明胶蛋白酶及其抑制剂在大鼠局部脑缺血再灌注损伤中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分实验性脑缺血再灌注损伤的磁共振成像研究
     目的:应用不同的磁共振成像序列,活体观察实验大鼠脑缺血再灌注损伤不同时期的病理生理过程,为脑保护治疗提供精确的神经影像学信息。
     方法:14只健康雄性Wistar大鼠随机分为手术组和假手术组,每组各分为再灌注24h和再灌注5d两个亚组。线栓法建立大鼠大脑中动脉闭塞1.5h再灌注模型。所有大鼠分别于线栓插入及拔出后立即行PWI;再灌注0h、3.5h及24h行DWI;再灌注3.5h、24h及5d行常规T_2WI和Gd-DTPA增强T_1WI;再灌注24h及5d行T_2*WI。测定不同时间点MRI异常信号体积和增强扫描信号强化区域体积及平均信号强度值。结果以体积比(异常信号体积/同侧半球体积×100 %),强度比(异常信号平均信号强度值/对侧镜像区平均信号强度值×100 %)表示。
     结果:成功大鼠模型PWI显示造影剂首次通过时,双侧大脑半球信号衰减于线栓置入时呈不对称性改变,线栓拔出后立即恢复。手术组大鼠:缺血1.5h后DWI即显示异常高信号,高信号体积随再灌注时间延长而增加(P<0.05);脑缺血再灌注3.5h后T_2WI和T_1WI增强扫描均显示异常高信号,高信号体积随再灌注时间延长而增加,再灌注5d后有所下降(P<0.05),强化区域的平均信号强度值随再灌注时间延长递增(P<0.05);再灌注24h及5d T_2*WI上均无异常信号出现。假手术组大鼠所有MRI序列上均无异常改变。
     结论:合理应用不同的磁共振成像序列可以为超早期脑梗死的诊断,BBB损伤的范围及程度、血管源性水肿、脑梗死灶体积的评价提供实时、详尽、个体化的影像学信息,有利于我们动态观察缺血脑组织的病理变化,实时监测药物干预的治疗效果。
     第二部分脑缺血再灌注后明胶酶活性与血脑屏障损伤的相关性分析
     目的:探讨脑缺血再灌注不同时期体内明胶蛋白酶活性与BBB损伤之间的相关性,明确其在脑缺血再灌注微血管损伤中的作用及地位。
     方法: 34只健康雄性Wistar大鼠随机分为手术组和假手术组,每组各分为再灌注24h和再灌注5d两个亚组。线栓法建立大鼠大脑中动脉闭塞1.5h再灌注模型。所有大鼠分别于再灌注3.5h、24h及5d行Gd-DTPA增强T_1WI扫描。明胶酶谱分析法检测缺血再灌注24h及5d后脑组织、血清MMP-2、MMP-9活性,并与MRI作相关回归分析。免疫组织化学染色检测缺血脑组织MMP-9的表达与分布。
     结果:脑缺血再灌注24h,手术组大鼠脑组织MMP-2、MMP-9活性显著升高(P<0.05);再灌注5d,MMP-2活性继续升高(P<0.05),MMP-9则下降至检测水平以下。假手术组大鼠脑组织中仅检测到少量MMP-2,未见MMP-9水解条带,两者活性随时间变化不明显(P>0.05)。脑缺血再灌注24h,手术组大鼠血清MMP-2、MMP-9活性显著高于假手术组(P<0.05);再灌注5d,两者活性继续升高(P<0.05)。假手术组大鼠血清MMP-2、MMP-9活性随时间变化不明显(P>0.05)。脑缺血再灌注24h,脑组织MMP-9活性与T_1WI上信号强化范围呈明显正相关,(r=0.96,p<0.001); MMP-9免疫组化阳性染色分布与T_1WI上信号强化区一致。
     结论:脑组织明胶蛋白酶活性增高是导致缺血再灌注早期血脑屏障通透性升高、脑水肿加重的重要因素,其中MMP-9与脑缺血再灌注导致的神经血管损伤关系尤为密切。
     第三部分脑缺血再灌注后MMPs及其组织抑制因子TIMPs的表达分析
     目的:检测脑缺血再灌注不同时期脑组织MMP-2、MMP-9及其组织抑制因子TIMP-1、TIMP-2转录及翻译的变化,探讨其表达特点。
     方法:56只健康雄性Wistar大鼠随机分为手术组和假手术组,每组各分为再灌注24h和再灌注5d两个亚组。线栓法建立大鼠大脑中动脉闭塞1.5h再灌注模型。应用RT-PCR检测缺血再灌注24h及5d后脑组织MMP-2、MMP-9 mRNA表达的变化;Western blot检测缺血再灌注24h和5d脑组织MMP-2、MMP-9及其组织抑制因子TIMP-2、TIMP-1蛋白含量的变化。
     结果:手术组大鼠脑缺血再灌注24h MMP-2、MMP-9 mRNA表达显著升高(P<0.05);再灌注5d后MMP-9 mRNA表达迅速下降(P<0.05),MMP-2 mRNA表达则继续升高(P<0.05)。假手术组大鼠脑组织内仅检测到少量MMP-2 mRNA的表达,且随时间变化不明显(P>0.05)。手术组大鼠脑缺血再灌注24h TIMP-1、TIMP-2蛋白表达较假手术组明显升高(P<0.05),再灌注5d TIMP-1表达迅速下降(P<0.05),TIMP-2表达仍继续增加(P<0.05)。假手术组大鼠脑组织TIMP-1、TIMP-2呈低水平表达,随时间变化不明显。
     结论:缺血再灌注导致脑组织MMP-2、MMP-9 mRNA及蛋白表达明显升高,再灌注早期以MMP-9升高为主,晚期则以MMP-2升高为主。TIMP-1和TIMP-2的表达模式与MMP-2、MMP-9表达一致,这可能与机体维护内环境稳定的自我调节有关。
     第四部分抗-MMPs治疗对脑缺血再灌注损伤的影响
     目的:观察抗-MMPs治疗对脑缺血再灌注损伤的影响,为缺血性脑卒中的神经保护治疗寻找新的切入点。
     方法:28只健康雄性Wistar大鼠随机分为BB-94治疗组和缺血对照组,每组各分为再灌注24h和再灌注5d两个亚组。线栓法建立大鼠大脑中动脉闭塞1.5h再灌注模型。BB-94组大鼠于不同时间点腹腔注射广谱MMPs抑制剂BB-94(50mg/kg);缺血对照组大鼠相同时间点腹腔注射等体积生理盐水。两组大鼠分别于再灌注0h、3.5h及24h行DWI扫描;再灌注3.5h、24h及5d行T_2WI和Gd-DTPA增强T_1WI扫描。脑缺血再灌注24h和5d后对所有大鼠进行神经功能缺陷评分。
     结果:BB-94组大鼠脑缺血再灌注3.5h及24h DWI上异常高信号体积明显小于缺血对照组(P<0.05);再灌注3.5h、24h及5d BB-94组大鼠T_2WI上异常高信号体积及T_1WI信号强化的范围和强度亦明显小于缺血对照组(P<0.05)。BB-94显著降低了缺血再灌注24h和5d大鼠神经功能缺陷评分(P<0.05)。
     结论:抗-MMPs治疗能明显减轻缺血再灌注后血脑屏障损伤的范围和程度,缩小脑梗死灶体积,促进神经功能恢复,对脑缺血再灌注损伤具有显著的神经保护作用。
     第五部分米诺环素对脑缺血再灌注损伤保护作用及其机制的研究
     目的:观察米诺环素对脑缺血再灌注后BBB通透性、梗死灶体积以及神经功能恢复的影响进行,探讨其作用机制。
     方法:56只健康雄性Wistar大鼠随机分为米诺环素组和缺血对照组,每组各分为再灌注24h和再灌注5d两个亚组。线栓法建立大鼠大脑中动脉闭塞1.5h再灌注模型。两组大鼠分别于再灌注0h、3.5h及24h行DWI扫描;再灌注3.5h、24h及5d行T_2WI和Gd-DTPA增强T_1WI扫描。脑缺血再灌注24h和5d后对所有大鼠进行神经功能缺陷评分和血清、脑组织明胶酶活性测定。应用RT-PCR和Western blot分别考察米诺环素对缺血再灌注后脑组织MMP-2、MMP-9转录和翻译水平的影响,以及对TIMP-1、TIMP-2蛋白表达的调控。
     结果:米诺环素组大鼠缺血再灌注3.5h及24h DWI上异常高信号体积明显低于缺血对照组(P<0.05);再灌注3.5h、24h及5d米诺环素组大鼠T_2WI上异常高信号体积及T_1WI信号强化的范围和强度亦明显小于缺血对照组(P<0.05)。米诺环素显著降低了缺血再灌注24h和5d大鼠神经功能缺陷评分(P<0.05)和脑组织明胶酶活性(P<0.05),同时对缺血再灌注24h血清MMP-9及再灌注5d血清MMP-2的水解活性亦具有抑制作用(P<0.05)。脑缺血再灌注24h,米诺环素组大鼠脑组织MMP-2、MMP-9 mRNA及蛋白表达较缺血对照组显著减少(P<0.05),TIMP-2表达高于对照组(P<0.05),TIMP-1表达无组间差异(P>0.05);脑缺血再灌注5d,米诺环素组大鼠脑组织MMP-2 mRNA及蛋白表达仍低于对照组(P<0.05),TIMP-1、TIMP-2蛋白含量无明显组间差异(P>0.05),两组大鼠脑组织中均未再检测到MMP-9 mRNA及蛋白的表达。
     结论:米诺环素能显著减轻缺血再灌注早、晚期血脑屏障损伤的范围和程度,缩小梗死体积,促进神经功能恢复,其保护机制可能与米诺环素抑制血清明胶蛋白酶活性,减少脑组织明胶蛋白酶的转录、翻译和活化,上调TIMP-2的表达有关。
PartⅠMRI study in an experimental model of focal cerebral ischemia/reperfusion injury
     Objective: To explore time characteristics and dynamic changes of pathology in a rat model of focal cerebral ischemia-reperfusion at different time points with MRI techniques.
