铅铋反应堆放射性源项计算与剂量评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
放射性源项计算研究放射性核素种类、数量、形态,以及在不同系统之间的迁移过程,它可以为反应堆的屏蔽设计、废物评估和环境影响分析提供参考。铅铋反应堆是快中子反应堆,与压水堆在冷却剂、保护气体等结构和材料上有明显区别。铅铋堆放射性源项也有自身的特点,特别是铅铋活化产生的易挥发放射性核素210Po,是铅铋反应堆设计时必须考虑的放射性问题。因此,本文基于中科院核能安全技术研究所·FDS团队设计的一个10MW铅铋反应堆方案,研究了放射性源项在铅铋反应堆各系统的分布,以及反应堆正常运行时的辐射场分布和事故时对公众的剂量。
     本文使用了"MCNP-FISPACT"耦合活化计算方法开展了铅铋反应堆材料的活化计算,得到了铅铋反应堆各系统材料的放射性特性,包括活度、余热、接触剂量率和潜在生物危害。然后,根据铅铋反应堆中放射性核素的迁移特性和反应堆的结构特点,建立了铅铋反应堆中放射性核素在不同系统之间的迁移方程。并分析铅铋反应堆正常运行情况下,放射性源项在堆芯、一回路冷却剂、覆盖气体、二回路冷却剂、堆顶包容小室中的分布情况和每年向环境排放的放射性源项,并评估了铅铋反应堆正常运行时周围的剂量场分布。在分析铅铋堆放射性源项分布特点的基础上,选取了三种有放射性释放的铅铋堆事故,分别评估了三种事故后铅铋堆向环境排放的放射性源项,以及在非居住区边界上对公众造成的有效剂量。
     通过本文分析,铅铋反应堆正常运行期间,堆顶包容小室中剂量率为0.126Sv/h,主要来自于堆芯产生的中子,此时堆顶包容小室属于极高辐射区,禁止人员进入。堆顶包容小室中气载放射性核素的有效剂量率为2.81mSv/h,主要来源于裂变气体Kr、Xe,而210Po的有效剂量率仅为4.49×10-17Sv/h。反应堆正常运行期间,每年向环境中排放的放射性核素总活度为2.58×1014Bq。当铅铋反应堆发生放射性核素释放事故时,包括双层容器破口事故、一回路覆盖气体系统泄漏事故和热交换器二次侧出口管道破口事故,对非居住区边界500m处公众个人(成人)0-2h期间的有效剂量都低于《GB6249-2011核动力厂环境辐射防护规定》的限值(5mSv),说明了此铅铋反应堆并不会对环境造成超过国标限值的严重后果。
Radioactive source term is defined as composition, quantity, form and transport of radionuclides between systems in the reactor. This could provide reference for shielding design, radioactive waste evaluation and environmental impact assessment. Lead-bismuth eutectic (LBE) cooled reactor is fast reactor, and different from PWR on coolant, cover gas, structure and etc. Radioactive source term is also characteristic. Especially, volatile polonium is needed to be considered for lead-bismuth reactor, which is produced by lead bismuth coolant activation. Therefore, a lead-bismuth eutectic cooled reactor design was applied, which was developed by Institute of Nuclear Energy Safety and Technology, Chinese Academy of Sciences-FDS Team. The distribution of radioactive source term in the lead-bismuth reactor was calculated. Then dose rate on personnel during normal operation and on public after the accidents was evaluated.
     MCNP-FISPACT coupling activation calculation method was applied for LBE cooled reactor. Parametric study of material activation was conducted, including radioactivity, decay heat, contact dose rate and biological hazard potential. Then radionuclide balance equation was established based on characteristics of radionuclide transport regulation and structure design of LBE cooled reactor. The transport of radioactive source term between reactor core, primary coolant, cover gas, secondary coolant and containment room was calculated during normal operation, which was used for dose assessment and source term released to the environment. Three kinds of accident were selected for LBE cooled reactor, in which origin of radioactive source term is different. Radioactive source term released to environment was calculated and effective dose rate was evaluated at residential area boundary after accident.
