., Balancing IC Engine Torque Via Individual Cylinder SparkControl, SAE Paper No:970026.
    [93] Gang Wu. A Table Update Method for Adaptive Knock Control. SAE Paper No.:2006-01-0607
    [94]林杰伦.内燃机工作过程数值计算.西安:西安交通大学出版社,1986:12-118.
    [95]刘永长.内燃机工作过程模拟.武汉:华中理工大学出版社,1996:93-209.
    [96]刘永长,顾宏中.内燃机热力过程模拟.北京:机械工业出版社,1996:20-126.
    [97]解茂昭.内燃机计算燃烧学.大连:大连理工大学出版社.2005:92-140.
    [98]杨迪,顾宏中.火花点火发动机燃烧过程的多维模拟.车用发动机,1999,119(1):1-4.
    [99] Poinsot T, Candel S, Trouve A. Applications of Direct Numerical Simulation to PremixedTurbulent. Combustion.Progress in Energy and Combustion Science,1996,(21):531-576.
    [100]蒋德明.内燃机燃烧与排放学.西安:西安交通大学出版社,2001:27-317.
    [101]沈颖刚,王宇琳,郑伟.内燃机燃烧过程数值模拟技术发展概况.拖拉机与农用运输车,2004(01):7-9.
    [102]朱访君,吴坚.内燃机工作过程数值计算及优化.北京:国防工业出版社.1997.89-114.
    [103]崔海龙.多缸发动机气缸压力采集与燃烧分析系统的研究,[硕士学位论文].北京:北京工业大学,2003.
    [104]范维澄,万跃鹏.流动及燃烧的模型与计算.合肥:中国科学技术大学出版社,1992:68-199.
    [105] S.V.帕坦卡.传热与流体流动的数值计算.北京:科学出版社,1984:12-86.
    [106]蒋炎坤.CFD辅助发动机工程的理论与应用.北京:科学出版社,2004:75-130.
    [107] Carsten Baumgarten. Mixtuer formation in internal combustion engines. Berlin: Springer Verlag2006.
    [108] T. L. Pham, Stephen D. Heister. Spray modeling using Lagrangian droplet tracking in ahomogeneous flow model.Atomization and Spray.2002, vol.12:687-707.
    [109] Polifke.W. Fundamental and Practical Limitations of NOx, Reduction in Lean-PremixedCombustion. Aachen, Germany, June1995:1-17.
    [110] Gamma Technologies. GT-POWER USER'S MANUAL. Version6.2,2006.
    [111] Gamma Technologies Inc. GT-Power Engine Simulation Software.Version6.0.
    [112] GT-Power Tutorial Version6.0.Gamma Teclmologies.2003.
    [113]江帆,黄鹏. Fluent高级应用与实例分析.北京:清华大学出版社.2008:5-24.
    [114]张强.生物质气发动机工作过程的数值模拟及试验研究,[博士学位论文].济南:山东大学,2006.
    [115]刘宇.基于GT_POWER的汽油机仿真及优化设计,[硕士学位论文].吉林:吉林大学,2006.
    [116] W.J.Staszewskiand, G.R.Tomlinson. Application of the wavelettransform to fault detection in aspur gear. Mechanical Systems andSignal Processing,1994,8(3):289-307.
    [117] F. A. Shirazi, M. J. Mahjoob. Application of Discrete Wavelet Transform (DWT) in CombustionFailure Detection of IC Engines. Proceedings of5thInternational Symposium on image andSignal Processing and Analysis,2007:482-486.
    [118]程正兴.小波分析算法与应用.西安:西安交通大学出版社,1998:57-76.
    [119] Pipitone.E, D’Acquisto.L.. First experience with a piezo film based knock sensor.2ndInternational Workshop on Modeling, Emissions and Control of Automotive Engines, Salerno,Italy.2002,10:4-8.
    [120] Guillaume Brecq, Jér me Bellettre, Mohand Tazerout. A new indicator for knock detection ingas SI engines. International Journal of Thermal Sciences,2003,42:523-532.
    [121] C. Rahmouni, G. Brecq, M. Tazerout, et al. Knock rating of gaseous fuels in a single cylinderspark ignition engine. Fuel,2004(83):327-336.
    [122]杨光兴,叶盛焱,称善斌.摩托车发动机原理与设计,武汉:武汉测绘科技大学出版社,1993:34-88.
    [123] Powell B. K., Cook J. A., Grizzle J. W.. Modeling and analysis of an inherently multi-ratesampling fuel injected engine idle speed control loop.American Control Conference,1987,109:405-410.
    [124] Cook J. A., Powell B. K.. Discrete simplified external linearization and analytical comparisonof IC engine families. American Control Conference,1987,1:326-331.
