基于转向性能的电动助力转向控制参数灵敏度分析及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车电动助力转向(Electric Power Steering,EPS)系统在提供转向助力、减轻驾驶员操纵负担的同时,也能够提高汽车转向性能和驾驶舒适性,进而提高汽车的主动安全性。目前,EPS系统在国内外已经成为很多车型的标配,但在EPS系统开发过程中,EPS控制参数的确定主要依赖调试人员的实车主观感觉,同时转向性能与EPS控制参数之间存在多参数和多性能的相互影响,在一个工况匹配好的控制参数,在另一个工况可能不适用,导致EPS控制参数实车调试和标定周期较长且效果不理想。因此,理清转向性能与EPS控制参数的影响关系,获得满足转向性能要求的EPS控制参数取值,为EPS控制参数实车调试和标定提供理论指导,能够有效加快EPS系统匹配进度,缩短EPS系统开发周期。
     结合国家高技术研究发展计划(863计划)课题―电动汽车底盘及整车控制关键技术‖(课题编号:2012AA110904)和吉林省重大科技专项―奔腾混合动力轿车电动助力转向系统匹配与开发‖(编号:20106001),本文搭建EPS系统与车辆模型联合仿真平台,通过模型仿真手段进行EPS控制参数与转向性能的灵敏度分析,理清转向性能与EPS控制参数间的敏感性关系,并在灵敏度分析研究结果基础上优化EPS控制参数,确定获得理想转向性能时的EPS控制参数。同时,考虑到EPS可以主动输出力矩,在EPS传统控制功能基础上,充分利用EPS系统现有传感器信号,开发EPS附加控制功能,在不增加EPS系统硬件成本情况下提高汽车转向性能。
     论文的具体研究内容如下:
     (1)搭建EPS系统与车辆模型联合仿真平台
     通过模型仿真手段从提高汽车转向性能角度对EPS系统进行研究,实现以车辆性能预测为基础开发EPS系统,能够有效节约EPS系统开发费用,缩短EPS系统研发周期。车辆模型是仿真平台的重要组成部分,为了实现对车辆系统的高精度描述,车辆模型选用CarSim商用软件;同时,为了方便对EPS系统的研究,基于Matlab/Simulink建立EPS系统模型,搭建EPS系统与车辆模型联合仿真平台。联合仿真平台的参数来源是保证模型精度的重要环节,为此基于K&C试验台对某车型车辆参数和EPS总成特性进行测试,并对EPS总成特性的测试方法进行详细描述。
     (2)基于转向性能的EPS控制参数灵敏度分析
     作为电子技术与转向系统相结合的产物,EPS系统在提高汽车转向性能方面有很大潜力。但在EPS系统开发过程中,对转向性能与EPS控制参数的影响关系认识不十分明确,EPS控制参数的确定主要依赖调试人员的主观感觉,导致EPS系统开发周期较长。因此,理清转向性能与EPS控制参数间的敏感性关系,掌握转向性能评价指标与EPS控制参数的影响关系,能够为EPS控制参数实车调试和标定提供理论依据和指导。本文对EPS控制参数与转向性能灵敏度分析时,确定了考察的转向性能及具体评价指标,给出了灵敏度分析的EPS控制参数及变化水平,最后基于Isight软件确定出EPS控制参数与转向性能的灵敏度关系。
     (3)基于转向性能的EPS控制参数优化
     在EPS控制参数与转向性能灵敏度分析研究结果基础上,筛选确定对转向性能敏感性较高的EPS控制参数作为优化对象,基于转向性能优化确定获得理想转向性能时的EPS控制参数,对加快EPS系统匹配进度,指导EPS系统开发有重要意义。基于转向性能优化EPS控制参数时,确定了汽车转向性能的优化目标,并在EPS控制参数与转向性能灵敏度分析研究结果基础上,确定优化的控制参数及约束条件。同时,针对转向性能与EPS控制参数间存在的耦合现象,建立转向性能的综合评价指标进行多目标优化,确定出满足各转向性能要求的EPS控制参数取值。
     (4)开发EPS附加控制功能
     充分利用EPS系统现有传感器信号,在不增加系统硬件成本基础上,开发EPS附加控制功能,实现以附加软件形式提高汽车转向性能,进而掌握EPS附加控制功能的核心技术,缩小国内EPS产品与国外同类产品的差距。针对无转角传感器情况下EPS汽车回正控制实现困难问题,提出无转角传感器下的EPS主动回正控制方法,基于卡尔曼滤波估计轮胎回正力矩,以此为基础确定回正控制补偿电流,改善汽车回正性能;同时,提出EPS衰减转向盘冲击力矩控制方法,采用高通滤波处理方法区分有用路感信息和路面冲击力矩,并在估计的路面干扰力矩基础上,确定路面冲击补偿控制电流,衰减路面冲击产生的转向盘冲击力矩,提高EPS汽车抗路面冲击性能,进而提高驾驶的舒适性。
     (5)搭建永磁同步电机EPS试验平台,对优化后的汽车转向性能和EPS附加控制功能进行实车试验验证
     采用矢量控制方法进行永磁同步电机的底层驱动控制,开发永磁同步电机EPS原型控制器,并针对国内某品牌车型进行EPS实车改装,搭建永磁同步电机EPS实车试验平台。以优化确定的EPS控制参数为基础,结合主观评价人员的主观评价结果,调整确定EPS原型控制器中的控制参数,并进行EPS转向性能客观评价试验,验证优化后EPS样车的转向性能。同时,针对开发的EPS附加控制功能设定试验工况,验证无转角传感器下的EPS主动回正控制和EPS衰减转向盘冲击力矩控制方法的实车控制效果。
     本文取得的创新性成果如下:
     (1)针对EPS系统开发过程中,对EPS控制参数与转向性能的关系不明确,控制参数的确定主要依赖调试人员的实车主观感觉,调试周期较长的现象,基于转向性能客观评价指标对EPS控制参数进行灵敏度分析及优化。确定EPS控制参数与转向性能评价指标的影响关系,在此基础上筛选确定对转向性能敏感性较高的EPS控制参数进行优化,确定满足转向性能要求的EPS控制参数取值,指导EPS控制参数的实车调试和标定,提高实车调试和标定效率。
     (2)助力特性是EPS基本助力控制实现的关键,体现的是EPS助力大小和方向随驾驶员手力和车速的变化规律。多点折线拟合曲线助力特性在折线型助力特性的基础上,通过增加节点数量,能够达到曲线型助力特性的效果,具有很好的实际应用价值。针对多点折线拟合曲线助力特性多个助力调节特征点设计难的问题,对多点折线拟合助力特性进行转矩区域划分,确定EPS助力特性具体转矩区域与转向性能的灵敏度关系,指导EPS助力特性参数的设计。