     During normal operation, the dose rate is0.126Sv/h in the containment room and mainly induced by neutrons. At that time, it is very high radiation area in the containment room and forbidden for personnel access. The effective dose rate from airborne radionuclides is2.81mSv/h, mainly induced by fission gas Krypton and Xenon. The total radioactivity of radionuclides emission to the environment is2.58×1014Bq each year. The personal dose at non-residential area boundary is lower than limit value of 《GB6249-2011Regulations for environmental radiation protection of nuclear power plant》 after radionuclide release accident, including breakage of double-walled container, leakage of cover gas system and breakage of secondary side outlet pipe in the heat exchanger. This shows that serious accident cannot happen in which personal dose is exceeded the national standard limit serious consequences.
引文
[1]潘自强,马忠海,李旭彤等.我国煤电链和核电链对健康环境和气候影响的比较[J].辐射防护,21(3):129-145,2001.
    [2]2011-2020年核电中长期发展规划解析.http://www.chinairn.com/news/20121025/721630.html.
    [3]吴宜灿.福岛核电站事故的影响与思考[J].中国科学院院刊,26(3):271-277,2011.
    [4]顾忠茂,柴之芳,关于我国核燃料后处理/再循环的一些思考,化学进展,23(7):1263-1271,2011.
    [5]D.Rozzia, State of Development of LFR and ADS Technologied and R&D Needs, European Commission 7th EURATOM FRAMWORK PROGRAMME 2007-2013.
    [6]Carluec, B. (2003), The European Project PDS-XADS, Preliminary Design Studies of an Experimental Accelerator-Driven System, Proceedings of the International Workshop on P&T and ADS Development,2003, ISBN 9076971072, SCK-CEN, Mol..
    [7]Benoit GIRAUD, et al, General Synthesis Report of XADS preliminary design studies and needed R&D, EUROPEAN COMMISSION 5th EURATOM FRAMEWORK PROGRAMME 1998-2002, July,2005.
    [8]The European Technical Working Group, A European Roadmap for Developing Accelerator Driven Systems (ADS) for Nuclear Incineration (2001), ISBN 88-8286-008-6, April 2001.
    [9]W. Maschek, X.-N. Chen, P. Liu, A. Rineiski, M. Flad, G. Rimpault, Safety and design concepts of the 400 MWth-class EFIT accelerator driven transmuter and considerations for further developments, Energy Conversion and Management 51 (2010) 1764-1773.
    [10]OECD Nucleal Energy Agency, Independent evaluation of the MYRRHA project, ISBN 978-92-64-99114-9,2009.
    [11]R. Soulc, et al, Neutronic Studies in Support of ADS:The MUSE Experiments in the MASURCA Facility, On behalf of the MUSE European Collaboration, November 1,2003.
    [12]Michael Wohlmuther, Werner Wagner, PIE preparation of the MEGAPIE target, Journal of Nuclear Materials,431 (2012) 10-15.
    [13]Department of Energy. A Roadmap for Developing Accelerator Transmutation Accelerator Transmutation of Waste (ATW) Technology. DOE/RW-0519. October 1999.
    [14]Richard L Sheffield, Utilization of Accelerator for Transmutation and Energy Production,46th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High Gadron Beams,2010.
    [15]H.Takano, T. Ikegami, Activities on R&D of Partitioning and Transmutation in Japan, Seventh Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, 14-16 October 2002, Jejju (Republic of Korea).
    [16]Jae-Hyung Yoo, Won-Seok Park, R&D Activities for Partitioning and Transmutation in Korea, Seventh Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation,14-16 October 2002, Jejju (Republic of Korea).
    [17]N. S. RABOTNOV, Planning of ADS related R&D in the Russian Federation, Proceedings of an Advisory Group meeting held in Taejon, Republic of Kercan,1-4 November,1999.
    [18]詹文龙,徐瑚珊,2012.未来先进核裂变能-ADS嬗变系统,中国科学院院刊,375-381.
    [19]A. G. Glazov, V. N. Leonov, V. V. Orlov, BREST REACTOR AND PLANT-SITE NUCLEAR FUEL CYCLE, Atomic Energy, Vol.103, No.1,2007.
    [20]A.V. ZRODNIKOV et al., MULTIPURPOSED SMALL FAST REACTOR SVBR-75/100 COOLED BY PLUMBUM-BISMUTH.
    [21]J. J. Sienicki, et al., Status Report on the Small Secure Transportable Autonomous Reactor (SSTAR)/Lead-Cooled Fast Reactor (LFR) and Supporting Research and Development, ANL-GenIV-089.
    [22]Alessandro.Alemberti, ELSY:The European Lead Fast Reactor, FR09-International Conference on Fast Reactors and Related Fuel Cycles-Challenges and Opportunities, Kyoto, Japan December 7-11,2009.