    [125] Abate M., Barmish B.R., Murillo-Sanchez C., et al. Application of some new tools to robuststability analysis of spark ignition engines: a case study. IEEE Transactions on Control SystemsTechnology,1994,2(1):22-30.
    [126] Masatake Yoshida. Study on Electronic Control of Air-Fuel Ratio and Ignition Timing for SmallGasoline Engine. SAE Papers No:2001-01-1861
    [127] Arotaritei Dragos. Adaptive Control of the Fuel Injected Per Cycle and of the Ignition Advancefor the Spark Ignition Engine Using Fuzzy Inferential Systems.SAE Papers No:2001-01-3384.
    [128]贾岱润.电控汽油机标定系统及点火提前角多目标优化方法研究,[硕士学位论文].杭州:浙江大学.2007.
    [129]高孝洪.内燃机工作过程数值计算.北京:国防工业出版社,1986:20-35.
    [130]王志贤.最优状态估计与系统辨识.西北工业大学出版社,2004:145-153.
    [131] Isermann R, M ller N. Modeling and Adaptive Control of Combustion Engines with FastNeural Networks. European Symposium on Intelligent Technologies, Hybrid Systems and theirImplementation on Smart Adaptive Systems, Tenerife, Spain.2001:566-582.
    [132] M. Brown, C. Harris, Neurofuzzy Adaptive Modelling and Control. Prentice-Hall, New York1994:25-78.
    [133] A. Gounaris, C. Yfoulis, R. Sakellariou. A control theoretical approach to self-optimizing blocktransfer in web service Grids, ACM Transactions on Autonomous and Adaptive Systems,2008,3(2):1-30.
    [134]白瑞祥,邰欣萌,李会恩.锅炉燃烧系统的模糊自寻优控制.仪表技术与传感器,2009,6:98-100.
    [135]马军爽,甘丽,吴并臻.一种实现工业锅炉经济燃烧的模糊自寻优控制.微计算机信息,2006,04:105-107.
    [136]王银燕,杜剑维,王贺春等.基于GT-power与Simulink的发动机及其控制系统仿真.系统仿真学报,2008,20(16):4379-4382.
    [137]李国勇.智能控制与MATLAB在电控发动机中的应用.北京:电子工业出版社,2007:108-146.
    [138]马军爽,甘丽,吴并臻.一种实现工业锅炉经济燃烧的模糊自寻优控制.微计算机信息(测控自动化),2006,22(2-1):105-107.
    [139] MC9S12DP512V02.15Device User Guide. Freescale Semiconductor, Inc.
    [140] HIP9011.datasheeet. Intersil.2006.6.
    [141]张琨.基于DWT的汽油机爆震实时控制系统研究,[硕士学位论文].哈尔滨:哈尔滨工业大学,2009.
    [142]高磊.468Q汽油机爆震检测和控制策略的研究,[硕士学位论文].长春:吉林大学.2006.
    [143]潘松.双发动机动力系统控制策略的研究,[博士学位论文].南京:南京航空航天大学,2009.
    [144]李冰林,魏民祥.火花点火发动机点火提前角及转速信号采集系统.中国:实用新型,200910232561.
    [145]严兆大.内燃机测试技术.杭州:浙江大学出版社,1993:106-131.
    [146] Rocco V. D. I.Diesel Engine In-Cylinder Pressure Data Analysis under T. D. C SettingError.SAE Paper,930595.
    [147] Wang Xi-Bo, Deng Kang-Yao, He Fang-Zheng. A thermodynamics model for the compressionand expansion process during the engine’s motoring and a new method for the determination ofTDC with simulation technique. Applied Thermal Engineering,2007,27:2003-2010.
    [148]李冰林,魏民祥.汽油发动机燃烧质量率分析.内燃机学报,2011,29(1):49-53.
    [149] Vapnik V N.. An overview of statistical learning theory. IEEE transactions on neural networks,1999,10(5):988-999.
    [150] SUYKENS J A K.. Least squares support vector machines for classification and nonlinearmodeling. Neural Network World,2000,10(1-2):29-48.
    [151]吴金培,孙德山.现代数据分析.北京:机械工业出版社,2006:119-148.
    [152] CHERKASSKY V, MAY. Practical selection of SVM parameters and noise estimation of SVMregressions. Neural Networks,200417(1):113-126.
    [153] Gretton A Doucet A, Herbrich R, Rayner P, et al. Support Vector Regression for Black boxSystem Identification. In11th IEEE Workshop on Statistical Signal Processing. IEEE SignalProcessing Society, Piscataway, NY2001:341-344.
    [154] Ozdor N, Dulger M, Sher E. Cyclic variability in spark ignition engines: A literature survey.SAE Paper:940987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700