低能离子束辐照玉米生物效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80年代起,余增亮等发现了低能离子束生物诱变效应。此后引发了离子束生物诱变效应的广泛研究,学者们发现了多种多样的诱变效应,包括生物表型性状、细胞学效应、生化效应、遗传效应及分子生物学效应等,其中,通过突变体选择选育了一大批包括水稻、小麦、微生物等在内的优良农作物新品种。在机理机制方面,围绕细胞刻蚀穿孔、物质沉积、能量沉积、电荷沉积、近旁效应等做了大量的研究,做出了很好的尝试,值得深入研究。但是,一项新兴的研究领域,离子束生物技术还存在处理方法有待拓展、处理设备有待改进、处理群体小、诱变机理有待阐明等诸多挑战。为更深入开展离子束生物诱变研究,我们选择玉米作为研究材料,开展机理及应用研究,以期获得新的进展。通过玉米离子束诱变研究,我们获得了如下结论:
     ①研究发现,玉米作为离子束诱变研究的对象,具有独特的优势:首先,作为二倍体,其基因组较小麦为简单;第二,玉米种子较大,易于剥除种皮从而可免除种皮对离子束注入的限制,使生长点可直接被辐照诱变;第三,相对小麦与水稻,玉米具有较大的胚,可以提供更多的离子束辐照表面积以接受更多离子束辐照:第四,玉米100天左右的较短生育期,可以在海南加代繁殖,实现一年两到三代的诱变世代,为扩大选育突变体群体,缩短研究周期,提供了极大的便利;第五,最值得关注的是,相对小麦与水稻,玉米花粉具有较强的生活力和较长的存活时间,使花粉诱变育种成为可能,可以进行花粉诱变创造极大地突变体群体,为选育突变体提供了宝贵的机会。
     ②通过花粉诱变效应探索,克服了花粉诱变操作中存在的花粉抽真空逸失、活力测定方法选择、高死亡率、快速授粉、加代快速选育突变体、花粉处理方法及剂量选择等诸多困难,初步建立了较为完整玉米花粉诱变方法,获得了花粉囊突变体、籽粒致死突变、籽粒颜色突变、粒形突变、白化苗突变等丰富的突变类型,初步证明玉米花粉离子束诱变是一种高效快速的诱变方法。
     ③探索建立了玉米种子胚蛋白质组学研究方法,克服了蛋白质提取、双向电泳除盐升压、高效快速染色等研究难点,获得了稳定有效的实验操作方法,高质量的电泳图谱的获得,通过大量实验探索改进的改良TCA/丙酮蛋白质提取、改良电泳程序、改良胶条平衡及改良胶体考染程序等方法的建立,为进一步开展离子束诱变效应蛋白质组学研究打下了良好基础。
     ④离子束生物诱变效应研究的创新。在吸取前人研究成果的基础上,率先开展了离子束诱变效应的蛋白质组学研究。以前人关于离子束辐照引起自由基产生、引起同工酶谱变化为启发,考虑结合最为先进的前沿生物学研究技术——后基因组学研究技术,使低能离子束生物诱变与以双向电泳及质谱鉴定技术为核心的蛋白质组学研究技术相结合,从整个蛋白质组的角度探索离子束辐照诱变处理引起机体的蛋白质类型群体变化出发,综合研究其效应。关键酶蛋白质的变化,即是诱变效应的本身,又是更多表型效应产生的内部机制,蛋白质变化研究,集效应与机制研究于一体,为离子束生物效应研究提供了很好的平台,值得深入研究。结果表明,离子注入机产生的真空环境即可引起玉米胚蛋白质组发生变化,一些胁迫应激酶产生了响应。离子束注入玉米种子后,取其萌发胚进行研究,发现了诸多耐人寻味的变化:分子伴侣smHSP(如HSP16.9、HSP17.4)、HSP70、LEA3、DHN1等明显上调表达,可能与离子胁迫保护有关;多种抗氧化酶大量上调表达,如MnSOD、GST21、peroxidase等均出现表达量增加,可能与抵抗离子束引起的自由基增加有关;蛋白降解体系变化,如26S蛋白酶体等上调表达,可能与降解离子束辐照引起的变性蛋白有关;大量调控因子出现、消失、上调或下调表达,如Ran蛋白、MAPK因子、PP2A、14-3-3蛋白等,可能与机体应激调控有关;糖、蛋白质、核酸等代谢酶下调,可能与离子束胁迫引起损伤有关,也可能是离子束辐照引起种子萌发降低,生长缓慢等形成的原因;一些基因表达相关蛋白或核酸结合蛋白的变化可能引起突变效应的产生。
     ⑤玉米杂种优势在蛋白质组上有突出表现。研究发现玉米杂交种与其亲本自交系对离子束辐照的反应不同,突出表现在杂交种能耐受更大剂量的离子束辐照,同样的辐照剂量下,杂交种受损伤小。相应蛋白质组上的表现则为:杂交种对抗离子束辐照的应激更为积极和复杂。如产生更多的分子伴侣,分子伴侣的种类更为复杂可能更为有效的消除变性蛋白质;抗氧化酶种类更多,表达量较亲本增加;调控因子种类更多,大量调控因子出现或增加可能有利高效调控。杂交种代谢酶类表达下调的幅度较亲本自交系为小,可能是杂交种对辐射表现耐性形成的原因之一。
Ion beam mutation study using high-energy ion beams began in the 1920s. However, at that time, mutations resulting from low-energy ion beams were not recognized. It was not until decades later about 1980s that mutation effects on rice using low-energy ion beams were reported by Yu Zengliang et al.. During the past 20 years, substantial progress has been made in this field of research. Many studies have focused on changes to morphological and cytological traits, isozymes and DNA originating from different mutation materials, and some cultivars in different crops have been generated by exposure to low-energy ion beams, including Wanjing D9055 and S9042 in rice, Wanmai32 and Wanmai42 in wheat and so on. On the mechanism, many research were done including cell sculpting, matter aggradation, energy aggradation, bystander effects and the like. But as a new research realm, a good many challenges were confronted by ion beam bio-engineering, such as improving of treatment methods and equipments, low impact, small treatment colony in one radiation operation and the puzzledom of mechanism etc.. We selected maize as the materials for the application research and mechanism exploring and some results were described as that:
     ①As the highest output food supplies corp, maize is of great importance in the the application and background research realm and fit very much for the research of low energy ion beam implantation because of the five characters found or proved in our experiments:firstly, being diploid plant, maize is smaller and simpler in genome comparing with some other plant such as wheat and so on. Secondly, maize can be free of the seed capsule obstacle to the penetration of ion beam by shucked out of the seed capsule easily than other plant. And so the growth point of maize embryos can be implantated directly and effectively by ion beam for free of seed capsule obstacle. Thirdly, comparing to wheat, rice and other plant, the larger embryo of maize can absorb more ion beam because of its larger surface area. Fourthly, because of its shorter growth period(about 100 days) and the increasing generation technology in Hainan province, that make two or three mutation selection generations in one year possible, maize as the experimental materials of ion beam radiation is efficient that can provide large advantage to enlarge mutant chosen cology and short research period. Fifthly, its strong pollen viability and long existence time, comparing to wheat and rice, made maize pollen mutation by ion beam possible.