     (3)充分利用EPS系统现有传感器信号,开发EPS附加功能控制算法,在不增加EPS系统硬件成本基础上,以附加软件形式提高汽车转向性能。针对无转角传感器的EPS汽车回正难解决问题,在准确估计轮胎回正力矩基础上,进行无转角传感器下的EPS主动回正控制,改善汽车回正性能;同时,开发EPS衰减转向盘冲击力矩控制方法,提高EPS汽车的抗路面冲击性能,进而提高驾驶的舒适性。
Electric power steering system not only can provide steering power and lighten theburden of the driver’s manipulation, but also can improve vehicle steering performance anddriving comfort, thus improving vehicle active safety. Currently, EPS system at home andabroad has been standard configuration on many cars. However, in the process of EPSsystem development, the determination of EPS control parameters mainly depends ondebugging personnel’s real vehicle subjective feeling. Meanwhile, the influence of multipleparameters and performance may exist between steering performance and EPS controlparameters. And matched control parameters in one working condition may be not applicablein another one, which lead to a long period of real vehicle debugging and calibration for EPScontrol parameters, and the effect may not be ideal either. Therefore, clarifying influencebetween steering performance and EPS control parameters, getting EPS control parametervalues meeting the performance requirements can provide theoretical guidance for realvehicle debugging and calibration of EPS control parameters, effectively accelerate thematching progress and reduce the development cycle of EPS system.
     Combined with the national high technology research and development project (863Program)―Research on Key Technologies of Chassis and Vehicle Control for Electricvehicle‖(Project number:2012AA110904) and major projects in Jilin Province―Researchon Key Technologies of selection and Development for Electric Power Steering System Base on Pentium Hybrid Car‖(Project number::51105165), the co-simulation platform of theEPS system and vehicle model is built in this paper and the sensitivity analysis of EPScontrol parameters and steering performance by means of model simulation is discussed.Then the sensitivity relationship between EPS control parameters and steering performanceis clarified and the EPS control parameters are choosed to be optimized based on theresearch results of the sensitivity analysis. Finally, the EPS control parameters are confirmedunder ideal steering performance. Meanwhile, considering that EPS can actively exporttorque, additional control functions are developed with full use of signals of EPS systemexisting sensor on the basis of traditional control function, which can effectively improvesteering performance without any increasement in the hardware cost.