     Methods: Fourteen male Wistar Rats were randomized into ischemic group and sham-operated group, which were further divided into two subgroups with 24 hours and 5days of reperfusion, respectively. 1.5 hours of middle cerebral artery occlusion (MCAO) was induced by an intraluminal suture method. Perfusion-weighted imaging was performed to confirm complete occlusion and reperfusion. Diffusion-weighted imaging was carried out at 0h, 3.5h, 24h after reperfusion. T_2WI and contrast enhanced T_1WI were carried out at 3.5h, 24h and 5d after reperfusion respectively. T_2*-weighted imaging was used at 24h and 5d after reperfusion. MRI lesion volume and signal intensity on postcontrast T_1WI were evaluated at different time point, and the results were expressed in forms of rV-MRI (lesion volume / volume of the ipsilateral hemisphere×100 %) and rSI-MRI (mean grey value of ROIs in the ipsilateral hemisphere/ that of the contralateral hemisphere×100 %).
     Results: signal attenuation during the first passage of a bolus-contrast indicated a complete occlusion of the artery. On the contrary, a failed occlusion was lack of such a signal change. In the ischemic group hyper-intensity on DWI was first detectable at 1.5h after reperfusion, and the lesion volume on DWI increased with the time of reperfusion (P<0.05). Hyper-intensity on T_2WI and postcontrast T_1WI was detected at 3.5h after reperfusion in the ischemic group.The lesion volume increased at 24h after reperfusion and declined at 5d after reperfusion (P<0.05), but the signal intensity increased all the time (P<0.05). No abnormal signal was found on T_2*WI at any time point. The rats from sham-operated group showed no changes on MRI during the experiment.
     Conclusions: The apply of MRI in focal cerebral ischemia-reperfusion at different time points can afford dynamic and individual neuroimaging informations of BBB disruption, cerebral edema and infarct size following cerebral ischemia. MRI techniques have shown latent potency in elucidating time characteristics in reperfusion injury and provided a foundation of diagnosis and treatment for cerebral ischemic injury.
     PartⅡCorrelation analysis of BBB permeability and activity of gelatinases following transient focal cerebral ischemia
     Objective: To explore the relationship between gelatinases activity and disruption of BBB in different phases following cerebral ischemia and reperfusion, and confirm the effects of gelatinases on microvascular damage after transient focal cerebral ischemia in rats.
     Methods: Thirty-four male Wistar Rats were randomized into ischemic group and sham-operated group, which were further divided into two subgroups with 24 hours and 5days of reperfusion, respectively. 1.5 hours of middle cerebral artery occlusion (MCAO) was induced by an intraluminal suture method. Gd-DTPA enhanced T_1WI was carried out at 3.5h, 24h and 5d after reperfusion. Brain and serum gelatinases activities were analyzed by gelatin zymography at 24h and 5d after reperfusion, respectively. Correlation between MRI findings and gelatinases activities was analyzed. Immunehistochemistry was used to confirm the distribution of MMP-9 expression in the ischemic cerebral tissues.
     Results: In ischemic group activities of brain MMP-2 and MMP-9 were increased at 24h after reperfusion (P<0.05). MMP-9 was no longer visible on gelatin zymograms after 5d of reperfusion, while MMP-2 activity remained increased at 5d after reperfusion (P<0.05). In sham-operated group, activity of brain MMP-2 remained low all the time, and no MMP-9 was detectable at any time point. Activities of serum MMP-2 and MMP-9 were increased correspondingly at 24h after reperfusion (P<0.05), and kept increased at 5d after reperfusion (P<0.05). In sham-operated group, activities of serum MMP-2 and MMP-9 changed little during the experiment (P>0.05). A significant correlation was observed between activity of brain MMP-9 and rV-T_1WI at 24h of reperfusion (r=0.96, p<0.001). Furthermore, immunehistochemistry results showed distribution of MMP-9 expression corresponded to the area of enhancement on postcontrast T_1WI.
