若干离子液体离子对结构及其与溶剂相互作用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体作为一种新型材料,是当今化学发展最活跃的领域之一。它们具有独特的物理化学性能,在有机合成、萃取、分离和电化学等方面发挥着巨大作用,为化学、生命科学和材料科学等领域的发展提供了广阔的前景。对离子液体实验和理论的研究,不仅能丰富化学学科的内容,还能造福人类,因此具有重要的理论与实际意义。开展离子液体的理论研究,从分子水平上认识离子液体及其溶液的结构,有助于理解其物理化学性质,而且为离子液体的设计提供了一定的理论依据。
     本论文运用量子化学方法研究了离子液体及其有机溶剂的混合溶液两种体系,从微观角度重点阐明该体系内部结构的本质,旨在获得对离子液体及溶液物理化学性质全面而深入的认识,从而为其开发和利用提供一定的理论指导。本工作对离子液体及其溶液内部粒子间的氢键作用进行了系统的研究。
     主要研究内容及结论归纳如下:
     1.概括离子液体的实验和理论研究现状,国内外对其研究主要侧重于实验方面的工作,对于离子液体的合成及应用已有大量的文献报道。新的离子液体不断被开发利用,正处于蓬勃发展的黄金时期。
     2.应用密度泛函理论的B3LYP方法,研究吡啶、N-烷基吡啶阳离子及其与若干阴离子(F~-,Cl~-,Br~-,NO_3~-,BF_4~-)形成离子对的稳定构型。计算结果表明:N-烷基吡啶阳离子的吡啶环与中性吡啶分子类似,具有芳香性,烷基对吡啶环结构影响不大;离子对中阴离子易出现在吡啶环上方以及C(5)-H或C(2)-H和N-甲基附近;阴、阳离子之间通常存在多重氢键,并且均有部分电荷转移;离子对的相互作用能随着N-烷基的增长而减小。
     3.在B3LYP/6-31++G(d,p)理论水平上研究得到若干咪唑类离子液体的阳离子、阴离子以及离子对[emim]Cl分别与甲醇分子形成复合物的几何构型;甲醇羟基氧原子与阳离子的氢原子以及羟基氢原子与阴离子之间分别形成氢键,随着阳离子N-烷基侧链的增长,甲醇与阳离子之间的相互作用能逐渐减弱;随醇烷基侧链的增长,甲醇与阴离子形成的氢键逐渐增强;通过对复合物相互作用能的比较,发现咪唑环上氢原子的酸性比N-烷基侧链的强,而且C(2)-H的酸性最强;甲醇和离子对[emim]Cl可以形成多种复合物,它与阴离子之间的相互作用比与阳离子的强,而且甲醇可以同时与阴、阳离子形成较强的氢键,在离子液体中起桥梁的作用;由于甲醇的介入,使离子对中阴、阳离子之间的相互作用减弱,电荷分布发生改变,而且频率分析发现有红移或蓝移现象出现,从而为其物理化学性质的解释和推测提供了一定的理论依据。
Ionic liquids,as a new class of material,represent one of the major challenges in the field of modern chemistry.Their many unique physical and chemical properties, such as negligible vapor pressure,low melting point,high thermal stability,powerful solvent capacity and recyclability,make them idea candidates for application in organic synthesis and separation process and the use of ionic liquids opens up a wide field for future investigations.The interest in this field has increased spectacularly in the last few years.The experimental and theoretical investigation for ionic liquids will be of important theoretical and practical values.
     Theoretical studies of ionic liquids by computational methods have been greatly facilitated by innovation of computer technology and development of the methods. Recently,B3LYP methods have been applied for ionic liquids and have achieved the considerable results.
     In this dissertation,we studied ionic liquids with density functional theory (DFT)calculations.Our purposes are to shed light on the structures' details of their ion-pairs and their mixtures with organic solutions and hence obtain a better interplay between theory and experiment,Our results provide detailed information on the structures and should be helpful for the development and application of ionic liquids.
     The valuable conclusions in this dissertation can be summarized as follows:
     1.The research history and current state on ionic liquids have been briefly reviewed.In recent years,their experimental applications of ionic liquids as solvents for synthesis and catalysis and as alternative media have been investigated extensively; relative little is theoretical studies about them.