     The specific contents of this dissertation are as follows:
     (1) A co-simulation platform of EPS system and vehicle model is built
     Through the aspect of promoting vehicle steering performance, research on the EPSsystem is conducted by means of model simulation. So EPS system can be developed basedon the prediction of vehicle steering performance, which can effectively save thedevelopment cost and decrease the development period of the EPS system. Vehicle model isan important part of the co-simulation platform, and commercial software named Carsim isused to accurately describe the vehicle system. Meanwhile, in order to make research on EPSsystem convenient, the EPS system is constructed based on Matlab/Simulink. Finally, theco-simulation platform of the EPS system and vehicle model is built. Considering thatparameters source of the co-simulation platform is also an important part to ensure the modelaccuracy, the parameters of vehicle and EPS assembly characteristics for one certain car aretested based on K&C test bench, and the testing method is also described in this paper.
     (2) Sensitivity analysis of EPS control parameters based on steering performance
     As the product of electronic technology combined with steering system, EPS systemhas a great potential in improving steering performance. However, during the developmentprocess of EPS system, the influence relationship between EPS control parameters andsteering performance is not clearly. And the determination of EPS control parameters are mainly depended on debugging personnel’s real vehicle subjective feeling, which increasethe development periodof EPS system. Therefore, clarify the sensitivity relationship betweensteering performance and the EPS control parameters, and grasp the effect of EPS controlparameters on the evaluation indexes of steering performance, which can provide theoreticalevidence and guidance for the regulation and calibration of EPS control parameters. Whensensitivity analysis of EPS control parameters and steering performance is conducted, firstly,steering performance and its specific evaluation indexes are determined. Secondly, EPScontrol parameters and their variation values are determined. Finally, the sensitivityrelationship between steering performance and EPS control parameters is clarified base onIsight software.
     (3) The optimization of EPS control parameters based on vehicle steering performance
     Based on the sensitivity analysis results of EPS control parameters and steeringperformance, the EPS control parameters of higher sensitivity for steering performance arescreened and chosen as the optimization variables. Then EPS control parameters areoptimized to get the ideal steering performance, which can effectively accelerate thematching process of EPS system and has great significance on EPS system development.When optimization of EPS control parameters is conducted, Optimization object of EPSsteering performance is determined. And then control parameters for optimization areobtained based on the results of the sensitivity analysis. Meanwhile, considered the couplingeffects between steering performance and EPS control parameters, a comprehensiveevaluation index of steering performance is established for multi-objective optimization toget EPS control parameters which meet all the requirements of steering performance.
     (4) The development of EPS additional control functions
     By making full use of existing sensor signals of EPS system, EPS additional controlfunctions are developed without any increasement of the EPS system hardware cost toimprove steering performance by additional software, which is of great significance tomaster core technology of EPS additional control functions and can greatly narrow thetechnological gap between domestic EPS products with similar foreign products. For the difficult issue of return control for EPS vehicles without angle sensor, an EPS active returncontrol method without angle sensor is proposed. Tire aligning torque is estimated based onKalman Filter and compensation current for return control is determined to improveautomotive returnability. Meanwhile, a control algorithm for EPS vehicles to reduce theimpact torque on steering wheel is proposed by applying high-pass filtering processing todistinguish useful road sense information and road impact torque. Based on the estimateddisturbance torque from road surface, impact compensation control current is determined toimprove the road impact resistance of EPS vehicles so as to improve the driving comfort.
     (5) EPS real vehicle test platform is built to verify the optimized steering performanceand the developed additional control algorithm of EPS system
     The underlying drive control of permanent magnet synchronous motor is developed,and EPS prototype controller is also developed. Meanwhile, a domestic brand car ismodified and the real vehicle test platform is finally built. Combined with the subjectevaluation results of appraisers, the control parameters of EPS controller are determinedbased on control parameters determined by optimization. Then objective evaluation ofvehicle steering performance is tested to verify the steering performance after optimizationof EPS sample car. As for the developed additional control algorithm of EPS, test conditionsare set and the real vehicle tests are conducted to verify the effective of EPS additionalcontrol algorithm.
     So in conclusion, several innovative aspects proposed by this dissertation are asfollowed:
     (1) In EPS system development process, the relationship between EPS controlparameters and steering performance is not clear, and the determination of EPS controlparameters mainly depends on debugging personnel’s subjective feeling, which makes thedebug cycle of EPS control parameters longer. As for this phenomenon, the sensitivityanalysis and optimization for EPS control parameters is reasearched based on objectiveevaluation indexes of vehicle steering performance. So the relationship between EPS controlparameters and the exact evaluation indexes of steering performance can be clearly determined. And on this basis, EPS control parameters with higher sensitivity for vehiclesteering performance are selected to be optimized, and finally the value of EPS controlparameters are determined for ideal steering performance. This research can be usefully forthe debug and calibration of EPS control parameters on real vehicle and can greatly improvethe efficiency of debug and calibration.