     Conclusions: Enhanced activities of brain gelatinases play an important role in the disruption of BBB and formation of edema after cerebral ischemia and reperfusion. Activity of brain MMP-9 shows remarkable correlation with reperfusion induced neurovascular damage in cerebral ischemia.
     PartⅢStudy on expression of MMPs and TIMPs in rat brain following transient focal cerebral ischemia
     Objective: To study the mRNA and protein expression of MMPs and TIMPs in different phases of cerebral ischemia and reperfusion.
     Methods: Fifty-six male Wistar Rats were randomized into ischemic group and sham-operated group, which were further divided into two subgroups with 24 hours and 5days of reperfusion, respectively. 1.5 hours of middle cerebral artery occlusion (MCAO) was induced by an intraluminal suture method. After 24h and 5d of reperfusion mRNA expression of MMP-2 and MMP-9 was observed by RT-PCR, and the protein expression of MMP-2/TIMP-2 and MMP-9/TIMP-1 was also defined by western blot.
     Results: mRNA expression of MMP-2 and MMP-9 at 24h and 5d after reperfusion was elevated in the ischemic group(P<0.05), and mRNA level of MMP-9 declined dramatically after 5d of reperfusion (P<0.05), while expression of MMP-2 mRNA kept increased (P<0.05). Only low level of MMP-2 mRNA was detected in the sham-operated group at any time point without obvious fluctuation (P>0.05). Expression of TIMP-1 and TIMP-2 was significant higher in the ischemic group at 24h after reperfusion (P<0.05). After 5d of reperfusion expression of TIMP-1 declined dramatically (P<0.05) while protein level of TIMP-2 still increased (P<0.05). Low expression of TIMP-1 and TIMP-2 was confirmed in the sham-operated group.
     Conclusions: Cerebral ischemia/reperfusion induces expression of MMP-2 and MMP-9 in rat brain. In the early stage of reperfusion, expression of gelatinases is charactered with high level of MMP-9, whereas in the late phase of reperfusion, expression of MMP-2 seems to be predominant. Expression of TIMP-1 and TIMP-2 after cerebral ischemia changes correspondingly with expression of gelatinases, which indicates an auto-regulation in vivo.
     PartⅣEffects of anti-MMPs therapy on cerebral ischemia/reperfusion induced injury in rat brain
     Objective: To observe the effects of anti-MMPs therapy on reperfusion induced injury in a rat model of transient focal cerebral ischemia.
     Methods: Twenty-eight male Wistar Rats were randomized into BB-94 group and the control group, which were further divided into two subgroups with 24 hours and 5days of reperfusion, respectively. 1.5 hours of middle cerebral artery occlusion (MCAO) was induced by an intraluminal suture method. BB-94, an inhibitor of MMPs, was injected intraperitoneally (50mg/kg) at different time point in the BB-94 group, and equal volume of saline was injected intraperitoneally at the same time in the control group. Diffusion-weighted imaging was carried out at 0h, 3.5h, 24h after reperfusion. T_2WI and contrast enhanced T_1WI were carried out at 3.5h, 24h and 5d after reperfusion respectively. All rats received neurological evaluation before sacrifice.
     Results: After 3.5h and 24h of reperfusion rV-DWI in the BB-94 group was significant lower than that of control (P<0.05). BB-94 reduced rV-T_2WI, rV-T_1WI and rSI-T_1WI at 3.5h, 24h and 5d of reperfusion, respectively (P<0.05). Neurological outcome after 24h and 5d of reperfusion was also improved by BB-94 as compared with the control group (P<0.05).
     Conclusions: Anti-MMPs therapy shows significant neuroprotective effects by attenuating BBB disruption, reducing infarct volume and improving neurological outcome after transient focal cerebral ischemia in rats.
     PartⅤStudy on neuroprotective effects of minocycline in ischemia- reperfusion induced injury and its mechanism
     Objective: To observe the effects of minocycline on reperfusion induced BBB disruption, infarct size and neurological outcome following transient focal cerebral ischemia in rats, and explore the underlying mechanism.
     Methods: Fifty-six male Wistar Rats were randomized into minocycline group and the control group, which were further divided into two subgroups with 24 hours and 5days of reperfusion, respectively. 1.5 hours of middle cerebral artery occlusion (MCAO) was induced by an intraluminal suture method. Diffusion-weighted imaging was carried out at 0h, 3.5h, 24h after reperfusion. T_2WI and contrast enhanced T_1WI were carried out at 3.5h, 24h and 5d after reperfusion respectively. All rats received neurological evaluation before sacrifice. At 24h and 5d of reperfusion, activities of brain and serum gelatinases were analysed by zymography. Effects of minocycline on brain mRNA level of MMP-2, MMP-9 and protein expression of MMP-2/TIMP-2, MMP-9/TIMP-1 were defined by RT-PCR and western blot, respectively.
     Results: After 3.5h and 24h of reperfusion rV-DWI in the minicycline group was significantly lower than that of control (P<0.05). Minocycline reduced rV-T_2WI, rV-T_1WI and rSI-T_1WI at 3.5h, 24h and 5d of reperfusion, respectively (P<0.05). Neurological outcome after 24h and 5d of reperfusion was also improved by minocycline as compared with the control group (P<0.05). Brain gelatinases activities were inhibited by minocycline at 24h and 5d after reperfusion (P<0.05). Serum MMP-9 activity at 24h and serum MMP-2 activity at 5d after reperfusion were also inhibited by minocycline (P<0.05). After 24h of reperfusion brain mRNA and protein level of MMP-2 and MMP-9 were significantly reduced by minocycline as compared with the control group (P<0.05). Expression of brain TIMP-2 was increased in the minocycline group (P<0.05), while expression of TIMP-1 showed no difference between the two groups (P>0.05). After 5d of reperfusion brain mRNA and protein level of MMP-2 remained lower than that of control (P<0.05). There was no difference in the expression of TIMP-1 and TIMP-2 between the two groups any more (P>0.05). Expression of MMP-9 mRNA and protein was invisible in both minocycline and control group at 5d after reperfusion.
     Conclusions: Minocycline attenuates BBB disruption in both the early and late phases of cerebral ischemia and reperfusion. Treatment with minocycline reduces infarct volume and improves neurological outcome in a rat model of transient focal cerebral ischemia. Inhibiting the activities of brain and serum gelatinases, reducing their expression in the brain, and elevating the level of brain TIMP-2, which is capable of inhibiting the activity of gelatinases, may be responsible for the neurovascular protection of minocycline.
引文
[1] Schaller B, Graf R. Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab, 2004, 24(4):351-371.
    [2] Klatzo I. Disturbances of blood-brain barrier in cerebrovascular disorders. Acta Neuropathol (Berl), 1983, [Suppl] 8:81-88.
    [3] Hamann GF, Okada Y, Fitridge R, et al. Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke, 1995, 26(11):2120-2126.
    [4] Mandal M, Mandal A, Das S, et a1. Clinical implicatinns of matrix metalloproteinases. Mol Cell Biochem, 2003, 252(1-2):305-329.