     ②A mensuration method to evaluate pollen viability with low energy in maize was established. Several challenges experienced during ion implantation pollen mutation research were overcome, including pollen loss from run-off during vacuum pumping, and high pollen mortality rates. The data showed that a half lethal dose of 1 X 1014N+/cm2 at low-energy 30 keV was most effective for treating maize pollen. Three elite inbred lines were treated in this study. Some mutants such as white anther color, red seed capsules, lethal seed and albino seedling mutants were observed in the MO and M1 populations. The results demonstrated that the pollen treatment with low-energy ion beam was an effectual method in maize mutant breeding.
     ③A method of maize seed embryo proteomics research were established that overcome protein distilled,2-D salt-removed and voltage-hoisted, coloration and so on. The amended method acquired high quality 2-D picture and established good base for the proteomics research of ion beam radiation effects.
     ④Innovation of ion beam radiation effects research. Based on the former research, we studied proteomics research of ion beam radiation effects. Through ion beam radiating treatment of maize seed and proteomics analyzing of treatment seed embryos, some absorbing results were acquired. The vacuum, high temperature and ion of ion beam radiation equipment affected the proteome of the treatment maize seed embryos, and so some protein enzymes answered to the pressure of environment such as smHSP (HSP16.9、HSP17.4)、HSP70、LEA3、DHN1 and so on that up-regulated in output and probably related to defence of ion pressure. Some kinds of antioxidant protein enzymes were up-regulated in output such as MnSOD, GST21, peroxidase and so on that probably has been associated with stress tolerance in plants because it neutralizes the reactivity of O-2, which is overproduced under oxidative Reactive Oxygen Species(ROS). The protein degradation enzymes such as 26S-ubiquitin proteosome pathway conjugating enzymes were up-regulated in output probably related to the degradation of denaturalization protein produced by ion beam radiation. Many regulator protein such as Ran、MAPK、PP2A、14-3-3 were up-regulated or down-regulated related to regulation of organism response. Some metabolize enzyme related to sugar, protein, nucleic acid and so on were down-regulated probably related to the damnification of ion beam radiation or seed bourgeon drawback, slow growth and so on. Some gene expression correlative protein or nucleic acid conjunction protein probably related to gene mutation.
     ⑤The heterosis behaved well in maize proteome, especialy in the proteomic induced by ion beam radiation. More differences were discovered in the response of ion beam radiation among the parents and hybrid. The hybrid can endure stronger ion beam radiation than the parents. In proteome, the response of hybrid became more complex and active than the parents. Such as more kinds and quantity of molecule cheapore as HSPs, LEA3、DHN1 and so on so that clear up denature protein efficiently, more kinds more kinds and quantity of antioxidant protein enzymes to neutralize the reactivity of O-2 and so on, more kinds more kinds and quantity of regulator for regulating efficiently. In addition, more little in down-regulated extent in the hybrid metabolize enzymes than the parents probably related to the strong endurance to ion beam radiation.
引文
[1]余增亮.离子束生物技术引论.合肥:安徽科学技术出版社,1998
    [2]邓建国,余增亮,吴跃进等.离子注入在水稻育种上的应用研究简报,安徽农业科学,1988,37(3):95
    [3]余增亮,何建军,邓建国等.离子注入水稻诱变育种机理初探,安徽农业科学,1989,39(1):12-16
    [4]常凤启,朱至清.低能离子的生物效应及在植物生物技术上的应用.农业生物技术学报,2004,12(2):206-211
    [5]吴丽芳,李红.离子束生物工程应用研究进展.物理,1999,28(12):708-712.
    [6]曾宪贤,武宝山,吕杰.离子束生物技术在生命科学中的应用,核技术,2006,29(2):112-115
    [7]Yu ZL, Yu LD, Brown IG, Introduction to Ion Beam Biotechnology, Springer-Verlag, NewYork,2005 (English edition)
    [8]吴敬德,吴跃进,郑乐娅.双季晚粳糯稻新品种皖稻82特征特性及栽培技术,安徽农学通报,2006,12(6):124
    [9]Phanchanchaisrt B, Chandet R, YU LD, Vilaithong T, Jamjod S and Anuntalabhochai S. Low-energy ion beam-induced mutation in Thai jasmine rice (Oryza sativa L. cv. KDML 105).2007, Surf. Coat. Tech.201(19-20):8024-8028
    [10]Liu BM, Wu Yj, Xu X, et al. Plant height revertants of Dominant Semidwarf mutant rice created by low-energy ion irradiation. Nucl. Instr. and Meth. B,2008,266 (7):1099-1104
    [11]甘斌杰,杨赞林,张少华等.离子注入小麦的变异效应.安徽农业科学,1993,21(2):120-122
    [12]韩榕,杨汉民.辐射敏化剂对离子注入小麦生物学效应的影响,核技术,2003,17(2):85-89
    [13]周小云,计巧玲刘亚萍等.低能离子注入对小麦种子发芽及幼苗生理生化的影响.生物技术,2005,15(2):69-72
    [14]周柱华,邱登林,张凤云等.玉米自交系辐照效应的研究.玉米科学,2001,9(3):8-1 1
    [15]黄中文,王春风,崔秀珍.N+离子束注入对玉米的生物学效应.河南科技学院学报(自然科学版),2005,25(3):20-24
    [16]罗红兵,赵葵,郭继宇等.重离子束辐照玉米种子M1代诱变效应研究.原子核物理评论,2004,21(3):238-242
    [17]王浩波,高秀武,王凤辰等. N+离子束对萌发西瓜种子及西瓜花粉诱变效应的研究.中国西瓜甜瓜,2005,(1):4-6
    [18]任袆,牛西午,韩美清等.氮离子注入谷子诱变效应研究.山西农业大学报,2006,26(1):7-12
    [19]姚建铭,王纪,袁成凌等.离子注入花生四烯酸产生菌诱变选育,生物工程学报,2000,16(4):478-481
    [20]霍院士再获省重大科技专项支持:(http://202.196.64.143/lzs2002/News_info. aspx?Sclass=12&ID=104)
    [21]阚显照,程备久,陈冬生等.离子束在生物品种改良中的应用研究进展,生物学通报,2003,38(6):11-12
    [22]梁秋霞,曹刚强,黄群策等.超低能离子束注入后番茄的生物学效应,激光生物学报,2006,15(4):388-393
    [23]Li YL, Tang JH, Qin GY, Huo YP. Maize pollen Mutation by Low Energy Ion Beams, The Philippine Agricultural Scientist,2008,91(4):395-400
    [24]邵春林,余增亮.离子注入生物分子的电荷交换效应,核技术,1997,20(2):70-73
    [25]吴跃进,吴敬德,刘贵富等.离子注入水稻种子萌发过程中的自由基和SOD酶研究,作物学报,1996,22(3):320-324
    [26]程备久,田秋元,余增亮等.离子注入诱发棉花过氧化物酶同工酶及农艺性状变异的研究,棉花学报,1994,6(1):41-47