     (2) It is the boost curve that reflects the variation of the EPS assisting magnitude anddirection with the input of drivers and vehicle speed. On the basis of broken line type assistcharacteristic, the assist characteristic of multi-line fitting curve can be realized throughincreasing the numbers of nodes, which has a good practical significance. However, it is verydifficult for the node design of the assist characteristic of multi-line fitting curve. As for thisproblem, the regional breakdown for the assist characteristic of multi-line fitting curve isdetermined, and the sensitivity relationship for the exact torque region of EPS assistcharacteristic and steering performance is finally determined, which can be supplied as theguidance for the design of EPS assist characteristic curve.
     (3) EPS Additional control algorithm is developed, with the full use of sensor signals ofEPS system. Therefore, vehicle steering performance can be greatly improved based on theform of software without increasing the system components. It is difficult for vehicle withoutangle sensor returning to center, which is also a hot research spot. So a return-to-centercontrol method without angle sensor is proposed to improve return performance. Meanwhile,steering wheel impact torque may be generated by road impact, which brought roughinfluence for driver. So a control method is proposed to reduce the impact torque on thesteering wheel caused by road impact, and to improve driving comfort.
引文
[1]向丹.电动助力与主动转向组合系统的控制研究[D].广东:华南理工大学,2012.
    [2]吕威.电动助力转向系统稳定性和电流控制方法研究[D].吉林:吉林大学,2012.
    [3] Aijun Hu. Development of the Automobile Steering System[J]. Applied Mechanics andMaterials,2011,42:272-275.
    [4] Baharom, Masri B.; Hussain, Khalid; Day, Andrew J. Design of full electric powersteering with enhanced performance over that of hydraulic power-assisted steering[J].Proceedings of the Institution of Mechanical Engineers,2013,227(3):390-399.
    [5] FAN Chang-sheng, GUO Yan-ling. Design of the Auto Electric Power Steering SystemController[J]. Procedia Engineering,2012,29:3200-3206.
    [6]刘俊.基于快速控制原型的电动助力转向控制系统研究[D].安徽:合肥工业大学,2009.
    [7]孟涛.电动助力转向控制策略的研究[D].上海:同济大学,2006.
    [8] TRW: safety system[OL]. http://www.trw.com/steering_system/steerings/electrically_powered_steering.
    [9] Ahead of the curve nexteer: electric power steering [OL].http://www.nexteer.com/technology/steering/electric-power-steering/
    [10]李玉玲.体验精湛的技术与服务—采埃孚(ZF)德国之旅[J].汽车与配件(技术与市场),2013,7:18-28.
    [11]捷太格特(中国)投资有限公司.捷太格特携节能高效产品参展[J].汽车零部件(Automobile Parts),2013,5:33-34.
    [12]丰田电动助力转向系统[OL]. http://wenku.baidu.com/view/7be0a5d249649b6648d74762.html.
    [13]万都中国控股有限公司的转向装置产品介绍[OL]. http://www.mandoc hina.com/cn/product/03_steeringsystem_02_01.asp
    [14]康永升,姜友清.国产EPS开发创新与产业化浅析[J].汽车零部件(技术新视野),2010,4:7-30.
    [15]株洲时代卓越汽车电子技术有限公司[OL]. http://www.chineseeps.com/.
    [16]天津德科助力转向器产品展示[OL]. http://www.decotj.com/.
    [17]广州跨越汽车零部件工贸有限公司企业产品介绍[OL].http://www.chinare-m.org/shownews.asp?id=642.
    [18] HU Chun-hua. Modeling and Simulation of Automotive Electric Power SteeringSystem[C]. Second International Symposium on Intelligent Information TechnologyApplication,2008:436-439.
    [19] Zeng Qun, Huang Juhua. Modeling and simulation of the Electric Power SteeringSystem[C].2009Pacific-Asia Conference on Circuits, Communications and System,2009:236-239.
    [20]尚喆,许镇琳,王豪,张海华.基于神经网络的电动转向系统助力特性研究[J].汽车工程,2004,26(3):319-321.
    [21] Wenchang Lu, Qinglu Zhang, Chen Long, Ruochen Wang. Research on fuzzyself-tuning PID control in electric power steering system [J]. Advanced MaterialsResearch,2012,422:184-187.
    [22] Zhanfeng Gao, Wenjiang Wu, Jianhua Zheng, Zhanpeng Sun. Electric Power SteeringSystem Based on Fuzzy PID Control[C]. The Ninth International Conference onElectronic Measurement&Instruments,2009.
    [23] Hui Zhang, Jing Ren, Yanru Zhong. A Study on Control Strategy of Electric PowerSteering Based on Fuzzy Control[C]. The7th International Conference on PowerElectronics,2007.
