高低不同转移特性MCF7细胞亚株的筛选及基因表达的差异分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的筛选高低不同转移特性并稳定表达绿色荧光蛋白的人乳腺癌MCF7细胞亚株,检测细胞亚株之间基因表达的差异,以筛选乳腺癌骨转移相关基因。
     方法利用脂质体转染GFP入人乳腺癌MCF7细胞,通过有限稀释法、细胞电泳,获得高低不同转移特性的细胞亚株,测定细胞亚株的增殖率,通过组织形态学观察、软琼脂克隆形成率、transwell小室体外侵袭能力测定、裸鼠体内成瘤试验等研究细胞亚株的生物学特性;将C6作为实验组,A2为对照组,用cDNA微阵列的方法比较两个细胞亚株之间基因表达的差异;用实时定量PCR法检测、验证cDNA微阵列中显著差异表达的整合素aV基因和微阵列中未涉及的整合素a4基因。
     结果获得稳定表达绿色荧光蛋白不同转移特性的两个细胞亚株A2(高转移特性)和C6(低转移特性),其中A2的群体倍增时间为25.6h,软琼脂形成率为30.7%;C6群体倍增时间为41.8h,软琼脂形成率为14%;transwell小室体外侵袭能力测定发现,A2细胞亚株的平均侵袭细胞数为136.80±12.36个,明显高于C6的平均侵袭细胞数73.62±9.76个;裸小鼠皮下成瘤试验发现A2成瘤时间短,瘤体直径大,细胞增殖快。A2、C6细胞亚株的基因芯片结果发现,2个细胞亚株之间发生显著性表达变化的基因有767个,其中与A2相比,在C6中上调表达的基因有480个,下调表达的基因有287个。在发生明显表达变化的基因中具有比较明显的功能类别特征的包括与细胞骨架结构相关的基因、与细胞生长及增殖调控相关的基因、以及与细胞氧化张力应激反应相关的基因,提示与A2细胞相比,C6细胞表现出细胞增殖抑制,细胞结构变化以及应激反应活化等特征。实时定量PCR检测A2、C6细胞亚株的ITGA-V基因发现,A2细胞亚株样本的ITGA-V基因平均拷贝数为6574.56,C6细胞亚株ITGA-V基因的平均拷贝数为318.84,A2细胞亚株ITGA-V基因的拷贝数大于C6细胞亚株的ITGA-V基因的拷贝数;实时定量PCR检测A2、C6细胞亚株的ITGA4基因发现,A2细胞亚株样本的ITGA4基因平均拷贝数为19.98,C6细胞亚株的平均拷贝数为49.26,A2细胞亚株ITGA4基因的拷贝数小于C6细胞亚株ITGA-V基因的拷贝数。
     结论筛选出的两个细胞亚株有不同的转移特性,GFP的整合及表达未对MCF7细胞的生长状态、生物学性状未造成明显影响,可作为报告基因进一步研究乳腺癌骨转移的机制和治疗;cDNA微阵列法对于筛选乳腺癌骨转移相关基因有独特的优势,获得的差异表达基因具有较强的代表性,为寻找乳腺癌骨转移相关基因提供了重要线索;在高低不同转移特性的细胞亚株中,整合素aV的表达随着肿瘤细胞侵袭力的增高而增高,整合素aV的高表达和和乳腺癌的侵袭性相关;整合素a4的表达随着肿瘤侵袭程度的增高而降低,整合素a4的失表达和和乳腺癌的侵袭性相关。
[Objective] To establish variant cell sublines expressing green fluorescent protein with high and low metastatic potential and to investigate gene expression profile in breast cancer cell sublines with different metastatic potentialities, in order to find new candidate genes related to metastasis of breast cancer to bone.
    [Methods] MCF7 cells were transfected by GFP gene, two cloned cell sublines(A2、 C6) were isolated by limiting dilution technique and electrophoretic technique. They were selected for further research on growth rate, colony formation, cell migration assay, subcutaneous transplantation in nude mice. The gene expression of A2 and C6 cell sublines were investigated by using cDNA microarray analysis. The alterations in ITGA-V and ITGA4 gene expression of these two sublines were confirmed by realtime quantitative RT—PCR.
    [Results] Two clones expressing Green fluorescent protein with high (A2) and low (C6) metastatic potential were isolated from the parent cell line. Compared with C6, A2 was faster in vitro growth rate (tumor cell doubling time was 25.6 h vs 41.8 h). The clone formation rates were 30.7% for A2 and 14% for C6. Invasion assay in vitro demonstrated that the number of penetrating cells was 136.80±12.36 cells/field for A2 vs. 73.62±9.76/field for C6. After subcutaneous transplantation of A2 and C6, A2 showed a stronger tumorigenicity than C6 after transplantation.There were significant differences in gene expression between high and low metastatic potential cell sublines. Among the target genes, 767 differentially expressed genes were identified in these two cell sublines. Compared to A2, 480 of 767 differentially expressed genes were up-regulated and the other 287 were down-regulated. Realtime quantitative RT—PCR revealed the mean ITGA-V gene copies of A2 cell line were 6574.56 while C6 were 318.84, copies in A2 cell line were significantly higher than those in the C6; the mean ITGA4 gene copies of A2 cell line were 19.98 while C6 were 49.26, copies in A2 cell line were lower than those in the C6.
    [Conclusion] Two clones expressing Green fluorescent protein with different metastatic potential were established, which could be valuable for further study on the molecular mechanisms and therapeutics of breast carcinoma metastasis to bone. There were different gene expression profiles between high and low metastatic potential cell sublines.These genes may provide important clues for finding genes related to metastasis of breast cancer to bone. The overexpression of integrin aV and loss expression of integrin a4 were related to the invasive behaviour of breast cancer cells which metastasis to bone.
引文
1. Soule H.D, Vazguez J, Long A , et al. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst. 1973,51:1409-1416
    