    [27]朱立武,洪泽.氮离子注入对西瓜种子萌发及同工酶谱的影响,中国西瓜甜瓜,1996,4:12-14[28]张根发,石小明,聂艳丽等.低能N+注入与γ辐射拟南芥对可溶性蛋白和淀粉酶(AMY)、酯酶(EST)酶活和同工酶影响的比较分析,高技术通讯,2005,15(2):84-90
    [29]郭金华,谢传晓,徐剑等. N+离子注入对大豆种子活力及其幼苗的抗氧化酶活性影响,激光生物学报.2003,12(5):368-371
    [30]周长芳,钦佩,谢民等.离子束注入对狐米草几种生理生化指标的影响,植物生理学通讯,2002,38(3):237-239
    [31]王燕,王卫东,秦广雍等.氮离子注入对拟南芥的生理影响初步研究,华北农学报,2004,19(1)):82-85
    [32]李金亭,朱命炜,魏明卉等.离子注入对萝卜过氧化物酶、淀粉酶和蛋白酶同工酶的影响,广西植物,2005,20(2):172-176
    [33]Zeng XX, Zhang SF, Zhang SF. Biological effect on suggarbeet seeds induced by ion implantation,《科学通报(英文版)》,1999,44:1286-1293
    [34]张志宏,杜立群,李银心等.离子注入烟草种子引起的M1代变异分析,生物物理学报,1998,14(4):762-766
    [35]宋道军,吴丽芳,陈若雷等.N+束和γ射线对两种微生物生物膜辐射损伤效应的比较研究,激光生物学报,2000,9(2):89-94
    [36]慎玫,王彩莲,陈秋芳.离子注入水稻种子的细胞生物学效应,安徽农业大学学报,1994,21(3):265-268
    [37]张怀渝,宋云,任正隆.低能N+离子束诱导小麦农艺性状变异的细胞学基础,四川农业大学学报,2005,23(2):147-151
    [38]程备久,李展,周立人.三种离子注入棉花种子的细胞学效应,安徽农业大学学报,
    1995,22(3):89-195
    [39]罗茂春,沈明山,陈睦传等.低能碳离子注入甜菊的细胞学效应和过氧化物酶活性分析,中国糖料,2002,1:9-12
    [40]顾月华,王圣兵,罗建平.低能重离子注入对小麦种子诱导根尖细胞有丝分裂畸变的研究,核技术,2000,23(8):587-592
    [41]Gu YH, Cheng YH, Tang S, et al. Study of effect of microtubule skeleton in cell mitosis by ion beam implantation. Acta Laser Biol Sin,1997,6:1110-1113
    [42]Li GP, Huang QC, Qin GY, et al. Effects of ion implantation in vitro pollen germination and cellular orgnization of pollen tube in pinus thunbergii parl. (Japannese black pine), Plasma Science & Technology,2006,8(5):618-623
    [43]任海云,黄忠连,陈志玲.低能离子注入对花粉萌发及微丝骨架的影响,科学通报,2000,45(4):390-394
    [44]罗茂春,沈明山,徐金森等.低能碳离子对甜菊生长和叶绿体发育的影响.厦门大学 学报(自然科学版),2000.39(1):96-101
    [45]谷运红,余增亮,秦广雍等.低能离子束对拟南芥诱变效应的研究.高技术通讯,2003,12:33-37
    [46]陈冬花,梁前进,张根发等.离子注入拟南芥种子引起M1和M2代变异的遗传分析,高技术通讯,2001,10:22-25
    [47]WANG Yan-fei,DONG Xin-jiu,YANG Li, et al. Study of New Sugarbeet Idioplasm via Ion Implantation by RAPD,中国糖料,2008,3:35-36
    [48]王松丽,黄群策,王铁固等.低能N+离子束注入水稻的生物学效应研究.核农学报,2006,20(6):454-459
    [49]Li K, Nie YL, Zhang DZ. AFLP Analysis of Arabidopsis Thaliana Treated by Low-energy Ion Beam, Plasma, Science, IEEE, Transaction on Plasma science,200735(2):454-459
    [50]Ji L, Li YW, Wang CS, et al. Studies on Wheat Mutants Induced by Nitrogen Ion Beam Implantation, Acta Genetica Sinica,2005,32(11):1176-1183
    [51]陈若雷,宋道军,李玉峰等.低能N+离子束注入香瓜种子引起的变异及后代基因组的RAPD分析,激光生物学报,2002,11(2):75-78
    [52]Chen Y, Jiang B, Chen Y, et al. Formation of plasmid DNA strand breaks induced by low-energy ion beam:indication of nuclear stopping effects. Radiat. Environ. Biophys.1998,37:101-106
    [53]Wang Q, Zhang G, Du YH, et al. Low-energy (30 keV) carbon ion induced mutation spectrum in the LacZα gene of M13mp18 double-stranded DNA Mutation, Research/Fundamental and Molecular Mechanisms of Mutagenesis, (2003) 528: 55-60
    [54]Feng HY, Yu ZL, Paul KC, Ion implantation of organisms, Materials Science and Engineering R,2007,54(34):49-120
    [55]卫增泉.离子束生物效应及应用中值得研究的几个问题,激光生物学报,2006,15(4):383-387
    [56]Yu ZL, Deng JG, He JJ, et al. Mutation breeding by ion implantation, Nuclear Instruments and Methods in Physics Rearch B,1991,59/60:705-708
    [57]邵春林,许安,余增亮.离子注入生物分子的电荷交换效应,核技 术,1997,20(2):70-73
    [58]Song DJ, Yu ZL. Etching and Damage Action on Microbes' Cells by Low Energy N+ Beam. Plasma Science & Technology,2000,2(4):415-421
    [59]Vilaithong T, LD Yu, Alisi C, et al. A study of low-energy ion beam effects on outer plant cell structure for exogenous macromolecule transferring,2000,Surf. Coat. Tech.128-129(1):133-138
    [60]Sangyuenyongpipat S, Yu LD, Vilaithong T, et al. Ion bombardment induced formation of micro-craters in plant cell envelopes,2006, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,242 (1-2):8-11
    [61]Wei ZQ, Xie HM, Han GW, et al. Physical mechanisms of mutation induced by low energy ion implantation, Nuclear Insauments and Methods in Physics Research B,1995,95:371-378
    [62]Wei ZQ, Han GW, Zhou GM, et al. An important mechanism of crop breeding with ultralow energy ion implantation. Nuclear Instruments and Methods in Physics Research B,1998,134:191-194
    [1]Wilkins M and J Sanehez. progress with proteome projects:why all proteins expressed by a geonome should be identified and how to do it, Genet Eng Rev,1996,13:19-50
    [2]Hochstrasser DF. Proteome in perspective, Clinical Chemistry and Laboratory Medicine,1998,36(11):825-836
    [3]Tyers M, Mann M. From genomics to proteomics. Nature,2003,422(6928):193-197
    [4]Fields S. Proteomics-Proteomics in genomeland, Science,2001,291(5507):1221
    [5]Patterson SD, Aebersold RH. Proteomics:the first decade and beyond, Nature Genetics,2003,33:311-323
    [6]Agaton C, Uhlen M, and Hober S. Genome-based proteomics, Electrophoresis,2004, 25 (9):1280-1288
    [7]Davis TN. Protein localization in proteomics, Curr Opin Chem Biol, 2004,8(1):49-53
    [8]Phizicky E, Bastiaens PI, Zhu H, et al. Protein analysis on a proteomic scale. Nature,2003,422(6928):208-215
    [9]Hoog CL, Mann M. Proteomics, Annu Rev Genomics Hum Genet,2004,5:267-293
    [10]O'Farrell PH. High resolution two-dimensional electrophoresis of Proteins, J Biol Chem,1975,250(10):4007-4021
    [11]Sperling K. From proteomics to genomics, Electrophoresis,
    2001,22(14):2835-2837
    [12]Aebersold R, Mann M. Mass spectrometry-based proteomics, Nature, 2003,422:198-207
    [13]Sickmann A, Mreyen M, Meyer HE. Mass spectrometry-a key technology in proteome research, Adv Biochem Engin/Biotechnol,200383:141-176
    [14]Yates JR 3rd. Mass spectral analysis in proteomics, Annu Rev Biophys Biomol Struct,2004,33:297-316