    [24] Qing Liu, Hui Chen, Hongyun Zheng. Robust Control of Electric Power SteeringSystem[C]. The33rd Annual Conference of the IEEE Industrial Electronics Society,2007.
    [25] Feixiang Zhao, Konghui Guo, Jianwei Zhang, Lihao Zhang, Fei Li, Lihua Yang. AStudy on H Infinity Control in Electric Power Steering System[C]. InternationalConference on Electronic&Mechanical Engineering and Information Technology,2011.
    [26] V. Ciarla, V. Cahouet, C.Canudas de Wit, E Quaine. Genesis of booster curves inElectric Power Assistance Steering Systems[C].15th International IEEE Conference onIntelligent Transportation System,2012.
    [27] Ji-Hoon Kim, Jae-Bok Song. Control logic for an electric power steering system usingassist motor. Mechatronics,2002,(12):447-459.
    [28] Masri B Baharom, Khalid Hussain, Andrew J Day. Design of full electric powersteering with enhanced performance over that of hydraulic power-assisted steering [J]Proceedings of the Institution of Mechanical Engineers, Part D: Journal of AutomobileEngineering.2013,277(3):390-399.
    [29]张昕.电动助力转向助力特性的仿真分析[D].长春:吉林大学,2003.
    [30]江浩斌,杨晓峰,宋海兵,刘雁玲.电动助力转向系统组合型助力特性研究[J].汽车技术,2010,6:17-21.
    [31]谢鹏,顾力强.基于虚拟样机技术的汽车电动助力转向系统助力特性研究[J].传动技术,2011,25(1):12-17.
    [32]余为清,熊国良,梁占峰.电动助力转向系统助力特性曲线的分析与改进[J].拖拉机与农用运输车,2011,38(3):11-16.
    [33]申荣卫,林逸,台晓红等.电动助力转向系统建模与补偿控制策略[J].农业机械学报,2007,38(7):5-9.
    [34] Tsung-Hsien Hu, Chih-Jung Yeh, Shih-Rung Ho, etc. Design of Control Logic andCompensation Strategy for Electric Power Steering Systems [C]. IEEE Vehicle Powerand Propulsion Conference.2008.
    [35]吕威,郭孔辉,张建伟. EPS中更精确的电机转速估计方法研究[J].汽车技术,2010,3:1-4.
    [36]晋兵营,林逸,施国标. EPS用直流电机转速估计最小观测器的设计与实现[J].汽车技术,2007,8:19-22.
    [37]孟涛,陈慧,余卓平等.提高电动助力转向系统动态性能的控制策略研究及实车试验验证[J].中国机械工程,2007,18(2):235-251.
    [38] Steven A. Peppler, James R. Johnson, Daniel E. Williams. Steering System Effects onOn-Center Handling and Performance[C]. SAE1999-01-3765.
    [39] Atsuhiko Yoneda, Takashi Miyoshi, Yasuo Shimizu. Cogging Torque Target andDesign of Motor for EPS[C]. SAE2006-01-1320.
    [40] Hooman Mohammadi, Reza Kazemi. Simulation of Different Types of Electric PowerAssisted Steering (EPS) to Investigate Applied Torque Positions’ Effects[C]. SAE2003-01-0585.
    [41]朱海.电动助力转向匹配分析及性能评价研究[D].长春:吉林大学,2004.
    [42]施国标.电动助力转向助力特性仿真与控制策略研究[D].长春:吉林大学,2002.
    [43] Peiji Shi, Qun Zhang, Cheng Lin. Electric Power Steering System Matching andHardware-in-the-loop Simulation of Economical Cars[C]. Electrical Machines andSystems(ICEM),2011:1-4.
    [44]陈龙,毛建伟,江浩斌.汽车电动助力转向系统特性及其与整车性能的匹配研究[J].中国机械工程,2008,19(4):475-480.
    [45]李强.基于分岔理论的电动助力转向系统控制策略及其对汽车操纵稳定性影响的研究[D].江苏:江苏大学,2007.
    [46]崔晓利,杨岳,毛建伟.汽车电动助力转向系统的匹配分析及优化设计[J].机械科学与技术,2010,29(1):1-6.
    [47] Injin Hwang, Youngjin Hyun, Joonhong Park. The Study for the Improvement ofOn-Center Feel with MTS Technique[C]. SAE2007-01-0990.
    [48] Man Hyung Lee, Seung Ki Ha. Improvement of the Steering Feel of an Electric PowerSteering System by Torque Map Modification [J]. Journal of Mechanical Science andTechnology,2005,19(3):792-801.