    2. Nobuko S-O, Kaori T, Beom-Seok H, et al. Establishment of Cell lines with High and Low Metastatic Potential from A549 Human Lung Adenocarcinoma. Jpn. J. Cancer Res ,2002,93: 50-60
    
    3. Deil D, Solomayer EF, Bastert G Treatment of metastatic bone disease in breast cancer, bisphosphonates.Clin Breast Cancer, 2000,1:43-51.
    
    4. Coleman RE. Future directions in the treatment and prevention of bone metastases. Am J Clin Oncol, 2002, 25:32-38.
    
    5. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer, 2002, 2:584-593.
    
    6. Rubens RD. The nature of metastatic bone disease. In: Rubens RD, Fogelman I. Bone metastases: diagnosis and treatment. New York: Springer-Verlag New York, Inc., 1991. p. 1-10
    
    7. Deil IJ, Solomayer EF, Bastert G. Treatment of metastatic bone disease in breast cancer, bisphosphonates.Clin Breast Cancer, 2000,1:43-51
    
    8. Coleman R. E., Rubens R. D. The clinical course of bone metastases from breast cancer. Br. J. Cancer ,1987 ,55: 61-66
    
    9. Charlotte K, Scott D, Benjamin E, et al. A Mouse Model of Human Breast Cancer Metastasis to Human Bone. Cancer Res , 2005 , 65: 6130-6138
    
    10. Prasher DC, Eckenrode VK, Ward WW, et al. Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 1992, 111:229-33.
    
    11. John F. Harms, Danny R., et al. MDA-MB-435 human breast carcinoma metastasis to bone. Clinical and Experimental Metastasis , 2003, 20: 327-334
    
     12. Duivenvoorden WC, Popovic SV, Lhotak S et al. Doxycycline decreases tumor burden in a bone metastasis model of human breast cancer. Cancer Res, 2002, 62: 1588-1591.
    13. Yoneda T, Williams PJ, Hiraga T et al. A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro.J Bone Miner Res, 2001, 16: 1486-95.
    14. Guise TA. Molecular mechanisms of osteolytic bone metastases.Cancer, 2000, 88:2892-2898.
    15.高进,刘亚琴,韩立群等.不同转移潜能癌细胞亚系分离鉴定和细胞克隆模型建立及在转移机理研究中应用.中国肿瘤,1997,6:20~21.
    16.陈艾保,丁彦青,谢小棉等.高侵袭转移Lovo细胞亚系的建立及其生物学特性的研究.肿瘤研究与临床,2002,14:85-88.
    17.师长宏,施新猷,李六金等,高低不同转移特性人骨肉瘤克隆细胞株的建立.第四军医大学学报,2000,21:713-715
    1. Rubens RD. The nature of metastatic bone disease. In: Rubens RD, Fogelman I, editors. Bone metastases: diagnosis and treatment. New York: Springer-Verlag New York, Inc.; 1991. p. 1-10
    
    2. Deil IJ, Solomayer EF, Bastert G. Treatment of metastatic bone disease in breast cancer, bisphosphonates.Clin Breast Cancer ,2000,1:43-51
    
    3. Jeremy JW Chen , Konan Peck , Tse Ming Hong , et al. Global analysis of gene expression in invasion by a lung cancer model. Cancer Research , 2001, 61 : 5223 - 5230.
    