    [5] Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci, 2006, 11(1):l696-1701.
    [6] Wagner S, Nagel S, Kluge B, et al. Topographically graded postischemic presence of metalloproteinases is inhibited by hypothermia. Brain Res, 2003, 984(1-2):63-75.
    [7] Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier. Cell Mol Neurobiol, 2000, 20(1):57-76.
    [8] Asahi M, Wang XY, Mrai T, el a1. Effects of Matrix Metalloproteinase-9 Gene Knock Out on the Proteolysis of Blood-Brain Barrier and White Matter Components after Cerebral ischemia. J Neurosci, 2001,21(19):7724-7732.
    [9] Montaner J, Alvarez-Sabin J, Molina CA, et al.Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke, 2001, 32:2762–2767.
    [10] Montaner J, Molina CA, Monasterio J,et al. Matrix metalloproteinase-9 pretreatmentlevel predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation, 2003, 107:598–603.
    [11] Castellanos M, Leira R, Serena J , et al . Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke, 2003, 34:40-46.
    [12] Rosell A, Ortega-Aznar A, Alvarez-Sabin J, et al. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke.Stroke, 2006, 37(6):1399-1406.
    [13] Asahi M, Asahi K, Jung JC, et al. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab, 2000, 20:1681–1689.
    [14] Asahi M, Wang X, Mori T, et al. Effects of matrix metalloproteinase-9 gene knock-outon the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci,2001, 21:7724–7732.
    [15] Rosenberg GA, Kornfeld M, Estrada E, et al. TIMP-2 reduces proteolytic opening of bloodbrain barrier by type IV collagenase. Brain Res, 1992, 576:203–207.
    [16] Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol, 2001, 17:463-516.
    [17] Wu CY, Hsieh HL, Jou MJ, et al. Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-kappa B in interleukin-1beta-induced matrix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem, 2004, 90(6):1477-1488.
    [18] Eberhardt W, Huwiler A, Beck KF, et al. Amplification of IL-1 beta-induced matrix metalloproteinase-9 expression by superoxide in rat glomerular mesangial cells is mediated by increased activities of NF-kappa B and activating protein-1 and involves activation of the mitogen-activated protein kinase pathways. J Immunol, 2000, 15,165(10):5788-5797.
    [19] Wang X, Lee SR, Arai K, et al. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med, 2003, 9(10):1313-1317.
    [20] Yong VW, Power C, Forsyth P, et al. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci, 2001, 2:502–511.
    [21] Lijnen HR. Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost, 2001, 86:324–333.
    [22] Gu Z, Kaul M, Yan B, et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science, 2002, 297(5584):1186-1190.
    [23] Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta, 2000, 1477:267-283.
    [24] Murphy G. Matrix metalloproteinases and their inhibitors. Acta Orthop Scand Suppl, 1995, 266:55-60.
    [25] Cunningham LA, Wetzel M, Rosenberg GA. Multiple Roles for MMPs and TIMPs in Cerebral Ischemia. Glia, 2005, 50(4):329-339.
    [26] Lee, S.R, Lo, E.H. Induction of caspase-mediated cell death by matrix metalloproteinases in cerebral endothelial cells after hypoxia-reoxygenation. J.Cereb. Blood Flow Metab, 2004, 24: 720-727.
    [27] Powell WC, Fingleton B, Wilson CL, et al. 1999. The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr Biol, 1999, 9:1441-1447.
    [28] Report of the NINDS Stroke Progress Review Group 2002, 1-116 [R]. Available at www.ninds.gov/about_ninds/04_2002_stroke_PRG_report.htm.
    [29] Lo EH, Broderick JP, Moskowitz MA. tPA and proteolysis in the neurovascular unit . Stroke, 2004, 35: 354-356.
    [30] Paemen L, Martens E, Norga K, et al. The gelatinase inhibitory activity of tetracyclines and chemically modified tetracycline analogues as measured by a novel microtiter assay for inhibitors. Biochem Pharmacol, 1996, 52(1):105-111.
    [31] Joshi N, Miller DQ. Doxycycline revisited. Arch Intern Med,1997,157(13):1421-1428.
    [32] Machado LS, Kozak A, Ergul A, et al. Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci, 2006, 7:56.
    [33] Fagan SC, Edwards DJ, Borlongan CV, et al. Optimal delivery of minocycline to the brain: implication for human studies of acute neuroprotection. Exp Neurol, 2004, 186(2):248-251.
    [34] Lee CZ, Yao JS, Huang Y, et al. Dose-response effect of tetracyclines on cerebral matrix metalloproteinase-9 after vascular endothelial growth factor hyperstimulation. J Cereb Blood Flow Metab, 2006, 26(9):1157-64.
    [35] Koistinaho M, Malm TM, Kettunen MI, et al. Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice. J Cereb Blood Flow Metab, 2005, 25(4):460-467.
    [36] Cliveira-Filho J, Koroshetz WJ. Magnetic resonance imaging in acute stroke;clinical perspective.Topic in Magnetic Resonance Imaging, 2000,11:246.
    [37] Reith W, Heiland S, Forsting M, et al. Diffusion-weighted magnetic resonance tomography: a highly promising MR technic for the early recognition of cerebral ischemia. Rofo, 1997, 166(2):133-139.
    [38] Neumann-Haefelin T, Kastrup A, de Crespigny A, et al. Serial MRI after transient focal cerebral ischemia in rats: dynamics of tissue injury, blood-brain barrier damage, and edema formation. Stroke, 2000, 31(8):1965-1972.
    [39] Lo EH, Pan Y, Matsumoto K, et al. Blood-brain barrier disruption in experimental focal ischemia: comparison between in vivo MRI and immunocytochemistry. Magn Reson Imaging, 1994, 12(3):403-411.
    [40] Saunders DE, Clifton AG, Brown MM. Measurement of infarct size using MRI predicts prognosis in middle cerebral artery infarction. Stroke,1995,26(12):2272-2276.
    [1] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20: 84-91.
    [2] Derouesne C , Cambon H , Yelnik A , et al . Infarct s in the middle cerebral artery territory. Pathologic study of the mechanisms of death. Acta Neurolog Scand ,1993, 87:361-366.
    [3] Rother J, de Crespigny AJ, D'Arceuil H, et al. Recovery of apparent diffusion coefficient after ischemia-induced spreading depression relates to cerebral perfusion gradient. Stroke, 1996, 27(5):980-986.
    [4] Le Bihan D,Breton E,Lallemand D,et al. MR imaging of intravoxel in-coherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986, 61(2):401-407.
    [5]韩鸿宾,谢敬霞. MR扩散与灌注成像在脑缺血诊断中的应用.中华放射学杂志, 1998, 32:364.
    [6] Tatlisumak T , Takano K,Carano RA , et al . Effect of basic fibroblast growth factor on experimental focal ischemia studied by diffusion-weighted and perfusion imaging. Stroke, 1996, 27 :2292-2297.