    [23]Craig Smith, Lead-Cooled Fast Reactor (LFR) Design:Safety, Neutronics, Thermal Hydraulics, Structural Mechanics, Fuel, Core, and Plant Design. LLNL-BOOK-424323, February 22,2010.
    [24]Takahashi, M., et al., Study on Pb-Bi-Water Direct Contact Two-Phase Flow and Heat Transfer, Progress in Nuclear Energy,47.569-576(2005).
    [25]Kondo, M., et al., Corrosion of Steels in Lead-Bismuth Flow, Journal of Nuclear Science and Technology,43[2] 107-116(2006).
    [26]Obara, T., et al., Polonium evaporation and adhesion experiments for the development of polonium filter in lead-bismuth cooled reactors, Progress in Nuclear Energy 50,556-559(2008).
    [27]Sekimoto, H., et al., Design study on small CANDLE reactor, Energy Conversion and Management,49[7],1868-1872 (2008).
    [28]Takahashi M. et al., Pb-Bi-Cooled Direct Contact Boiling Water Small Reactor, Progress in Nuclear Energy,47190-201(2005).
    [29]I.S. Hwanga, S.H. Jeonga, B.G. Parka, W.S. Yang, K.Y. Suha, C.H. Kima, The concept of proliferation-resistant, environment-friendly, accident-tolerant, continual and economical reactor (PEACER), Progress in Nuclear Energy, Volume 37, Issues 1-4,2000, Pages 217-222.
    [30]L. Cinotti, C.F. Smith and H. Sekimoto, LEAD-COOLED FAST REACTOR (LFR)OVERVIEW AND PERSPECTIVES, GIF Symposium-Paris (France)-9-10 September,2009.
    [31]Yican Wu, Hongli Chen, Qunying Huang, et al., Lead Alloy Cooled Fast Reactor Development Plan and R&D Status in China, International Conference on Fast Reactors and Related Fuel Cycles:Safe Technologies and Sustainable Scenarios(FR13), Paris, France, March 4-7,2013.
    [32]Y.BAI et al. Conceptual Design of Lead-Bismuth Cooled Accelerator Driven Subcritical Reactor (LEBCAR), Proceedings of 5th International Conference on Emerging Nuclear Energy Systems (ICENES-15) May 15-19,2011, San Francisco, USA.
    [33]朱继洲,核反应堆安全分析:西安交通大学出版社/原子能出版社,2004.
    [34]Jun Sugimoto, Severe Accident Research Activities in JAPAN.7th International Conference on Nuclear Engineering, Tokoyo, JAPAN, April 19-23,1999.
    [35]J. Birchley. T. Haste. Phebus-FP:Result and significance for plant safety in Swizerland. Nuclear Engineering and Design,235(2005):1607-1633.
    [36]Sandia National Labratories, MELCOR Computer Code Manual, User's Guide, Version 1.8.5,.
    [37]H.-J. Allelein, K.Neu, et al, European validation of the integral code ASTEC (EVITA), Nuclear Engineering and Design 221 (2003) 95-118.
    [38]张梦琴,潘庆春,PWR核电站严重事故情况下放射性碘化学和安全喷淋.原子能科学技术,Vol.27 No6:561-568,1993.
    [39]郎明刚等,大亚湾核电厂全厂“断电”事故裂变产物行为计算,核科学与工程,Vol.22 No.4.:339-341,2002..
    [40]刘原中,曹建主,HTR_10高温气冷实验堆事故放射怀释放及对环境的影响,1995.Vol.15No.4: 286-292.
    [41]Toru Obara, Tcrumitsu Miura, Yoshiyuki Fujita, Yasuo Ando, Hiroshi Sekimoto. Preliminary study of the removal of polonium contamination by neutron-irradiated lead-bismuth eutectic[J]. Annals of Nuclear Energy,2003, (30):497-502.
    [42]Feuerstein, H., J. Oschinski, and S. Horn. Behavior of Po-210 in molten Pb-17Li[J]. Journal of Nuclear Materials,1992:191-194,288-291.
    [43]D. V. Pankratov, E. I. Efimov, G.1. Toshinskii, and L. D. Ryabaya. Analysis of the polonium hazard in nuclear power systems with lead-bismuth coolant[J]. Atomic Energy,2004,97(2): 559-563.