    [49] Yasuo Shimizu, Toshitake Kawai, Junji Yuzuriha. Improvement in Driver-VehicleSystem Performance by Varying Steering Gain with Vehicle Speed and Steering Angle:VGS (Variable Gear-Ratio Steering System)[C]. SAE1999-01-0395.
    [50]赵万忠,施国标,林逸.基于遗传算法的EPS系统参数优化[J].吉林大学学报(工学版),2009,39(2):286-290.
    [51]袁传义,陈龙,江浩斌.电动助力转向系统多目标优化控制研究[J].中国机械工程,2007,18(14):1757-1760.
    [52]赵君卿.汽车主动悬架与电动助力转向结构/控制集成优化研究[D].合肥:合肥工业大学汽车工程学院,2005.
    [53]王其东,姜武华,陈无畏.主动悬架和电动助力转向系统机械与控制参数集成优化[J].机械工程学报,2008,44(8):67-72.
    [54]赵景波,贝绍轶,张兰春,基于粒子群优化算法的汽车EPS系统参数优化设计[J].系统仿真学报,2011,23(12):2788-2792.
    [55]陈慧鹏,陈立平,王君明.电动助力转向系统性能优化及参数研究[J].机械科学与技术,2010,29(2):146-152.
    [56]沈扬凤,曹勇,姚泽胜.电动助力转向结构与控制参数的集成优化[J].上海汽车,2010,11:42-46.
    [57] Yang Ying, Li Ting, Sui Tao, etc. Control Strategy Research and Simulation Analysis ofElectric Power Steering System for Automobile[C]. Global Congress on IntelligentSystems,2009:228-232.
    [58] Shengbing Yang Xuexun Guo Bo Yang, etc. Return-to-center Control of ElectricPower Steering[C]. The Ninth International Conference on Electronic Measurement&Instruments,2009:345-349.
    [59] Zhang Yun, Chen Ning. Method of Electric Power Steering Based on Return-To-Center Control[C]. Power and Energy Conference(APPEEC),2010:1-3.
    [60] Hui Chen, Leilei Zhang, Bolin Gao. Active Return Control of EPS Based on ModelReference Fuzzy Adaptive Control[C]. Proceedings of the2011IEEE InternationalConference on Mechatronics,2011:194-199.
    [61] Masahiko Kurishige, Shunichi Wada, Takayuki Kifuku, etc. A New EPS ControlStrategy to Improve Steering Wheel Returnability[C]. SAE2000-01-0815.
    [62]高勇陈龙袁传义等.电动助力转向系统回正控制研究[J].农业机械学报,2008,8(5):6-10.
    [63]徐建平,何仁,苗立东等.电动助力转向系统回正控制算法研究[J].汽车工程,2004,26(5):557-559.
    [64]赵林峰,陈无畏,秦明辉等.基于转向轻便性及回正性能设计的EPS应用[J].机械工程学报,2009,5(6):181-187.
    [65]谢刚,孟广耀.基于状态反馈的电动助力转向系统主动回正控制研究[J].设计与研究,2010,7(4):16-20.
    [66]景立群季学武.电动助力转向系统的主动回正控制[J].汽车技术,2008,(9):9-12.
    [67] Akinobo Suglyama, Masahiko Kurlshige, Hanako Hamada, etc. An EPS ControlStrategy to Reduce Steering Vibration Associated with Disturbance from RoadWheels[C]. SAE2006-01-1178.
    [68] Masahiko Kurishige. A New Control Stragety to Reduse Steering Torque WithoutPerceptible Vibration for Vehicles Equipped With Electric Power Steering[J]. Journalof Vibration and Acoustics,2012,132:1-5.
    [69] Seongjoo Kim, Jonghyun Pyo. A Control Stragety for Kickback Reduction usingElectric Power Steering and Combined Chassis Control[C]. SAE2007-01-3658.
    [70] Guang Xing Tan, Yang Song, Chuan Lin etc. A Research on Impact CompensationControl Stategy of Electric Power Steering System Based on Whole Vehicle Dynamics[J]. Applied Mechanics and Materials,2012,241-244:1969-1973.
    [71] Jin-Yan Hsu, Chih-Jung Yeh, Tsung-Hsien Hu etc. Development of Active SteeringAngle Control based on Electric Power Steering Systems[C]. Vehicle Power andPropulsion Conference (VPPC),2011:1-6.
    [72] Tsung-hua Hsu, Jing-Fu Liu, Pen-Ning Yu, Wang-Shuan Lee, Jia-Sing Hsu.Development of an Automatic Parking System for Vehicle[C]. IEEE Vehicle Powerand Propulsion Conference,2008.