    [7] Kastrup A, Engethorn T, Beaulieu C , et al . Dynamics cerebral injury, perfusion , and blood - brain barrier changes after temporary and permanent middle cerebral artery occlusion in the rat . J Neurol Sci, 1999,166:91-99.
    [8] Smajlovic D, Sinanovic O. Sensitivity of the neuroimaging techniques in ischemic stroke. Med Arh, 2004, 58:282-284.
    [9] Rivers CS, Wardlaw JM. What has diffusion imaging in animals told us about diffusion imaging in patients with ischemic stroke? Cerebrovasc Dis, 2005, 19:328-336.
    [10]徐凯,黄海东,沈天真,等.大鼠急性脑缺血再灌注的MRI研究.中国医学计算机成像杂志, 2004, 10:371-375.
    [11] Busza AL ,Allen KL ,Van Bzuggen N , et al . Diffusion-weighted imaging studies of cerebral ischemia in gerbils. Stroke,1992, 23 :1602-1612.
    [12] Tong DC, Yenari MA, Albers GW, et al. Correlation of perfusion-and diffusion-weighted MRI with NIHSS score in acute (<6.5 hour) ischemic stroke. Neurology, 1998, 50(4):864-870.
    [13] Kuroiwa T, Seida M , Tomida S, et al. Discrepancies among CT, histological, and blood-brain barrier findings in early cerebral ischemia. J Neurosurg, 1986, 65: 517.
    [14] Gotoh G, Asano T, Koibe T, et al. Ischemic brain edema following occlusion of the middle cerebral artery in the rat, the time courses of the brain water, sodium and potassium contents and blood-brain barrier permeability to 125 I-Albumin. Stroke, 1985, 16: 101-109.
    [15] Bell BA , Branston NM. CBF and time tresholds for the formation of iscehmia cerebral edema, and effect of reperfusion in baboons. J Neursurg, 1985, 62: 31.
    [16] Bose B, Jones SC, Lorig R, et al. Evolving focal cerebral ischemia in cats: spatial correlation of nuclear magnetic resonance imaging, cerebral blood flow, tetrazolium staining and histopathology. Stroke, 1988, 19: 28.
    [17]于富华,田凯华,姬广福,等.实验性急性脑梗塞早期MRI表现与病理对照研究.中风与神经疾病杂志, 1999,16(4): 195-199.
    [18] Runge VM, Price AC, Wehr CJ, et al. Contrast enhanced MRI. Evaluation of a canine model of osmotic blood-brain barrier disruption. Invest Radiol 1985, 20:830–844.
    [19] Neumann-Haefelin T, Kastrup A, de Crespigny A, et al. Serial MRI after transient focal cerebral ischemia in rats: dynamics of tissue injury, blood-brain barrier damage, and edema formation. Stroke, 2000, 31(8):1965-1972.
    [20] Knight RA, Barker PB, Fagan SC, et al. Prediction of impending hemorrhagic transformation in ischemic stroke using magnetic resonance imaging in rats. Stroke, 1998 ,29(1):144-151.
    [1] Hamacher S, Matern S, Roeh E. Extracellular matrix-from basic research to clinical significance. An overview with special consideration of matrix metalloproteinases. Dtsch Med Wochenschr, 2004, 129(38):1976-1980.
    [2] Montaner J, Molina CA , Monasterio J , et al . Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation, 2003 , 107 : 598 - 603.
    [3] Castellanos M, Leira R, Serena J, et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke, 2003, 34:40-46.
    [4] Sumii T, Lo EH. Involvement of matrix metalloproteinase in thrombolysis associated hemorrhagic transformation after embolic focal ischemia in rats. Stroke, 2002, 33: 831 - 836.
    [5] Asahi M, Asahi K, Jung JC, et al. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab, 2000,20:1681–1689.
    [6] Asahi M, Wang X, Mori T, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci, 2001, 21:7724–7732.
    [7] Rosenberg GA, Kornfeld M, Estrada E, et al. TIMP-2 reduces proteolytic opening of blood brain barrier by type IV collagenase. Brain Res, 1992, 576:203–207.
    [8] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20: 84-91.
    [9] Zhang JW, Gottschall PE. Zymographic measurement of gelatinase activity in brain tissue after detergent extraction and affinity-support purification. J Neurosci Methods, 1997, 76(1):15-20.
    [10] Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell, 1997, 91(4):439-442.
    [11] Yang Y, Estrada EY, Thompson JF, et al. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab, 2007, 27(4):697-709.
    [12] Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke, 1998, 29:2189–2195.
    [13] Gasche Y,Fujimura M,Morita Fujimura Y,et a1.Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice:A possible role in blood-brain barrier dysfunction.J of Cerebral Blood Flow and Metabolism,1999,19(9):1020-1028.
    [14] Kondo T,Reaume AG,Huang TT,et a1.Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci, 1997, 17(11):4180- 4189.
    [15] Birkedal HH.Role of cytokines and inflammatory mediators in tissue destruction. J Periodontal Res, 1993, 28(2):500-510.
    [16] Tomasek JJ,Halliday NI ,Updike DL,et a1.Gelatinase A activation is regulated by the organization of the polymerized actin cytoskeleton. J Biol Chem, 1997,272(11):7482-7487.
    [17] Rosenberg GA,Dencoff JE,Mcguire PG,et al. Injury-induced 92-kilodalton gelatinase and urokinase expression in rat brain .Lab Invest, 1994,71:417-422.
    [18] Asahi M,Wang X,Mori T,et a1.Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci,2001,21(19):7724-7732.
    [19] Rosenberg GA,Navratil M,B&rone F,et a1. Proteolytic cascade enzymes increase in focal cerebral ischemia in rats. J Cereb Blood Flow Metab, 1996,16(3):360-366.
    [20] Montaner J, Molina CA, Monasterio J, et al. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation, 2003, 107: 598 - 603.
    [21] Anthony DC, Ferguson B, Matyzak MK, et a1.Differential matrix metalloproteinase express in case of multiple sclerosis and stroke. Neuropathol Appl Neurobiol, 1997, 23(5):406-415.
    [22] Gidday JM, Gasche YG, Copin JC, et al. Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. Am J Physiol Heart Circ Physiol, 2005,289(2):H558-68.
    [23] Justicia C, Panes J, Sole S, et al. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats.J Cereb Blood Flow Metab, 2003, 23(12):1430-1440.
    [24] Romanic AM,Vv'hite RF,Arleth Al,et al .Matrix metalloproteinaise express increase after cerebral focal ischemia in rats: Inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke, 1998, 29(8):1020-1030.
    [25] Castellanos M, Leira R, Serena J, et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke, 2003, 34(1):40-46.
    [1] Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol, 2001, 17:463-516.
    [2] Hamacher S, Matern S, Roeh E. Extracellular matrix-from basic research to clinical significance. An overview with special consideration of matrix metalloproteinases. Dtsch Med Wochenschr, 2004, 129(38):1976-1980.
    [3] Yong VW, Power C, Forsyth P, Edwards DR. Metalloproteinases in biology andpathology of the nervous system. Nat Rev Neurosci, 2001, 2:502–511.