    [44]Zanini, L., Summary Report for MEGAPIE R&D Task Group X9:Neutronic and Nuclear Assessment, PSI Report Nr.05-12, Paul Scherrer Institut, Switzerland,2005.
    [45]J. Neuhauscn, etc. Recent results on polonium behavior in cutectic lead-bismuth alloy. NRC7-SEVENTH INTERNATIONAL CONFERENCE ON NUCLEAR AND RADIOCHEMISTRY. Budapest, Hungary 24-29 August 2008.
    [46]Mikael Jolkkonen, Volatilisation of 210Po. EUROTRANS 1.5 Safety Meeting, May 22-23,2007, Stockholm. Downloadable from http://.neutron.kth.se/EUROTRANS/Stockholm.
    [47]Mikael Jolkkonen, Radiotoxic vapours over lead coolant. EUROTRANS WP 1.5 meeting, Madrid, Nov 13-142007. Downloadable from http://.neutron.kth.se/EUROTRANS/Madrid.
    [48]N. Li, E. Yefimov, and D. Pankratov,1995. Polonium Release from an ATW Burner System with Liquid Lead-Bismuth Cooland, LA:UR-98-1995.
    [49]J. BUONGIORNO. Heavy-Metal Aerosol Transport in A Lead-Bismuth-Cooled Fast Reactor with In-Vessel Direct-Contact Steam Generation. Nuclear Technology, April 4,2002.
    [50]Shuji OHNO, Yuji KURATA, Shinya MIYAHARA, Ryoei ICATSURA & Shigeru YOSHIDA (2006):Equilibrium Evaporation Behavior of Polonium and Its Homologue Tellurium in Liquid Lead-Bismuth Eutectic, Journal of Nuclear Science and Technology,43:11,1359-1369.
    [51]Koji MORITA, Werner MASCHEK, Michael FLAD, Hidemasa YAMANO & Yoshiharu TOBITA (2006):Thermophysical Properties of Lead-Bismuth Eutectic Alloy in Reactor Safety Analyses, Journal of Nuclear Science and Technology,43:5,526-536.
    [52]Shuji OHNO, etc. Experimental Investigation of Lead-Bismuth Evaporation Behavior. Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.42, No.7, p.593-599, July 2005.
    [53]谢仲生,邓力,中子输运理论数值计算方法:西北工业大学出版社,2005.
    [54]胡永明,反应堆物理数值计算方法,国防科技大学出版社,1999.
    [55]W. A. RHOADES, ET AL., "DOORS-3.2, One-, Two- and Three- Dimensional Discrete Ordinates Neutron/Photon Transport Code System," RSICC Computer Code Collection CCC-650, Oak Ridge National Laboratory (1999).
    [56]M. D. DeHart, An Advanced Deterministic Method for Spent-Fuel Criticality Safety Analysis, Trans. Am. Nucl. Soc.78 (June 1998),170-172.
    [57]DANTSYS3.0,1-D,2-D MultiGroup Discrete Ordinate Method Transport, RISCC Computer Code Collection CCC-547 (1997).
    [58]McGhce J, Wareing TA, Barbett DA. Attila User's manual, Gig Harbor, WA, Transpire, Inc.,2007.
    [59]Tim Goorley, Jeff Bull, Forrest Brown, et al. Release of MCNP5_RSICC_1.30, Los Alamos National Laboratory 2004.
    [60]SCALE:A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation, Oak Ridge National Laboratory 2000.
    [61]J. P. Both, A. Mazzolo, O. Petit, et al. User Manual for version 4.3 of the TRIPOLI-4 Monte Carlo method particle transport computer code, Atomic Energy Commission, France 2003.
    [62]Pat Cowan, An Overview of the Monte Carlo Code MCBEND, NPL Workshop on Monte Carlo codes.
    [63]A. Kling, F. Barao, M. Nakagawa.et al. Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, Monte Carlo 2000 Conference, Lisbo,2001,625.
    [64]Jerzy Cetnar, Piotr Gronek. BISON-C:UPGRADED ONE-DIMENSIONAL TRANSPORT AND BURNUP CALCULATION CODE FOR UNIX SYSTEM, University of Mining and Metallurgy, Cracow 1997.
    [65]D.L. Henderson, O. Yasar, DKR-ICF:A Radioactivity and Dose Rate Calculation Code Package, University of Wisconsin, Madison Wisconsin Fusion Technology Institute 1987.
    [66]A.G. Croff. A User's Manual for ORIGEN2 Computer Code, Oak Ridge National Laboratory 1980..