    [73] Masahiko Kurishige, Hideyuki Tanaka, Noriyuki Inoue, etc. An EPS Control Strategyto Improve Steering Maneuverability on Slippery Roads[C]. SAE2002-01-0618.
    [74]赵林峰,陈无畏,秦炜华等.低附着路面条件的EPS控制策略[J].机械工程学报,2011,47(2):109-114.
    [75] Masahiro Kubota, Masahiko Yoshizawa, Hiroshi Mouri. An Investigation of aSteering-Pull Reduction Method Using the Electric Power Steering System[C]. SAE2007-01-3509.
    [76] Kyuwon Kim, Jaewoong Choi, Kyongsu Yi. Lateral Disturbance Compensation UsingMotor Driven Power Steering[C]. Vehicular Technology Conference (VTC Spring),2011:1-5.
    [77] Chaochun Yuan, Long Chen, Shaohua Wang, etc. Control of Vehicle ActiveSuspension and Electric Power Steering System[C]. IEEE2010Chinese Control andDecision Conference,2010:45-49.
    [78]陈无畏,初长宝.基于分层式协调控制的汽车电动助力转向与防抱制动系统仿真[J].机械工程学报,2009,45(7):188-193.
    [79] Joo-Hyun Ko, Chan-Se Jeong, Young-Man Jeong etc. A Study on Safety Steering for3Wheel Autonomous Vehicle[C].201212th International Conference on Control,Automation and Systems,2012:708-711.
    [80] Bin Li, Fan Yu. Optimal Model Following Control of Four-wheel Active SteeringVehicle[C]. International Conference on Information and Automation,2009:708-711.
    [81] Lv Wei, Guo Kong-hui, Zhang Jian-wei. Research on Current Control Algorithm ofElectric Power Steering[C].2010WASE International Conference on InformationEngineering,2010:438-442.
    [82] Xiang Chen, Xiaoqun Chen. Control-Oriented Model for Electric Power SteeringSystem[C]. SAE2006-01-0938.
    [83] Thomas D.Gillespie.车辆动力学基础[M].赵六奇,金达锋,译.北京:清华大学出版社,2006.
    [84]刘涛.汽车设计[M].北京:北京大学出版社,2008.
    [85] Xiang Chen, Tiebao Yang, Xiaoqun Chen, etc. A Generic Model-Based AdvancedControl of Electric Power-Assisted Steering Systems[J]. IEEE TRANSACTIONS ONCONTROL SYSTEMSTECHNOLOGY,2008,16(6):1289-1300.
    [86] Yang Ying, Li Ting, Sui Tao, etc. Control Strategy Research and Simulation Analysis ofElectric Power Steering System for Automobile[C]. Global Congress on IntelligentSystems,2009:228-232.
    [87]孟涛,余卓平,陈慧等.电动助力转向控制策略研究及实验验证[J].汽车技术,2005(5):26-30.
    [88] Yangling Cao, Shusong Yang. Study on Assistance Torque Control Strategyof ElectricPower Steering System[C]. Electric Information and Control Engineering (ICEICE),2011:5372-5374.
    [89]石晓明,陈祯福.汽车行驶动力学性能的主观评价[M].北京:人民交通出版社,2010.
    [90] Q/CACBD—17.10809-1998.中国第一汽车集团公司产品定型试验规范.
    [91]张昕,施国标,林逸.电动助力转向中间位置转向感觉分析[J].公路交通科技,2009,26(7):139-148.
    [92]张昕,施国标,林逸.电动助力转向的转向感觉客观综合评价[J].机械工程学报,2009,45(6):171-175.
    [93] JASO C705-72.静态操舵力试验方法[S].(转载于:汽车技术手册—试验·评价篇[M].长春汽车研究所,1999:153-154.).
    [94] GB6323.5—94.汽车操纵稳定性试验方法—转向轻便性试验[S].天津:全国汽车技术标准化委员会,1994.
    [95] GB6323.2—94.汽车操纵稳定性试验方法—转向瞬态响应试验(转向盘转角阶跃输入)[S].天津:全国汽车技术标准化委员会,1994.
    [96] QC/T480—1999.汽车操纵稳定性指标限制与评价方法[S].天津:全国汽车技术标准化委员会,1999.
    [97] GB6323.4—94.汽车操纵稳定性试验方法—转向回正性能试验[S].天津:全国汽车技术标准化委员会,1994.
    [98]王长青.乘用车中心区操纵稳定性客观评价指标体系研究[D].长春:吉林大学,2012.
    [99] ISO13674-1:2003(E). Road Vehicles–Test Method for the Quantification of On-centerHandling–Part1: Weave Test[S]. Switzerland:ISO,2003.