    [15]Chakravarti DN, Chakravarti B, Moutsatsos I. Informatic tools for proteome profiling, Biotechniques,2002,512-515
    [16]Robertson D, Mitchell GP, Gilroy JS, et al. Differential extraction and protein sequencing reveals major differences in patterns of primary cell wall proteins from plants. J Biol Chem,1997,272,15841-15848
    [17]Santoni V, Molloy M, Rabilloud T. Membrane proteins and proteomics:Un amour impossible? Electrophoresis,2002,21,1054-1070
    [18]Prime TA, Sherrier DJ, Mahon P. A proteomic analysis of organelles from Arabidopsis thaliana, Electrophoresis,2000,21,3488-3499
    [19]Pettier JB, Friso G, Kalume DE, et al. Proteomics of the chloroplast: systematic identification and targeting analysis oflumenal and peripheral thylakoid proteins, Plant Cell,2000,12,319-341
    [20]Kruft V, Eubel H, Jansch L, et al. Proteomic approach to identify novel mitochondrial proteins in Arabidopsis, Plant Physiol,2001,127,1694-1710
    [21]Fukao Y, Hayashi M, Nishimura M. Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana. Plant Cell Phvsiol, 2002,43,689-696
    [22]Phee BK, Cho JH, Park S et al. Proteomic analysis of the Arabzdopsis chloroplast proteins to high light stress, Proteomics,2004,4:3560-3568
    [23]Peltier JB, Emanuelsson 0, Kalume DE Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction, Plant Cell,2002,14:211-236
    [24]Peltier JB, Ytterberg AJ, Sun Q et al. New functions of the thylakoid membrane proteome of Rrabidopsis thaliaaa revealed by a simple, fast and versatile fractionation strategy, J Biol Chem,2004,279:49367-49383
    [25]Ferro M, Salvi D, Brugiere S et al. Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana, Mot Cell, Proteomics,2003,2:325-345
    [26]Friso G, Giacomelli L, Ytterberg AJ et al. In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts:new proteins, new functions, and a plastid proteome database, Plant Cell,2004,16:478-499
    [27]Baginsky S, Kleffmann T, von Zychlinski A et al. Analysis of shotgun proteomics and RNA profiling data from Arabidopsis thahanachloroplasts,2005, J Proteome Res,4:637-640
    [28]Huber CG, Walcher W, Timperio AM et al. Multidimensional proteomic analysis of photosynthetic membrane proteins by liquid extraction-ultracentrifugation-liquid chromatography-mass spectrometry, 2004, Proteomics,4:3909-3920
    [29]Kleffmann T, Russenberger D, von Zychlinski A et al. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions, Curr Boil,2004,14:362-375
    [30]Kubis S, Baldwin A, Patel R, et al. The Arabidopsis ppil mutant is specifically defective in the expression, chloroplast import, and accumulation of photosynthetic proteins, Plant Cell,2003,15:1859-1871
    [31]Millar AH, Heazlewood JL, Kristensen BK,et al. The plant mitochondrial proteome, Trends Plant Sci,2005,10:36-43
    [32]Brugiere S, Kowalski S, Ferro M et al. The hydrophobic proteome of mitochondrial membranes from Arabldopsls cell suspensions, Phytochemistry, 2004,65:1693-1707
    [33]Lister R, Chew O, Lee MN, et al. A transcriptomic and proteomic characterization of the Arabidopsis mitochondrial protein import apparatus and its response to mitochondrial dysfunction, Plant Physiol, 2004,134:777-789
    [34]Heazlewood JL, Tonti-Filippini JS, Gout AM et al. Experimental analysis of the arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins, Plant Cell, 2004,16:241-256
    [35]Carter C, Pan S, Zouhar J et al. The vegetative vacuole proteome of Arabldopsis thahana reveals predicted and unexpected proteins, Plant Cell, 2004,16:3285-3303
    [36]Alexandersson E, Saalbach G, Larsson C et al. Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking. Plant Cell PhySiol,2004,45:1543-1556
    [37]Borner GH, Sherrier DJ, Weimar T et al. Analysis of detergent-resistant membranes in Arabidopsis:evidence for plasma membrane lipid rafts, Plant Physiol,2005,137:104-116
    [38]Chivasa S, Ndimba BK, Simon WJ et al. Proteomic analysis of the Arabidopsis thaliana cell wall, Electrophoresis,2002,23:1754-1765
    [39]Boudart G, Jamet E, Rossignol M et al. Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes:identification by mass spectrometry and bioinformatics, Proteomics,2005,5:212-221
    [40]Chevalier F, Martin O, Rofidal V, et al. Proteomic investigation of natural variation between Arabidopsis ecotypes. Proteomics,2004,4:1372-1381
    [41]Giavalisco P, Nordhoff E, Kreitler T et al. Proteome analysis of Arabidopsis thaliana by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry, Proteomics, 2005,5:1902-1913
    [42]Santoni V, Delarue M, Caboche M et al. A comparison of two-dimensional electrophoresis data with phenotypical traits in Arabidopsis leads to the identification of a mutant (cril)that accumulates cytokinins. Planta, 1997,202,62-69
    [43]Bernhard S, Anne B, Francois B, Hans-Peter M. Proteome analysis differentiates between two highly homologuesgermin-like proteins in Arabidopsis thaliana ecotypes Col-0 and Ws-2, Phytochemistry,2004,65:1565-1574
    [44]Gallardo, K., et al., Proteomics of Arabidopsis seed germination:A comparative study of wild-type and gibberellin deficient seeds, Plant Physiology,2002,129:823-837
    [45]Mayfield JA, Fiebig A, Johnstone SE, Preuss D. Gene Families from the Arabidopsis thaliana Pollen Coat Proteome. Science,2001,292:2482-2485
    [46]Slabas AR, Ndimba B, Simon WJ et al. Proteomic analysis of the Arabidopsis cell wall reveals unexpected proteins with new cellular locations. Biochem Soc T,2004,32,524-528.