    4. Gibbs RA, Weinstock GM, Metzker M L, et al. Genome sequence of the brown Norway rat yields insights into mammalian evolution. Nature ,2004,428: 493-521
    
    5. Kang Y, Siegel PM, Shu W, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 2003, 3:537-49.
    
    6. Price, J.H., Goodacre, A., Hahn, K., et al. Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools. J. Cell Biochem, 2002, Suppl 39:194-210.
    
    7. Paget S. The distribution of secondary growths in cancer of the breast. Lancet, 1889,1:571-573
    
    8. Wu H., Parsons J. T. Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J. Cell Biol ,1993 ,120: 1417-1426
    
    9. Berx G., Van Roy F. The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res ,2001 ,3: 289-293
    
    10. Chambers A. F., Matrisian L. M. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst ,1997 ,89:1260-1270
    
    11. Sullivan L. M., Quigley J. P. An anticatalytic monoclonal antibody to avian plasminogen activator: its effect on behavior of RSV-transformed chick fibroblasts. Cell ,1986 ,45: 905-915
    
    12. Benaud C,Dickson RB,Thompson EW.Role of the matrix metalloproteinases in mammary gland development and cancer.Breast Cancer Res Treat ,1998 ,50:97-116
    
    13. Yoneda T, Sasaki A, Dunstan C, et al. Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphosphonate ibandronate and tissue inhibitor of the matrix metalloproteinase-2. J Clin Invest, 1997, 99:2509-17.
    
    14. Sotiriou C, Lacroix M., Lespagnard L.,et al. Interleukins-6 and -11 expression in primary breast cancer and subsequent development of bone metastases. Cancer Lett, 2001,169: 87-95
    
    15. Hauschka PV, Mavrakos AE, Iafrati MD, et al. Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-sepharose. J Biol Chem, 1986, 261:12665-74.
    
    16. Pfeilschifter J, Mundy GR. Modulation of transforming growth factor beta activity in bone cultures by osteotropic hormones.Proc Natl Acad Sci USA ,1987 ,84:2024-28.
    
    17. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities.Nat Rev Cancer, 2002, 2:584-593.
    
    18. Josephine N. Harada, Kristen E. Identification of novel mammalian growth regulatory factors by genome-scale quantitative image analysis. Genome Research, 2005,15:1136-1144.
    1. Ruoslahti E. Integrins. The Journal of Clinical Investigation, 1991, 87:1-5.
    
    2. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nature Rev, 2002,2: 91-100.
    
    3. Takayama S, Ishii S, Ikeda T, et al. The relationship between bone metastasis from human breast cancer and integrin alpha (v) beta3 expression. Anticancer Res, 2005, 25:79-83.
    
    4. Pecheur I, Peyruchaud O, Serre CM,et al. Integrin alpha(v)beta3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J, 2002, 16:1266-1268.
    
    5. Park J, Song SH, Kim TY, et al Aberrant methylation of integrin alpha4 gene in human gastric cancer cells. Oncogene, 2004; 23:3474-3480
    
    6. Larouche N, Larouche K, Beliveau A, et al. Transcriptional regulation of the alpha 4 integrin subunit gene in the metastatic spread of uveal melanoma. Anticancer Res, 1998,18:3539-3547
    
    7. Woods IK, Grewal NK.p38MAPK induces cell surface alpha4 integrin downregulation to facilitate erbB-2-mediated invasion.Neoplasia, 2003, 5:128-134.
    
    8. Vamer JA, Cheresh DA. Integrins and cancer. Curr Opin Cell , 1996 ,Biol 8: 724-730
    
    9. Clezardin P. Recent insights into the role of integrins in cancer metastasis. Cell Mol Life Sci ,1998 ,54: 541-548
    
    10. Sanders RJ, Mainiero F, Giancotti FP.The role of integrins in tumorigenesis and metastasis. Cancer Invest ,1998 ,16: 329-344,
    
    11. Gerald J. Mizejewski .Role of Integrins in Cancer: Survey of Expression Patterns. Experimental Biology and Medicine, 1999, 222:124-138.
    
    12. Kumar CC, Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets, 2003, 4:123-31.
    13. Harms JF, Welch DR, Samant RS, et al. A small molecule antagonist of the alpha (v) beta3 integrin suppresses MDA-MB-435 skeletal metastasis. Clin Exp Metastasis, 2004, 21:119-28.
    