    [4] Lijnen HR. Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost, 2001, 86:324-333.
    [5] Ohuchi E, Imai K, Fujii Y, et al. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Bio Chem, 1997, 272:2446-2451.
    [6] Kinoshita T, Sato H, Takino T, et al. Processing of a precursor of 72-kilodalton type IV collagenase/gelatinase A by a recombinant membrane-type 1 matrix metalloproteinase. Cancer Res, 1996, 36:2535-2538.
    [7] Kim, M. H., Kitson, R. P., Albertsson, P., et al. Secreted and membrane-associated matrix metalloproteinases of IL-2-activated NK cells and their inhibitors. J. Immunol, 2000, 164: 5883-5889.
    [8] Cunningham LA, Wetzel M, Rosenberg GA. Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia, 2005,50(4):329-39.
    [9] Planas AM, Sole S, Justicia C. Expression and activation of matrix metalloproteinase-2 and-9 in rat brain after transient focal cerebral ischemia. Neurobiol Dis, 2001,8(5):834-846.
    [10] Fujimura M, Gasche Y, Morita-Fujimura Y, et a1.Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res,1999,842(1):92-100.
    [11] Romanic AM, White RF, Arleth AJ, et a1. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats. Inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke, l998,29(8):l020-1030.
    [12] Cunningham LA, Wetzel M, Rosenberg GA. Multiple Roles for MMPs and TIMPs in Cerebral Ischemia. Glia, 2005, 50(4):329-339.
    [13] Liu T, McDonnell PC, Young PR, et al. Interleukin-1 beta mRNA expression in ischemic rat cortex. Stroke, 1993, 24(11):1746-50.
    [14] Liu T, Clark RK, McDonnell PC, et al. Tumor necrosis factor-alpha expression in ischemic neurons. Stroke, 1994, 25(7):1481-1488.
    [15] Aggarwal, S., Takada, Y., Singh, S., et al. Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor-kappaB signaling. Int. J. Cancer, 2004,111: 679–692.
    [16] Wu CY, Hsieh HL, Jou MJ, et al. Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-kappa B in interleukin-1beta-inducedmatrix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem, 2004 ,90(6):1477-1488.
    [17] Birkedal-Hansen H. Role of cytokines and inflammatory mediators in tissue destruction. J Periodontal Res, 1993,28(6 Pt 2):500-10.
    [18] Gursoy-Ozdemir Y, Bolay H, Saribas O, et al. Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia. Stroke, 2000,31(8):1974-1980.
    [19] Wang X, Lee SR, Arai K, Lee SR, Tsuji K, Rebeck GW, Lo EH. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med. 2003 Oct;9(10):1313-7. Epub 2003 Sep 7.
    [20] Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta,2000, 1477:267–283.
    [1] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20: 84-91.
    [2] Sumii T, Lo EH. Involvement of matrix metalloproteinase in thrombolysis associated hemorrhagic transformation after embolic focal ischemia in rats. Stroke, 2002, 33(3):831-836.
    [3] Longa E, Weinstein P, Carlson S, et al. Reversible middle cerebral arteryocclusion without craniectomy in rats.Stroke,1989,20: 84-91.
    [4]李玲,黄如训,肖小华,等.局灶性脑缺血再灌注区微血管基底膜损害及uPA、uPAmRNA表达的实验研究.中国病理生理杂志, 2000, 16:1189-1193.
    [5] Romanic AM, White RF, Arleth AJ. et a1. Matrix metalloproteinase expression increases after cerebral focal ischem ia in rats. Inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke, 1998, 29(10):1020-1030.
    [6] Asahi M, Wang X, Mori T, et a1. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci, 2001, 21(19):7724-7732.
    [7] Asahi M, Asahi K, Jung JC, et al. Role of matrix metalloproteinase 9 in focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab, 2000, 20:1681–1690.
    [8] Pfefferkorn T, Rosenberg GA. Closure of the blood-brain barrier by matrix metalloproteinase inhibition reduces rtPA-mediated mortality in cerebral ischemia with delayed reperfusion. Stroke, 2003, 34(8):2025-2030.
    [9] Lapchak PA, Chapman DF, Zivin JA. Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen activator) induced hemorrhage after thromboembolic stroke. Stroke, 2000, 31:3034–3040.
    [10] Gary DS, Mattson MP. Integrin signaling via the PI3-kinase-Akt pathway increases neuronal resistance to glutamate-induced apoptosis. J Neurochem, 2001,76:1485–1496.
    [11] Gary DS, Milhavet O, Camandola S, et al. Essential role for integrin linked kinase in Akt-mediated integrin survival signaling in hippocampal neurons. J Neurochem, 2003, 84:878–890.
    [12] Stupack DG, Puente XS, Boutsaboualoy S, et al. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol, 2001, 155(3):459-470.
    [13] Zalewska T, Ziemka-Nalecz M, Sarnowska A, et al. Transient forebrain ischemia modulates signal transduction from extracellular matrix in gerbil hippocampus. Brain Res, 2003, 977:62–69.
    [14] Zalewska T, Ziemka-Nalecz M, Sarnowska A, et al. Involvement of MMPs in delayed neuronal death after global ischemia. Acta Neurobiol Exp (Warsz), 2002, 62:53–61.
    [15] Gu Z, Kaul M, Yan B,et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science, 2002, 297:1186–1190.
    [16] Gu Z, Cui J, Brown S, et al. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci, 2005, 25(27):6401-6408.
    [17] O'Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 1994, 79(2):315-328.
    [1] Report of the NINDS Stroke Progress Review Group 2002, 1-116. Available at www.ninds.gov/about_ninds/04_2002_stroke_PRG_report.htm.
    [2] Lo EH, Broderick JP, Moskowitz MA. tPA and proteolysis in the neurovascular unit . Stroke, 2004, 35: 354-356.
    [3] Paemen L, Martens E, Norga K, et al. The gelatinasebinhibitory activity of tetracyclines and chemically modified tetracycline analogues as measured by a novel microtiter assay for inhibitors .Biochem Pharmacol, 1996, 52:105–111.
    [4] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20: 84-91.
    [5] Xu L, Fagan SC, Waller JL, et al. Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats. BMC Neurol, 2004, 4:7.
    [6] Longa E, Weinstein P, Carlson S, et al. Reversible middle cerebral arteryocclusion without craniectomy in rats.Stroke,1989,20: 84-91.
    [7] Zhang JW, Gottschall PE. Zymographic measurement of gelatinase activity in brain tissue after detergent extraction and affinity-support purification. J Neurosci Methods, 1997,76(1):15-20.
    [8] Kim, M. H., Kitson, R. P., Albertsson, P., et al. Secreted and membrane-associated matrix metalloproteinases of IL-2-activated NK cells and their inhibitors. J. Immunol, 2000, 164: 5883-5889.
    [9] Joshi N, Miller DQ. Doxycycline revisited. Arch Intern Med, 1997,157(13):1421-1428.