     2.The stable geometries of pyridine,N-alkylpyridinium cations,and the ion-pairs of N-alkyl pyridinium cations with F~-,Cl~-,Br~-,NO_3~- and BF_4~-have been investigated by performing density functional theory calculations at the B3LYP/6-31+G(d)level.The calculated results indicate that the structure of the pyridine ring in N-alkylpyridinium cations is generally similar to that of the neutral pyridine molecule,i.e.the pyridine ring retains aromaticity,and the N-alkyl side chain has little effect on the structures of the pyridine ring.It is also found that the anions are inclined to move to the vicinities of the C(5)-H fragment or between C(2)-H and N-methyl above the pyridinium ring in ionic liquids.There are always multiple H-bondings between the anion and cation with partial charges transfer.Furthermore, the longer the N-alkyl side chain is,the weaker the H-bondings between the cation and anion would be.
     3.The interactions between the methanol molecule and several anions, imidazolium cation and the ion-pairs are investigated in detail.The anions with the methanol molecule form X~-…H-O dimmers and in the case of cation-methanol complexes,they form[emim]~+…O model;The longer the N-alkyl side chain is,the weaker the interactions between the methanol molecule and cations;The difference of interaction energies of these complexes indicates that the acidity of H on imidazolium ring are stronger than that on N-alkyl side chain,furthermore,H that on C(2)has the strongest acidity;The ion-pair could form nine complexes with the methanol molecule,The interaction energies between anion and the methanol molecule is larger than that between cation and the methanol molecule;In the mixture of methanol and the 1-alkyl-3-methylimidazolium chloride ionic liquid,comparing with in pure ionic liquid,the interaction energy between[emim]~+ and Cl~- decrease.The population of charge has been changed and red shift or blue shift could be found.Above all are helpful for the explanations of the physical and chemical properties for ionic liquids.
     In this dissertation,the valuable conclusion has provided reliable verification and has lead a theoretical guide line on further studying of ionic liquids,even for the development of the whole chemistry field.
引文
[1]F.H.Hurley,T.P.Wier,Jr.,J.Electrochem.Soc.1951,98,207.
    [2]T.B.Scheffier,C.L.Hussey,K.R.Seddon,Inorg.Chem.1983,22,2099.
    [3]T.M.Laher,C.L.Hussey,Inorg.Chem.1983,22,3247.
    [4]T.B.Scheffier,C.L.Hussey,K.R.Seddon,Inorg.Chem.1984,23,1926.
    [5]D.Appleby,C.L.Hussey,K.R.Seddon,J.E.Turp,Nature,1986,323,614.
    [6]J.S.Wilkes,M.J.Zaworotko,J.Chem.Soc.Chem.Commun.1992,965.
    [7]C.E.Song,E.J.Roh,Chem.Commun.2000,837.
    [8]W.Chen,L.Xu,C.Chatterton,J.Xiao,Chem.Commun.1999,1247.
    [9]B.Ellis,W.Keim,P.Wasserscheid,Chem.Commun.1999,337.
    [10]L.Xu.W.Chen,J.Xiao.Organometallies,2000,19,1123.
    [11]H.A.Oye,M.Jagtogen,T.Oksefjell,J.S.Wilkes,Mater.Sci.Forum,1991,73-75,183.
    [12]J.S.Wilkes,J.A.Levisky,R.a.Wilson,C.L.Hussey,Inory.Chem,1982,21,1263.
    [13]R.T.Carlin,J.S.Wilkes in Chemstry of Nonaqueous Solutions,1994,277.
    [14]C.L.Hussey,Pure Appl.Chem.1988,60,1763.
    [15]Earle,M.J.,Seddon,K.R.Pure Appl.Chem.2000,72,1391.
    [16]P.Bonhote,A.P.Dias,N.Papageorgiou,K.Kalyanasundaram,M.Gratzel.Inorg.Chem,1996,35(5):1168-1178.
    [17]Tokuda,H.;Hayamizu,K.;Ishii,K.;Susan,M.A.B.H.;Watanabe,M.J.Phys.Chem.B.2005,109,6103.