    14. Larouche N, Larouche K, Beliveau A, et al. Transcriptional regulation of the alpha 4 integrin subunit gene in the metastatic spread of uveal melanoma. Anticancer Res 1998 ;18:3539-3547
    
    15. Marco RA, Diaz-Montero CM, Wygant JN, et al Alpha 4 integrin increases anoikis of human osteosarcoma cells. Journal of Cellular Biochemistry, 2003, 88:1038-1047.
    1. Deil D, Solomayer EF, Bastert G. Treatment of metastatic bone disease in breast cancer, bisphosphonates.Clin Breast Cancer, 2000,1:43-51.
    
    2. Coleman RE. Future directions in the treatment and prevention of bone metastases. Am J Clin Oncol, 2002,25:S32-38.
    
    3. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer, 2002,2:584-93.
    
    4. Rubens RD. The nature of metastatic bone disease. In:Rubens RD, Fogelman I, editors. Bone metastases:diagnosis and treatment. New York: Springer-Verlag New York, Inc.; 1991. p. 1-10
    
    5. Deil IJ, Solomayer EF, Bastert G. Treatment of metastatic bone disease in breast cancer, bisphosphonates.Clin Breast Cancer, 2000,1:43-51
    
    6. Coleman R. E, Rubens R. D. The clinical course of bone metastases from breast cancer. Br. J. Cancer, 1987,55: 61-66
    
    7. Charlotte K, Scott D, Benjamin E, et al. A Mouse Model of Human Breast Cancer Metastasis to Human Bone. Cancer Res ,2005,65: 6130-6138
    
    8. Coleman RE , Seaman JJ. The role of zoledronic acid in cancenclinical studies in the treatment and prevention of bone metastases. Semin Oncol, 2001, 28: Sup 11:11 -16.
    
    9. Paget S. The distribution of secondary growths in cancer of the breast. Lancet,1889,1:571-573
    
    10. Roodman G. D. Biology of osteoclast activation in cancer. J. Clin. Oncol, 2001, 19: 3562-3571
    
    11. Wu H, Parsons J. T. Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J. Cell Biol,1993,120: 1417-1426
    
    12. Bowden E. T., Barth M., Thomas D., et al. An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene, 1999,18:4440-4449
    13. Berx G., Van Roy F. The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res,2001,3: 289-293
    14. Sullivan L. M., Quigley J. P. An anticatalytic monoclonal antibody to avian plasminogen activator: its effect on behavior of RSV-transformed chick fibroblasts. Cell ,1986,45:905-915
    15. Chambers A. F., Matrisian L. M. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl.Cancer Inst,1997,89:1260-1270
    16.侯树坤,朱积川 ,张小东等.E-cadherin基因突变对膀胱癌侵袭能力影响的研究,中华泌尿外科杂志,1999,20:261—263
    17. Mbalaviele G., Dunstan C. R., Sasaki A.,, et al. E-cadherin expression inhuman breast cancer cells suppresses the development of osteolyticbone metastases in an experimental metastasis model.Cancer Res,1996,56:4063-4070
    18. Mbalaviele G, Dunstan CR, Sasaki A, et al. E-cadhedn expression in human breast cancer cells suppresses the development of osteolytic bone metastases in an experimental metastasis model.Cancer Res, 1996, 56:4063-70.
    19. Benaud C.,Dickson R.B.,Thompson E. W.Roles of the matrix metalloproteinases in mammary gland development and cancer. Breast Cancer Res. Treat,1998,50: 97-116
    20. Nelson A. R., Fingleton B., Rothenberg M. L. , et al. Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol,2000,18:1135-1149
    21. Zunker S, Lysik RM, Zarrabi MH, et al. typeⅣ collagease is increase in plasma of pat ients with colon cancer and breast cancer. Cancer Res, 1993, 53:140~143
    22.张欣欣,郭永清,叶青等.基质金属蛋白酶MMP9和MMP2与鼻咽癌转移的相关性研究,临床耳鼻咽喉科杂志,1999,13:356—358
    23.雒洪志,周总光,杨烈等,基质溶解因子基因在人直肠癌中的表达及其临床意义,中华实验外科杂志,2005,22:1348-1349
    24. Benaud C,Dickson RB,Thompson EW.Role of the matrix metalloproteinases in mammary gland development and cancer.Breast Cancer Res Treat 1998,50:97-116
    
    25. Keller ET. The role of osteoclastic activity in. prostate cancer skeletal metastases. Drugs Today ,2002,38: 91-102
    
    26. Chambers A. F., Matrisian L. M. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl.Cancer Inst,1997, 89:1260-1270
    
    27. Yoneda T, Sasaki A, Dunstan C, et al. Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphosphonate ibandronate and tissue inhibitor of the matrix metalloproteinase-2. J Clin Invest,1997,99,2509-17
    
    28. Liotta LA. Cancer cell invasion and metastasis. Sci Amer, 1992;266: 54-63.
    
    29. Singh D., Joshi D. D., Hameed M., et al.Increased expression of preprotachykinin-I and neurokinin receptors in human breast cancer cells: implicationsfor bone marrow metastasis. Proc Natl Acad Sci USA, 2000, 97:388-393.
    