    [100] ISO13674-2:2006(E). Road Vehicles–Test Method for the Quantification ofOn-center Handling–Part2: Transition Test[S]. Switzerland:ISO,2006.
    [101] Feng-tao WEI, Li SONG, Yan LI, etc. Application of iSIGHT in SolvingMulti-objective Optimal Design Problems[C]. Consumer Electronics Communicationand Networks,2011:110-113.
    [102]任利.基于iSIGHT的多学科设计优化平台的研究与实现[D].青岛:山东科技大学,2006.
    [103] Feng-tao WEI, Li SONG, Yan LI etc. Application of iSIGHT in SolvingMulti-objective Optimal Design Problems[C]. Consumer Electronics Communic-ations and Networks,2011:110-113.
    [104]刘瑞江,张业旺,闻崇炜等.正交试验设计和分析方法研究[J].实验技术与管理,2010,27(9):52-55.
    [105] Xiaohong Yuan, Changsheng Chen, Kai Xia, etc. Optimization and Simulation ofVehicle Powertrain System Based on Orthogonal Experimental Design[C]. Power andEnergy Conference,2011:1-4.
    [106] Qin Shu He, Xi Nen Liu, Shi Fu Xiao. Application of Orthogonal ExperimentalDesign on Reliability and Sensitivity Analysis[J]. Advanced Materials ResearchVolumes,2011,211-212:651-655.
    [107] Li Yongxian, Sun Mingli. An algorithm of robust design: Orthogonal optimum designand variance ratio analysis[C]. IET Conference Publications, v2009, n556CP,2009,International Tec-hnol gy and Innovation Conference2009, ITIC2009.
    [108] Guo Qiao-hui, Yang Yong-ming, Ding Wei. Optimizing Design and Simulation ofPlanar Transformers Based on Integrated Software Platform[C]. Industrial Technology,2008:1-6.
    [109] YAN Zhe-ping, DENG Chao, Zhou Jia-jia, etc. A Novel Two-subpopulation ParticleSwarm Optimization[C]. Proceedings of the10th World Congress on IntelligentControl and Automation,2012:4113-4117.
    [110]莫愿斌.粒子群优化算法的扩展与应用[D].杭州:浙江大学,2006.
    [111] Xinxin Hu, Lijin, YiwenZhong. An Improved Particle Swarm Optimization Algorithmfor Site Index Curve Model[C]. Business Management and Electronic Information(BMEI),2011:838-842.
    [112]王化吉,宗长富,管欣等.基于模糊层次分析法的汽车操纵稳定性主观评价指标权重确定方法[J].机械工程学报,2011,47(24):83-90.
    [113]邢如飞.乘用车操纵稳定性主观评价方法研究[D].长春:吉林大学,2010.
    [114]宗长富,胡丹,杨肖,潘钊.基于扩展卡尔曼滤波的汽车行驶状态估计[J].吉林大学学报工学版,2009,9(1):7-11.
    [115] D.Simon. Kalman filtering with state constraints: a survey of linear and nonlinearalgorithms[J]. IET Control Theory and Applications,2010,4(8):1303-1318.
    [116]余志生.汽车理论[M].北京:机械工业出版社,2007.
    [117] Nima Derakhshan, Ahmad Akbari, Ahmad Ayatollahi. Noise power spectrumestimation using constrained variance spectral smoothing and minima tracking[J].Speech Communication,2009(51):1098-1113.
    [118] Junbo Zhang, Chao Wu, Yingduo Han. A Power Spectrum Density Based SignalSelection Approach for Electromechanical Mode Estimation[C].2012IEEE Powerand Energy Society General Meeting, PES2012.
    [119] M. Sreelatha, T. Anil Kuma, Shamla Mathur. A New Technique for Power SpectrumEstimation Using Multirate Observations[C].20093rd International Conference onAnti-counterfeiting, Security, and Identification in Communication, ASID2009.
    [120]马煜乾.基于永磁同步电机的电动助力转向系统控制器开发[D].吉林:吉林大学,2012.
    [121] Chunyuan Bian, Shuangyan Ren. Study on Direct Torque Control of SuperHigh-speed PMSM[C].2007IEEE International Conference on Automation andLogistics,2007:2711-2715.
    [122]陈荣.永磁同步电机控制系统[M].北京:中国水利水电出版社,2009.
    [123] Der-Fa Chen, Tian-Hua Liu. Optimal controller design for a matrix converter basedsurface mounted PMSM drive system[J]. Power Electronics,2003,18(4):1034-1046.
    [124] Abdul Rahiman Beig, G. Narayanan, V. T. Ranganathan. Modified SVPWM Algori-thm for Three Level VSI With Synchronized and Symmetrical Waveforms[J].Industrial Electronics,2007,(54):486-494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700