    [18]Elizabeth A.Turner,Cory C.P yr,J.Phys.Chem.A 2003,107,2277.
    [19]C.J.Adams,M.J.Earle,G.Roberts,K.R.Seddon,Chem.Commun.1998,19,2097.
    [20]J.Peng,Y.Q.Deng,Petrochemical Technology,2001,30,91.
    [21]P.A.Z.Suarez,J.E.L.Dullius,S.Einloft,R.F.De Souza,J.Dupont,Polyhedron 1996,15,1217.
    [22].Howarth,K.Hanlon,D.Fayne,P.McCormac,Tetrahedron Lett.1997,38,3097
    [23]Carmiehael,A.J.,Earle,M.J.,Holbrey,J.D.,McCormac,P.B.,Seddon,K.R.Org.Lett.,1999,1,997
    [24]Rivera-Rubero S,Baldelli S.J Phys.Chem.B,2006,110,15499.
    [25]Su B M,Zhang SG,Zhang Z.J.Phys.Chem.B,2004,108,19510.
    [26]Deetlefs M,Hardacre C,Nieuwenhuyzen M,Sheppard O,Soper A K.J.Phys.Chem.B,2005,109,1593.
    [27]Hardacre C,Holbrey J D,McMath S E J,Bowron D T,Soper A K.J.Chem Phys.2002,118,273.
    [28]Katayanagi H,Hayashi S,Hamaguchi H,Nishikawa K.Chem.Phys.Lett.392,2004,460.
    [29]Katsyuba S A,Zvereva E E,Vidis A,J.Phys.Chem.A,2007,111,352.
    [30]Hu Z H,Margulis C J.,PNAS.2006,103,831.
    [31]Hunt P.A,Gould I.R.J.Phys.Chem.A,2006,110,2269.
    [32]Raymo F M,Bartberger M D,Houk K N,Stoddart J F.J.Am.Chem.Soc.2001,123,9264.
    [33]Hanke C.G,Johansson A,Harper J.B,Lynden-Bell R M.Chem.Phys.Lett.2003,374,85
    [34]Urahata S M,Ribeiro C.C.M.,J.Chem.Phys.2003,120,185 5.
    [35]Urahata S M,Ribeiro C C M.J.Chem.Phys.2005,122,
    [36]Andrade J De,Boes E S,Stassen H.,J.Phys.Chem.B,2002,106,3546.
    [37]Shim Y,Choi M Y,Kim H J.,J.Chem.Phys.2005,122.
    [38]Shim Y,Choi M Y,Kim H J.,J.Chem.Phys.2005,122.
    [1]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社,1985.
    [2]Hohenberg,P.and Kohn,W.Inhomogeneous Electron Gas[J].Phys.Rev.1964,136,B864-B871.
    [3]Kohn,W.and Sham,L.J.Self-Consistent Equations Including Exchange and Correlation Effects[J].Phys.Rev.1965,140,A1133-A1138.
    [4]Becke,A.D.A new mixing of Hartree-Fock and local density-functional theories[J].J.Chem.Phys.1993 98(2)1372-1377.C.Lee,W.Yang,R.G.Parr,Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J].Phys.Rev.B 1988 37785-789.
    [5]Frisch,M.J.et al.Gaussian 03,Revision B.05,Gaussian,Inc.,Pittsburgh PA,2003.
    [6]Boys,S.F.;Bernardi,F.The calculation of small molecular interactions by the differences of separate total energies.Some procedures with reduced errors[J].Molec.Phys.1970(19)553-566.
    [7]Tapia,O.J.Solvent effect theories:Quantum and classical formalisms and their applications in chemistry and biochemistry[J].J.Math.Chem.1992,10,139.
    [8]Tomasi,J.Persico,M.Molecular Interactions in Solution:An Overview of Methods Based on Continuous Distributions of the Solvent[J].Chem.Rev.1994,94,2027-2094.
    [9]Simkin,B.Y.Sheikhet,I.Quantum Chemical and Statistical Theory of Solutions—A Computational Approach[M].Ellis Horwood:London,1995.