    [10] Lacy CF. Drug information handbook. 8th ed. Hudson (OH): Lexi-Comp Inc., 2001
    [11] Zhu S, Stavrovskaya I G, DrozdaM, et al. Minocycline inhibits cytochrome release and delays p rogression of amyotrophic lateral sclerosis inmice. Nature, 2002, 417 (6884): 74 - 78.
    [12] Yong VW, Wells J, Giuliani F, et al. The promise of minocycline in neurology. Lancet Neurol, 2004, 3(12): 744-51.
    [13] Yrjanheikki J, Tikka T, Keinanen R, et al. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA, 1999 , 96(23):13496-13500.
    [14] Fox C, Dingman A, Derugin N, et al. Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab, 2005, 25(9):1138-1149.
    [15] Yenari MA, Xu L, Tang XN, et al. Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke, 2006, 37(4):1087-1093.
    [16] Golub LM, Lee HM, Ryan ME, et al. Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms.Adv Dent Res,1998, 12:12–26.
    [17] Van den Steen PE, Dubois B, Nelissen I, et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol, 2002, 37:375–536.
    [18] Koistinaho M, Malm TM, Kettunen MI, et al.Minocycline protects againstpermanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice. J Cereb Blood Flow Metab, 2005, 25(4):460-467.
    [19] Machado LS, Kozak A, Ergul A, et al. Delayed minocycline inhibits ischemia-activated matrix metalloproteinases-2 and-9 after experimental stroke.BMC Neurosci, 2006 , 7(1):56.
    [20] Wu CY, Hsieh HL, Jou MJ, et al. Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-kappa B in interleukin-1beta-induced matrix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem, 2004 , 90(6):1477-1488
    [21] Eberhardt W, Huwiler A, Beck KF, et al. Amplification of IL-1 beta-induced matrix metalloproteinase-9 expression by superoxide in rat glomerular mesangial cells is mediated by increased activities of NF-kappa B and activating protein-1 and involves activation of the mitogen-activated protein kinase pathways. J Immunol, 2000,165(10):5788-5797.
    [22] J. Yrjanheikki, R. Keinanen, M. Pellikka, et al. Tetracyclines inhibit microglia activation and are neuroprotective in global brain ischemia, Proc. Natl. Acad. Sci. U. S. A. 95, 1998,15769– 15774.
    [23] Gursoy-Ozdemir Y, Can A, Dalkara T. Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke,2004 35(6):1449-1453.
    [24] Morimoto N, Shimazawa M, Yamashima T, et al.Minocycline inhibits oxidative stress and decreases in vitro and in vivo ischemic neuronal damage.Brain Res, 2005,1044(1):8-15.
    [25] Pre′aux AM, Mallat A, van Nhieu JT, et al. Matrix metalloproteinase-2 activation in human hepatic fibrosis regulation by cell-matrix interactions. Hepatology, 1999, 30: 944-950.
    [26] Li H, Simon H, Thomas MAB, et a1. MMP/TIMP expression in spontaneouslyhypertensive heart failure rats:the effect of ACE and MMP inhibition. Cardisovasc Res, 2000, 46: 298-306.
    [27] Mukhe Lee R, Brinsa TA, Dowdy KB, et a1. Myocardial infarct expansion and matrix metalloproteinase inhibition. Circulation. 2003,107:6l8-625.
    [28] Meier CM, Hsieh L, Yu F, et al. Matrix metalloproteinase-9 and myeloperoxidase expression. Quantitative analysis by antigen immunohistochemistry in a model of transient focal cerebral ischemia. Stroke, 2004,35:1169-1174.
    [29] Planas AM, Sole S, Justicia C. Expression and activation of matrix metalloproteinase-2 and-9 in rat brain after transient focal cerebral ischemia. Neurobiol Dis,2001, 8: 834-846.
    [30] Rosenberg GA, Cunningham LA, Wallace J, et al. Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res, 2001, 893: 104-112.
    [31] Justica C, Panes J, Sole S, et al. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. J Cereb Blood Flow Metab, 2003, 23: 1430-1440.
    [32] Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood ,1997 , 89: 3503-3521.
    [33] Gidday JM, Gasche YG, Copin JC, et al. Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia.Am J Physiol Heart Circ Physiol, 2005, 289(2):H558-568.
    [34] Brundula V, Rewcastle NB, Metz LM, et al. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain, 2002,125(Pt 6):1297-1308.
    [35] Yong VW, Wells J, Giuliani F, et al. The promise of minocycline in neurology . Lancet Neurol, 2004, 3(12): 744-751.
    [1] Bode W, Fernandez-Catalan C, Tschesche H, et al. Structural properties of matrix metalloproteinases.1999,Cell Mol Life Sci, 55:639-652.
    [2] Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors ofmetalloproteinases: structure, function, and biochemistry. Circ Res,2003, 92:827-839.
    [3] Butler, GS, Will, H, Atkinson, SJ, et al. Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur J Biochem,1997, 244: 653-657.
    [4] Lees, M, Taylor, DJ, Woolley, DE. Mast cell proteinases activate precursor forms of collagenase and stromelysin, but not of gelatinases A and B. Eur J Biochem, 1994, 223,171-177.
    [5] Overall C. M., López-Otín C. Strategies for MMP inhibition in cancer: Innovations for the post-trial era. Nat. Rev. Cancer, 2002, 2: 657-672.
    [6] Brew K., Dinakarpandian D., Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim. Biophys. Acta, 2000, 1477: 267-283.
    [7] Curran J. A., Laverty F. S., Campbell D., et al. Epstein-Barr virus encoded latent membrane protein-1 induces epithelial proliferation and sensitizes mice to chemical carcinogenesis. Cancer Res. 2001, 61: 6730-6738.
    [8] Jiang Y., Goldberg I. D., Shi Y. E. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene, 2002, 21: 2245-2252.
    [9] Rosenberg GA. Matrix metalloproteinases in brain injury. J Neurotrauma. 1995, 12:833-842.
    [10] Petito CK, Feldmann E, Pulsinelli WA, Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology,1987, 37:1281-1286.
    [11] Kontos HA. Oxygen radicals in cerebral ischemia: the 2001 Willis Lecture. Stroke, 2001, 32:2712-2716.
    [12] Zhang Z, Chopp M. Vascular endothelial growth factor and angiopoietins in focal cerebral ischemia. Trends Cardiovasc Med, 2002, 12:62–66.
    [13] Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation. Nature, 2000, 407:242–248.
    [14] Tilton RG, Berens KL. Functional role for selectins in the pathogenesis of cerebral ischemia. Drug News Perspect, 2002, 15:351–357.
    [15] Hess DC, Howard E, Cheng C, et al. Hypertonic mannitol loading of NF-κB transcription factor decoys in human brain microvascular endothelial cells blocks upregulation of ICAM-1 editorial comment. Stroke, 2000, 31:1179–1186.
    [16] Furuse M, Fujita K, Hiiragi T, et al. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol, 1998,141:1539–1550.
    [17] Sugawara T, Fujimura M, Noshita N,et al. Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx, 2004, 1(1):17–25.