    [47]Amme S, Matros A, Schlesier B et al. Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology, J Exp Bot, 2006,57:1537-1546
    [48]Bae MS, Cho EJ, Choi EY et al. Analysis of the Arabidopsis nuclear proteome and its response to cold stress, Plant J,2003,36:652-663
    [49]Yukio K, Matsuo U. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J,2003,36:141-154
    [50]Kang JG, Pyo YJ, Cho JW et al. Comparative proteome analysis of differentially expressed proteins induced by K+ deficiency in Arabidopsis thaliana, Proteomics,2004,4:1-11
    [51]Koller A, Washburn MP, Markus-Lange B et al. Proteomic survey of metabolic pathways in rice, Proc, Natl Acad Sci USA,2002,99:11969-11974
    [52]Yang P, Liang Y, Shen S et al. Proteome analysis of rice uppermost internodes at the milky stage. Proteomics,2006,6:3330-3338
    [53]Dai SJ, Chen TT, Chong K et al. Proteomic identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sat. iva pollen, Mot. Cell. Proteomics,2007,6:207-230
    [54]Tanaka N, Fujita M, Handa H et al. Proteomics of the rice cell:Systematic identification of the protein populations in subcellular compartments, Mol. Gen. Genomics,2004,271:566-576
    [55]Zhao CF, Wang JQ, Cao MJ et al. Proteomic changes in rice leaves during development of field-grown rice plants, Proteomics,2005,5:961-972
    [56]Imin N, Kerim T, Rolfe BG et al. Effect of cold stress on the maturation of rice anthers, Proteomics,2004,4:1873-1882
    [57]Tanaka N, Konishi H, Khan MMK et al. Proteome analysis of rice tissues by two-dimensional electrophoresis:An approach to of the investigation of gibberellin regulated proteins, Mol. Cen. Genomics,2004,270:485-496
    [58]Komatsu S, Kojima K, Suzuki K et al. Rice proteome database based on two-dimensional polyacrylamide gel electrophoresis:its status in 2003. Nucleic Acids Res.,2004,32:D388-D392
    [59]Komatsu S, Kajiwara T, Hirano A. A rice protein library:a data-file of rice proteins separated by two-dimensional electrophoresis, Theor Appl. Genet. 1993,86:935-942
    [60]Hirano A. Screening of rice genes from the cDNA catalog using the data obtained by protein sequencing. J Prot. Chem,1997,16:533-536
    [61]Koller A, Washburn MP, Markus LB, et al. Proteomic survey of metabolic pathways in rice, PNAS,2002,99(18):11969-11974
    [62]Khan MM, Komatsu S. Rice proteomics:recent developments and analysis of nuclear proteins, Phytochemistry,2004,65(12):1671-1681
    [63]Tanaka N, Fujita M, Handa A, Murayama S, et al. Proteomics of the rice cell: systematic identification of the protein populations in subcellular compartments, Mol Genet Genomics.,2004,271(5):566-576
    [64]Komatsu S, Tanaka N. Rice proteome analysis:A step toward functional analysis of the rice genome, Proteomics,2005,5(4):938-949
    [65]Hajduch M, Rakwal R, Agrawal GK, et al. High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves:drastic reductions/fragmentation of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stress-related proteins, Electrophoresis,2001,22(13):2824-31
    [66]Agrawal GK, Rakwal R, Yonekura M, et al. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice(Oryza sativa L.) seedling, Proteomics,2002,2(8):947-959
    [67]Shen S, Sharma A, Komatsu S. Charaterization of proteins responsive to gibberellin in the leaf-sheath of rice(Oryza sativa L.) seedling using proteome analysis, Biol. Pharm. Bull.,2003,26(2):129-136
    [68]Salekdeh GH, Siopongco J, Wade LJ, et al. a. Proteomic analysis of rice leaves during drought stress and recovery, Proteomics,2002,2:1131-1145
    [69]Salekdeh GH, Siopongco J, Wade LJ, et al. Approach to analyzing drought and salt-responsiveness in rice, Field Crops Res.2002,76:199-219
    [70]Imin N, Kerim T, Rolfe BG, et al. Effect of early cold stress on the maturation of rice Anthers, Proteomics,2004,4:1873-1882
    [71]Kim ST, Cho KS, Yu S et al. Proteomic analysis of differentially expressed proteins induced by blast fungus and elicitor in suspension cultured rice cells, Proteomics,2003,3:2368-2378
    [72]Kim ST, Kim SG, Hwang DA et al. Proteomic analysis of pathogen-responsive proteins from leaves induced by rice blast fungus Magnaporthe grisea, Proteomics,2004,4:3569-3578
    [73]Porubleva L, Velden KV, Kothari S et al. The proteome of maize leaves:use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints, Electrophoresis,2001,22:1724-1738
    [74]Vincent D, Lapierre C, Pollet B,et al. Water deficits affect caffeate o-methyltransferase, lignification, and related enzymes in maize leaves,a proteomic investigation 1, Plant Physiol.,2005,137:949-960
    [75]Lonosky PM, Zhang X, Honavar VG et al. A proteomic analysis of maize chloroplast biogenesis, Plant Physiol.,2004,134:560-574
    [76]Hochholdinger F, Guo L, Schnable PS. Cytoplasmic regulation of the accumulation of nuclear-encoded proteins in the mitochondrial proteome of maize. Plant J.,2004,37:199-208 [77] Hochholdinger F, Woll K, Guo L et al. The accumulation of abundant soluble proteins changes early in the development of the primary roots of maize (Zea nays L.). Proteomzcs,2005,5:4885-4893
    [78]Chivasa S, Simon WJ, Yu XL et al. Pathogen elicitor-induced changes in the maize extracellular matrix proteome, Proteomics,2005,5:4894-4904
    [79]Sonia C, Montserrat C, Maria C et al. The defense response of germinating maize embryos against fungal infection:A proteomics approach. Proteomics, 2004,4:383-396Requejo R,2