    [10]Cances,E.Mennunci,B.Tomasi,J.A new integral equation formalism for the polarizable continuum model:Theoretical background and applications to isotropic and anisotropic dielectrics[J].J.Chem.Phys.1997,107(8),3032-3041.
    [11]Cossi,M.Barone,V.Cammi,R.Tomasi,J.Ab initio study of solvated molecules:a new implementation of the polarizable continuum model·ARTICLE[J].Chem.Phys.Lett.1996,255,327-335.
    [12]Barone,V.Cossi,M.Tomasi,J.Geometry optimization of molecular structures in solution by the polarizable continuum model[J].J.Comput.Chem.1998,19(4),404-417.
    [13]Lowdin,P.O.Quantum Theory of Many-Particle Systems.I.Physical Interpretations by Means of Density Matrices,Natural Spin-Orbitals,and Convergence Problems in the Method of Configurational Interaction[J].Phys.Rev.1955,97,1474-1489.
    [14]Reed,A.E.;Curtiss,L.A.;Weinhold,F.Intermolecular interactions from a natural bond orbital,donor-acceptor viewpoint[J].Chem.Rev.1988,88,899-926.
    [15]Jensen,F.Introductionto Computational Chemistry[M].JOHNWILEY & SONS,1999.
    [16]Almlof,J.;Taylor,P.R.Adv.Quantum Chem.1991,22,301.
    [17]Reed,A.E.;Weinhold,F.Natural bond orbital analysis of near-Hartree-Fock water dimmer [J].J.Chem.Phys.1983,78,4066-4073.
    [18]Reed,A.E.;Weinstock,R.B.;Weinhold,F.Natural population analysis[J].J.Chem.Phys.1985,83,735-746.
    [19]Carpenter,J.E.;Weinhold,F.Analysis of the geometry of the hydroxymethyl radical by the "different hybrids for different spins" natural bond orbital procedure[J].J.Mol.Struct.(Theochem).1988,169,41-62.
    [20]Reed,A.E.;Curtiss,L.A.;Weinhold,F.Chem.Rev.1988,88,899.
    [21]Jensen,F.Introduction to Computational Chemistry;JOHN WILEY & SONS,1999.
    [22]Almldf,J.;Taylor,P.R.Adv Quantum Chem.1991,22,301.
    [23]Reed,A.E.;Weinhold,R J Chem:Phys.1983,78,4061.
    [24]Reed,A.E.;Weinstock,R.B.;Weinhold,E.J.Chem.Phys.1985,83,735.
    [25]Carpenter,J.E.;Weinhold,A J.Mol.Struct.(Theochem),1988,169,41.
    [26]K.Fukui,Variational Principles in a Chemical Reaction,Int.J.Quantum.Chem.,1981,12,633-642.
    [27]K.Fukui,A.Tachibana,K.Yamashita,Toward Chemodynamics,Int.J.Quantum.Chem.,1981,15,621-632
    1 TV,Rajan,Babu.Chem.Rev.2003,103,2845.
    2 Dai,S;Ju.Y H;Barnes,C E.J.Chem.Soc.Dalton.Trans.1999,17,815.
    3 Suarez,P.A.Z;Dullis,J.E.L;Einloft.S.Polyhedr.1996,15,1217.
    4 Churat,T.;Douglas,R.M.J.Chem.Phys.2002,203,1906.
    5 C.E.Song.Chem.Commun.2004,9,1033.
    6 Zhou,M.-Y;Li,Yi.;Journal of Jinan University.2006,27,437.(in Chinese)(周美云,李毅,暨南大学学报,2006,27,437.)
    7 Becke,A.D.J.Chem.Phys.1993,98,5648.
    8 Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B.1988,37,785.
    9 Carpenter,J.E.;Weinhold,F.J.Mol.Struct.1988,169,41.
    10 Bondi,A.J.Phys.Chem.1964,68,441.
    11 Shishkov,I.F.;Vilkov,L.V.,Et al.Struct.Chem.1991,2,57.
    12 Ricca,A.;Bauschlicher,C.W.J.Phys.Chem.1995,99,9003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700