    [18] Chen J, Zhu RL, Nakayama M, et al. Expression of the apoptosis-effector gene, Bax, is upregulated in vulnerable hippocampal CA1 neurons following global ischemia. J Neurochem. 1996, 67: 64–71.
    [19] Abid MR, Guo S, Minami T,et al. Vascular endothelial growth factor activates PI3K/Akt/ Forkhead signaling in endothelial cells. Arterioscler Thromb Vasc Biol, 2004, 24:294–300.
    [20] Zachary I. VEGF signaling: integration and multi-tasking in endothelial cell biology. Biochem Soc Trans, 2003, 31:1171–1177.
    [21] Hamann GF, Okada Y, del Zoppo GJ. Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/reperfusion. J Cereb Blood Flow Metab. 1996, 16:1373–1378.
    [22] Rosenberg GA, Kornfeld M, Estrada E, et al. TIMP-2 reduces proteolytic opening of blood-brain barrier by type IV collagenase. Brain Res. 1992, 576:203–207.
    [23] Asahi M, Asahi K, Jung JC, et al. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab, 2000, 20:1681–1689.
    [24] Asahi M, Wang X, Mori T, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci,2001, 21:7724–7732.
    [25] Gasche Y, Fujimura Y, Copin J, et al. Early appearance of activated MMP-9 after focal cerebral ischemia in mice. J Cereb Blood Flow Metab,1999, 19:1020–1028.
    [26] Heo JH, Lucero J, Abumiya T, et al. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab, 1999, 19:624–633.
    [27] Mun-Bryce S, Rosenberg GA. Matrix metalloproteinases in cerebrovascular disease. J Cereb Blood Flow Metab,1998, 18:1163–1172.
    [28] Rosenberg GA, Navratil M, Barone F, et al. Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. J Cereb Blood Flow Metab. 1996, 16:360–366.
    [29] Chang DI, Hosomi N, Lucero J,et al. Activation systems for latent matrix metalloproteinase-2 are upregulated immediately after focal cerebral ischemia. J Cereb Blood Flow Metab, 2003, 23:1408–1419.
    [30] Castellanos M, Leira R, Serena J, et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke, 2003, 34:40-46.
    [31] Rosell A, Ortega-Aznar A, Alvarez-Sabin J, et al. Montaner J.Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke, 2006, 37(6):1399-1406.
    [32] Horstmann S, Kalb P, Koziol J,et al. Profiles of matrix metalloproteinases,their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke, 2003, 34(9):2165-2170.
    [33] Lo EH, Broderick JP, Moskowitz MA. tPA and proteolysis in the neurovascular unit. Stroke, 2004, 35: 354-356.
    [34] Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke, 1998, 29(10):2189-2195.
    [35] Romanic AM, White RF, Arleth AJ, et al. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats -Inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke, 1998, 29: 1020-1030.
    [1] Hunter PA, Castaner J. GAR-936. Drugs Future 2001; 26 (9): 851-858.
    [2] Joshi N, Miller D. Doxycycline revisited. Arch Intern Med 1997,157(13): 1421-1428.
    [3] J. Yrjanheikki, R. Keinanen, M. Pellikka,et al. Tetracyclines inhibit microglia activation and are neuroprotective in global brain ischemia, Proc. Natl. Acad. Sci. U. S. A. 1998, 95:15769– 15774.
    [4] Thomas M, Le WD, Jankovic J, et al. Minocycline and other tetracycline derivatives: a neuroprotective strategy in Parkinson’s disease and Huntington’s disease. Clin Neuropharmacol, 2003, 26:18–23.
    [5] Thomas M, Le WD. Minocycline: neuroprotective mechanisms in Parkinson’s disease. Curr Pharm Des, 2004,10:679–686.
    [6] Popovic N, Schubart A, Goetz BD, et al. Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol, 2002, 51:215–223.
    [7] Zhu, S. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature, 2002, 417:74–78.
    [8] Teng YD, Choi H, Onario RC, et al. Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci USA, 2004, 101:3071–3076.
    [9] Arvin KL, Han BH, Du Y, et al. Minocycline markedly protects the neonatal brain against hypoxic–ischemic injury. Ann Neurol, 2002, 52:54–61.
    [10] Wang X, Zhu S, Drozda M, et al. Minocycline inhibits caspase-independent and–dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc Natl Acad Sci USA 2003, 100:10483–10487.
    [11] Chen M, Ona VO, Li MW, et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntingtondisease. Nat Med 2000, 6: 797-801.
    [12] Tikka TM, Vartiainen NE, Goldsteins G, et al. Minocycline prevents neurotoxicity induced by cerebrospinal fluid from patients with motor neurone disease. Brain, 2002, 125: 722–731.
    [13] He Y, Appel S, Le W. Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res 2001, 909:187–193.
    [14] Du Y, Ma Z, Lin S,et al. Minocycline prevents nigrostriatal dompaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proc Natl Acad Sci, 2001, 98:14669-14674.
    [15] Brundula V, Rewcastle NB, Metz LM, et al. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis.Brain, 2002,125(Pt 6):1297-1308.
    [16] Smith, D.L. Minocycline and doxycycline are not beneficial in a model of Huntington’s disease. Ann. Neurol, 2003, 54, 186–196.
    [17] Yang, L. et al. Minocycline enhances MPTP toxicity to dopaminergic neurons. J. Neurosci. Res, 2003, 74:278–285.
    [18] Wells J, Hurlbert J, Fehlings M, et al. Neuroprotection by minocycline facilitates significant recovery from spinal cord injury. Brain, 2003, 126: 1628–1637.
    [19] Stirling DP, Khodarahmi K, Liu J, et al. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci ,2004, 24: 2182–2190.
    [20] Sanchez Mejia RO, Ona VO, Li M, et al. Minocycline reduces traumatic brain injurymediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery, 2001, 48:1393–1399.
    [21] Morimoto N, Shimazawa M, Yamashima T, et al. Minocycline inhibits oxidativestress and decreases in vitro and in vivo ischemic neuronal damage. Brain Res, 2005, 1044(1):8-15.
    [22] Yrjanheikki J, Tikka T, Keinanen R, et al. Tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A, 1999, 96(23):13496-13500.
    [23] Wang CX, Yang T, Noor R, et al. Delayed minocycline but not delayed mild hypothermia protects against embolic stroke. BMC Neurol, 2002, 2: 2.
    [24] Fox C, Dingman A, Derugin N, et al. Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion.J Cereb Blood Flow Metab, 2005, 25(9):1138-1149.
    [25] Tsuji M, Wilson MA, Lange MS, et al. Minocycline worsens hypoxic-ischemic brain injury in a neonatal mouse model. Exp Neurol. 2004, 189(1):58-65.
    [26] Machado LS, Kozak A, Ergul A, et al. Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci. 2006, 7(1):56.
    [27] Wagner S, Nagel S, Kluge B, et al. Topographically graded postischemic presence of metalloproteinases is inhibited by hypothermia. Brain Res, 2003, 984(1-2):63-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700