    [80]Tena M. Maize response to acute arsenic toxicity as revealed by proteome analysis of plant shoots, Proteomlcs,2006,6:5156-516
    [81]Lund, A A and Blum P H, Heat-stress response of maize mitochondria. Physiol Plant.,1998,116:1097-1110
    [82]Chang W, Huang L, Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment and identification of proteins by mass spectrometry. Plant Physiology,2000,122: 295-316
    [83]Damerval C, Guilloux M Le, Characterization of novel proteins affected by the o2 mutation and expressed during maize endosperm development, Mol. Gen. Genet.,1998.257:354-361
    [1]Yu ZL.1998, Introduction to ion beam biotechnology, Hefei:Anhui Science. Technology Publishing House, (in Chinese)
    [2]Feng HY, Yu ZL, Paul K. Chu. Ion implantation of organisms. Mater. Sci. Eng. R.2006,54:49-120
    [3]Yu ZL, Huo YP. Review in low energy ion biology. Journal of Anhui Agriculture University,1994,21(3):221-225 (in Chinese)
    [4]Zeng XX, Wu BS, Lv J. Application and development of ion beam bio-technology in life science. Nuclear Techniques,2006,29 (2):112-115 (in Chinese)
    [5]Chang FQ, Zhu ZQ. Biological Effects of Low-energy Ions and Its Application to Plant Biotechnology. J. Agric. Biotechnol.,2004,12(2):206-211(in Chinese)
    [6]Yuan CL, Yu ZL. The present state and perspectives of low-energy heavy ion biology. Journal of Radiation Research and Radiation Processing,2004,22(1): 1-7 (in Chinese)
    [7]Xu A, Yao JM, Yu ZL. Improvement of Mingle Strains in the Fermentation of 2 Keto L Gulonic Acid-Precursor of Vc by Ion Implantation. Industrial Microbiology,1998,28(4):21-24; 1999,29(2):16-19
    [8]Yao JM, Wang J, Wang XQ. Breeding of Arachidonic Acid Producting Strain by Ion Implantation. Chin. J. Biotechnol.,2000,16(4):478-481(in Chinese)
    [9]Vilaithong T, Yu L D, Alisi C, et al. A study of low-energy ion beam effects on outer plant cell structure for exogenous macromolecule transferring.2000, Surf. Coat. Tech.128-129(1):133-138
    [10]Sangyuenyongpipat S, Yu LD, Vilaithong T, et al.. Ion bombardment induced formation of micro-craters in plant cell envelopes. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2006,242 (1-2):8-11
    [11]Phanchaisri B, Chandert R, Yu LD, et al.. Low-energy ion beam-induced mutation in Thai jasmine rice (Oryza sativa L. cv. KDML 105). Surf. Coat. Tech. 2007,201(19-20):8024-8028
    [12]Xin QG, Liu LX, Yu YJ et al. Ion Beam Implantation Technique and Its Application in Wheat Breeding. J Triticeae Crops,2007,7(2):354-357
    [13]Zhou LR Cheng BJ, Li AQ. Study on accelerating genetical stability of hybrid of G. tomentosum L. and G. hirsutum L. by ion implantation. Acta Laser Biology Sinica,1998,7(3):184-187 (in Chinese)
    [14]Cheng BJ, Li Z, Tian QY, et al. Effects of nitrogen ion implantation on morphology, viability and fertility of cotton pollen effects. Acta Botanica Boreali-Occidentalia Sinica,1994,14(2):85-89 (in Chinese)
    [15]Ren HY, Huang ZL, Chen ZL, et al. Effects of nitrogen ion implantation on lily pollen germination and the distribution of the actin cytoskeleton during pollen germination. Chin. Sci. Bull.,2000,45(18):1677-1680
    [16]Li GP, Huang QC, Qin GY, et al. The effects of low-energy nitrogen ion implantation on pollen exine substructure and pollen germination of Cedrus deodara. Plasma Sci. Technol.2005,7(6):3176-3180
    [17]Li GP, Huang QC, Qin GY, Yang LS, Dai XM, Qin GY and Huo YP. Effects of ion implantation on in vitro pollen germination and cellular organization of pollen tube in Pinus thunbergii Parl. (Japanese black pine). Plasma Sci. Technol.2006,8(5):618-623
    [18]Cheng BJ, Kan XZ, Zhu SW et al. A preliminary study on DNA mutation induction of maize pollen implantation by low energy N+ beam. Plasma Sci. Technol., 2001,3(1):659-664
    19 Zhou QI.2000, Instruction to experiment of Plant physiology, The Agriculture Publishing Company of China (in Chinese)
    [20]Saunders JA, Matthews BF.1995, Plant Cell Electroporation and Electrofusion Protocols, in:J. A. Nickoloff (Ed.), Human Press, New Jersey,81-87
    [21]Yang TY.2007. The mechanism of HRS/IRR on E. coliK12 by low energy ion implantation (Paper of Ph. D in Chinese). Zhengzhou University.7-9
    [22]Beata B. Effect of Water Loss on Germination Ability of Maize (Zea mays L.) Pollen. Ann. Bot.,1985,55(2):201-204
    [23]Shi SX, Tian Y. Fertility of Maize Pollen Stored in Liquid Nitrogen for a Year. Acta Agronomica Sinica,1989,15(3):283-286(in Chinese)
    [24]Lyakh V A, Kravchenko AN, A. I. Soroka and Dryuchina EN. Effects of high temperatures on mature pollen grains in wild and cultivated maize accessions. Euphytica,1991,55(3):203-207
    [1]Damerval C, Vienne D, Zivy M et al. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis,1986,7,52-54
    [2]郭尧君.蛋白质电泳实验技术北京:科学出版社1999
    [3]Gorg A, Weiss W, Dunn MJ.2004. Current two-dimensional electrophoresis technology for proteomics. Proteomics,4,1-21
    [4]Giavalisco P, Nordhoff E, Lehrach H, et al. Extraction of proteins from plant tissues for two-dimensional electrophoresis analysis. Electrophoresis, 2003,24,207-211
    [5]Wang W, Scali M, Vignani R, et al.2003. Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis,24,2369-2375
    [6]Bradford M.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding, Anal. Biochem.,1976,72,248-254
    [7]应用固相pH梯度的双向电泳(2-D)原理与方法.GE公司仪器使用说明.