    [67]Forest R A, et al. FISPACT-99:User manual,1998..
    [68]R.A. Forrest, The European Activation System:EASY-2007 Overview, UKAEA FUS 533,2007.
    [69]R.A. Forrest, FISPACT-2007:User manual, March,2007.
    [70]R. A. Forrest.2007. The European activation file:EAF-2007 biological, clearance and transport libraries[J]. UKAEA FUS.
    [71]张帆,朱波,邾明亮,丁冉,小型动力堆大破口事故下安全壳内气载放射性物质浓度计算,原子能科学技术,第44卷增刊,2010年9月.
    [72]Christopher L. Larson, Polonium Extraction Techniques for a Lead-Bismuth Cooled Fast Reactor. Degree of MASTER. Massachusetts Institue of Technology.2002.
    [73]Jacopo Buongiomo, Conceptual Design of a Lead-Bismuth Cooled Fast Reactor with In-Vessel Direct-Contact Steam Generation, degrees of DOCTOR OF PHILOSOPHY. MASSACHUSETTS INSTITUTE OF TECHNOLOGY.2001.
    [74]Jacopo Buongiomo, Studies of Polonium Removal from Molten Lead-Bismuth for Lead-Alloy-Cooled Reactor Applications, Fission Reactors, VOL.147:406-417, September,2004.
    [75]吴宜灿,李静惊,陈明亮, 郑善良,许德政,蒋洁琼,李莹,卢磊,丁爱平,胡海敏,龙鹏程,罗月童,曹瑞芬,邹俊,何兆忠,曾勤,FDS团队,大型集成多功能中子学计算与分析系统VisualBUS的研究与发展.核科学与工程.2007.27 (4):365-373.
    [76]李静惊,聚变驱动次临界堆中子学计算系统及其应用研究博士,中国科学院等离子体物理研究所,2008.
    [77]曾勤,大型集成中子学计算分析系统设计研究,博士,中国科学院核能安全技术研究所,2012.
    [78]Y. Wu, FDS Team. Conceptual Design Activities of FDS Series Fusion Power Plants in China. Fusion Engineering and Design,2006,81(23-24):2713-2718.
    [79]S. Zheng, M. Chen, J. Li, Q. Zeng, L. Lu, Y. Li, A. Ding, and H. Hu. Neutronics Analysis for the Test Blanket Modules Proposed for EAST and ITER. Nuclear Fusion,2007,47(8):1053-1056.
    [80]Y. Wu, FDS Team. Conceptual Design of the China Fusion Power Plant FDS-II.Fusion Engineering and Design,2008,83(10-12):1683-1689.
    [81]Y. Wu, Y.Bai, W. Wang, et.al, Overview of China Lead Alloy cooled Reactor Development and ADS Program in China, NUTHOS-9,Kaohsiung, Taiwan, September 9-13,2012.
    [82]Y. Wu, S. Zheng, X. Zhu, W. Wang, H. Wang, S. Liu, Y. Bai, H. Chen, L. Hu, M. Chen, Q. Huang, D. Huang, S. Zhang, J. Li, D. Chu, J. Jiang, Y. Song, FDS Team. Conceptual Design of the Fusion-driven Subcritical System FDS-I. Fusion Engineering and Design,2006,81, PartB: 1305-1311.
    [83]应栋川,ITER偏滤器中子学性能及其更换维修辐射剂量场分析研究,中国科学院等离子体物理研究所,2011.
    [84]电离辐射防护与辐射源安全基本标准,GB 18871-2002.
    [85]Y. Wu, FDS Team, CAD-based interface programs for fusion neutron transport simulation, Fusion Engineering and Design,2009,84 (7-11),1987-1992.
    [86]邹俊,用于次临界堆设计分析的核数据库系统设计与研发,中国科学院等离子体物理研究所,2010.
    [87]中科院合肥等离子体所和核工业西南物理研究院,中国实验混合堆详细概念设计第6章,1996.4.
    [88]中国实验快堆(CEFR)环境影响报告书(中请建造许可证阶段),中国原子能科学研究院,1999.
    [89]Keith F. Eckerman, Jeffrey C. Ryman. Sep.2009. External exposure to radionuclides in air, water, and soil. Federal guidance report, No.12.
    [90]GB 6249-2011,核动力厂环境辐射防护规定,环境保护部,国家质量监督检验检疫总局.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700