    [8]Finnie C, Melchior S, Roepsto P, et al.2002. Proteome Analysis of Grain Filling and Seed Maturation in Barley. Plant Physiol.,2002,129,1308-1319
    [1]Tissieres A, Mitchell HK, Tracy UM. Protein Synthesis in Salivary Glands of Drosophila Melanogaster Relation to Chromosome Puffs. J Mol Biol. 1974,84(3):389
    [2]Tang L, Kwon S Y, Kim S H, et al. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep, 2006,25 (12):1380-13861
    [3]Zhao C, Shono M, Sun A, et al. Constitutive expression of an endoplasmic reticulum small heat shock protein alleviates endoplasmic reticulum stress in transgenic tomato. J Plant Physiol.,2007,164(12):835-8411
    [4]Cotto JS, Morimoto RI (1999) Stress-induced activation of the heat-shock response:cell and molecular biology of heat-shock factors. Biochem Soc Symp 64:105-118
    [5]Baniwal SK, Bharti K, Chan KY, et al. Heat stress response in plants:a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci.,2004,29:471-487
    [6]Bray EA. Plant responses to water deficit. Trends in Plant Science,1997, 2:48-54
    [7]Cloutier Y. Changes of protein patterns in winter rye following cold acclimation and desiccation stress. Can. J. Bot.,1984,62:366-371
    [8]Clark SE, Williams RW, Meyerowitz EM. The CLAVATA1 gene encodes a putative receptor protein kinase with extracellular leucine rich repeats. Plant Cell, 1996,8:735-746
    [9]刘军,黄尚志,傅家瑞等.种子活力与蛋白质关系研究进展.植物学通报,2001,18(1):46-51
    [10]Jonak C, Kiegerl S, Ligterink W et al. Stress signaling in plants:a mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA,1996,93:11274-11279
    [11]Waters ER, Lee GJ, Vierling E. Evolution, structure and function of the small heat shock protein in plants. J. Exp. Bot.,1996,47:325-338
    [12]Jinn TL, Yeh YC, Chen YI-I, et al. Stabilization of soluble proteins in vitro by heat shock proteins-enriched ammonium sulfate fraction from soybean seedlings. Plant Cell Physiol.,1989,30:463-469
    [13]Lee GJ, Pokala N, Vierling E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem., 1995,270:10432-10438
    [14]Haslbeck M, Walke S, Stromer T et al. Hsp26:a temperature-regulated chaperone. EMBO J.,1999,18:6744-6751
    [15]Stromer T, Ehrnsperger M, Gaestel M et al. Analysis of the interaction of small heat shock proteins with unfolding proteins. J. Biol. Chem.,2003,278: 18015-18021
    [16]Friedrich KL, Giese KC, Buan NR et al. Interactions between small heat shock protein subunits and substrate complexes. J. Biol.2004,279:1080-1089
    [17]Wu C, Wilen RW, Robertson AJ et al. Isolation, chromosomal localization, and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic Copper/Zinc superoxide dismutase genes in wheat. Plant Physiol.,1999,120:513-520
    [18]Higbie SM, Mount SK, Allen R et al. Protection of glutamine synthetase during moderate drought by over-expression of ascorbate peroxidase (Apx) and Mn superoxide dismutase (MnSOD) in alfalfa root nodules. Poster Session IV: Oxidation. Rhode Island, USA,2001
    [19]Wang FZ, Wang QB, Kwon SY et al. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J. Plant Physiol.,2005,162 (4):465-472
    [20]杜娟,朱祯,李晚忱.外源超氧化物歧化酶基因MnSOD在玉米中的过量表达及抗逆性的提高.植物生理与分子生物学学报,2006,32(1):57-63
    [21]Foyer DP, Descourvieres P, Kunert KJ. Protection against oxygen radicals: an important defense mechanism studied in transgenic plants, Plant Cell Environ.,1994,17:507-523
    [22]Nopvim A, Podlipna R, Soudek P et al. Effects of heavy metals and nitroaromatic compounds on horseradish glutathione S-transferase and peroxidase. Chemosphere,2004,57:1007-1015.
    [23]Schroder P, Juuti S, Roy S, et al. Exposure to chlorinated acetic acids. Responses of peroxidase and glutathione S-transferase activity in pine needles. Environ. Sci. Pollut. Res.,1997,4:163-171.
    [24]Gaspar Th, Penel C, Castillo FJ, et al. A twostep control of basic and acidic peroxidases and its significance for growth and development. Physiol. Plantarum,1985,64:418-423
    [25]Rivett, AJ. Rivett. Purification of a liver alkaline protease which degrades the oxidatively modified form of glutamine synthetase. J. Biol. Chem.1985, 260:12600-12606
    [26]Tilman G, Reshma S, Nicolle S et al. Age-Related Changes in Protein Oxidation and Proteolysis in Mammalian Cells. J. Gerontology Series A:Biol. Sciences and Medical Sciences.2001,56:459-467
    [27]Bae H, Herman E and Sicher R, Exogenous Trehalose Induces Chemical Detoxification and Stress Response Proteins and Promotes Nonstructural Carbohydrate Accumulation in Arabidopsis Thaliana Grown in Liguid Culture. Plant Science,2005.168(5):1293-1301
    [28]彭丹辉,et al.利用大麦寡核昔酸芯片进行小麦苗期叶片热胁迫基因表达谱分析.自然科学进展,2006.11:1-5
    [29]Khedr, A H A, et al., Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. Journal of Experimental Botany,2003.54(392):2553-2562
    [30]Basset G, et al. Changes in the expression and the enrymic properties of the 20S proteasome in sugar-starved maize roots:evidence for an vivo oxidation of the proteasome. Plant Physiology,2002,128:1149-1162
    [31]Imin N, Kerim T, Rolfe BG, Weinman JJ. Effect of early cold stress on the maturation of rice Anthers. Proteomics,2004,4:1873-1882
    [32]Edward T K, Michele P. The F-box protein family. Genome Biology 2000,1(5): 3002.1-3002.7
    [33]David BC, Karsten M K, Jorn DM et al. Plant chitinase. Plant J. 1993,3(1):31-40
    [34]Olga B, Eija V and Kurt VF. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress:a Review. Annals of Botany.2003,91:179-194
    [35]Milla M, Maurer A, Huete AR, Gustafson JP. Glutathione peroxidase genes in Arabidposis are ubiquityous and regulated by abiotic stresses though diverse signaling pathways. Plant J.,2003,36,602-615
    [36]Seki M., et al., Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell,2001.13:61-72
    [37]Roxas V. P. et al., Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. plant Cell Physiology,2000,41:1299-1234
    [38]Seki M., et al., Plant Journal,2002.31:279-292
    [39]Craig E. A., Chaperones:helpers along the pathways to protein folding. Science,1993.260:1902-1903
    [40]Frydman J., et al. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature,1994,370:111-117
    [41]Bukau, B. and A. L. Horwich, The Hsp70 and Hsp60 chaperone machines. Cell, 1998.92:51-366
    [42]Ndimba B. K. et al., Identification of Arabidopsis saltand osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and massspectrometry. Proteomics,2005,5:4185-196
    [43]Alfieri R. R., et al., Roles of compatible osmolytes and heat shock protein 70 in the induction of tolerance to stresses in porcine endothelial cells. Journal of physiology,2004,16:757-767
    [44]Moore MS, Blobel G. The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature,1993,365:661-663
    [45]Kalab P, Pu RT, Dasso M. The Ran GTPase regulates mitotic spindle assembly. Curr. Biol.1999,9:481-484
    [46]Wilde A, Zheng Y. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science,1999,284:1359-1362
    [47]Jiang Q, Lu Z, Zhang C. Role of Ran GTPase in cell cycle regulation. Chinese Sci. BULL.2004,49:535-541
    [48]Ach RA, Gruissem W. A small nuclear GTP-binding protein from tomato suppresses a Schi. zosaccharomyces pombe cell-cycle mutant. Proc. Natl. Acad. Sci.,1994 91:5863-5867
    [49]刘强,张勇,陈受宜.干旱、高盐及低温诱导的植物蛋白激酶基因,科学通报,200045(6):561-566
    [50]Mizoguchi T, Lchimura K, Shinozaki. Environmental stress response in plants: the role of mitogen-activated protein kinase. Tibtech.,1997,15(1):15-19
    [51]Machide Y, Nishihama R, Kitadura S. Progress in studies of plant homologs of mitogen-activated protein (MAP) kinase and potential upstream components in kinase cascades. Critical Review in Plant Science,1997,16(6): 481-496
    [52]Bogre L, Ligterink W, Heberle-Bors E et al. Mechanosensors in plants. Nature, 1996,383:489-490
    [53]Jonak C, Kiegerl S, Ligterink W et al. Stress signaling in plants:a mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA,1996,93:11274-11279
    [54]Knetsch MLW, Wang M, Snaar-Jagalaka BE et al. Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. Plant Cell,1996,8:1061-1067
    [55]Kovtun Y, Chui WL, Zeng W et al. Suppression of auxin signal transduction by a MAPK cascade in highter plants. Nature,1998,15(6):773-781
    [56]Bogre L, Ligterink W, Meskiene I et al. Wounding induces the rapid and transient activation of a specific MAP kinase pathway. Plant Cell,1997,9: 75-83
    [57]Bogre L, Calderini 0, Binarova P et al. A MAP kinase in activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell, 1999,11:103-113
    [58]Dresselhaus T, Srilunchang K, Leljak-Levanic D et al. The fertilization-induced DNA replication factor MCM6 of maize shuttles between cytoplasm and nucleus, and is essential for plant growth and development. Plant Physiol.,2006,140:512-527
    [59]Rashotte AM, DeLong A, MudayGK Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell,2001,13:1683-1697
    [60]Zhou HW, Nussbaumer C, Chao Y et al. Disparate roles for the regulatory A subunit isoforms in Arabidopsis protein phosphatase 2A. Plant Cell,2004, 16:709-722
    [61]Kwak JM, Moon JH, Murata Y et al. Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis reduced phosphatase activity alters basipetal and acropetal auxin transport in roots. Plant Cell,2002,14:2849-2861
    [62]Moore BW, Perez VJ.1967. Specific acidic proteins of the nervous system. In:Carlson F (ed) Physiological and Biochemical Aspects of Nervous Integration. Prentice Hall, Woods Hole, MA, USA, pp 343-359
    [63]Ferl RJ.14-3-3 proteins:regulation of signal-induced events. Physiologia Plantarum,2003,120:173-178
    [64]Sehnke PC, DeLille JM, Ferl RJ. Consummating signal transduction:the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell.2002, S339-S354.
    [65]Aitken A.14-3-3 proteins on the MAP. Trends Biochem Sci.,1995,20:95-97
    [66]Camoni L, Iori V, Marra M, et al. Phosphorylation-dependent interaction between plant plasma membrane H (1)-ATPase and 14-3-3 proteins. J Biol Chem., 2000,275:9919-9923
    [67]Moorhead G, Douglas P, Cotelle V et al. Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins. Plant J.1999,18:1-12
    [68]Oecking C, Eckerskorn C, Weiler EW The fusicoccin receptor of plants is a member of the 14-3-3 superfamily of eukaryotic regulatory proteins. FEBS Lett.,1994,352:163-166
    [69]Wijngaard PWJ, Sinnige MP, Roobeek I, Reumer A, et al. Abscisic acid and 14-3-3 proteins control K+ channel activity in barley embryonic root. Plant Journal. 2005,41:43-55
    [70]Stotz HU, Long SR. Expression of the pea (Pisum sati vum L.) alpha-tubulin gene TubAl is correlated with cell division activity. Plant Mol. Biol.,1999, 41:601-614
    [71]Lloyd CW. (1991) The cytoskeletal basis of plant growth and form. Academic Press, London,85-89
    [72]Munoz FJ, Labrador E, Dopico B. Brassinolides promote the expression of a new Cicer arietlnum beta-tubulin gene involved in the epicotyl elongation. Plant Mol. Blol.,1998,37:807-817
    [73]Hui-yuan Ya, Yun-hong Gu, Zhen Jiao et al. Low-Energy Ion Beam Promotes the Transcription and Transposition of the Copia-retrotransposons in Wheat (Triticum aestivum L.).植物生理与分子生物学报,33(6):507-516

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700