    30. Muller A., Homey B., Soto H., et al. Involvement of chemokine receptors in breast cancer metastasis. Nature ,2001,410:50-56
    
    31. Taichman RS, Cooper C, Keller ET, et al. Use of the stromal cell-derived factor-l/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res , 2002 ,62:1832-7
    
    32. Brekken RA , Sage EH. SPARC , a mat ricellular protein : at the crossroads of cell2mat rix[J ]. Matrix Biol, 2000,19:5692580.
    
    33. Porter P. L., Sage E. H., Lane T. F., et al. Distribution of SPARC in normal and neoplastic human tissue. J. Histochem. Cytochem. ,1995 ,43: 791-800
    
    34. Bellahcene A., Castronovo V. Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. Am. J. Pathol. , 1995 ,146: 95-100
    
    35. Graham J. D., Balleine R. L., Milliken J. S. , et al. Expression of osteonectin mRNA in human breast tumours is inversely correlated with oestrogen receptor content. Eur. J. Cancer ,1997 ,33:1654-1660
    36. Jacob K, Webber M , Benayahu D, et al. Osteonectin promotes prostate cancer cell migration and invasion: a possible mechanism for metastasis to bone . Cancer Res , 1999,59 : 445324457.
    
    37. Deryugina E. I., Bourdon M. A., Jungwirth K. , et al. Functional activation of integrin alpha V beta 3 in tumor cells expressing membrane-type 1 matrix metalloproteinase.Int. J. Cancer ,2000,86:15-23
    
    38. Felding-Habermann B., O'Toole T. E., Smith J. W.,et al. Integrin activation controls metastasis in human breast cancer. Proc. Natl.Acad. Sci. USA ,2001 ,98: 1853-1858
    
    39. Chen J., Baskerville C., Han Q., , et al. Alpha v integrin, p38 mitogen-activated protein kinase, and urokinase plasminogen activator are functionally linked in invasive breast cancer cells. J. Biol. Chem ,2001, 276:47901-47905
    
    40. Noti J. D. Adherence to osteopontin via alphavbeta3 suppresses phorbol ester-mediated apoptosis in MCF-7 breast cancer cells that overexpress protein kinase C-alpha. Int. J.Oncol ,2000,17:1237-1243
    
    41. Suda T., Takahashi N., Udagawa N.,et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev ,1999,20: 345-357
    
    42. Simonet W. S., Lacey D. L., Dunstan C. R., et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell ,1997,89:309-319
    
    43. Tsuda E., Goto M., Mochizuki S., et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis.Biochem. Biophys. Res. Commun ,1997 ,234:137-142
    
    44. Yin J. J., Selander K., Chirgwin J. M., et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest. ,1999 ,103: 197-206
    
    45. Thomas R. J., Guise T. A., Yin J. J., et al. Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology ,1999 ,140:4451-4458
    46. Brown JM, Vessella RL, Kostenuik, PJ, et al. Osteoprotegerin and RANK ligand expression in prostate cancer. Urology , 2001,57:611-616.
    
    47. Henderson M., Danks J., Moseley J., et al. Parathyroid hormone-related protein production by breast cancers, improved survival, and reduced bone metastases. J. Natl. Cancer Inst ,2001,93: 234-237
    
    48. Hauschka PV, Mavrakos AE, Iafrati MD, et al. Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-sepharose. J Biol Chem ,1986,261:12665-12674.
    
    49. Pfeilschifter J, Mundy GR. Modulation of transforming growth factor beta activity in bone cultures by osteotropic hormones.Proc Natl Acad Sci USA 1987;84:2024-2028.
    
    50. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities.Nat Rev Cancer ,2002,2 ,584~593
    
    51. Sotiriou C., Lacroix M., Lespagnard L., et al. Interleukins-6 and -11 expression in primary breast cancer and subsequent development of bone metastases. Cancer Lett ,2001,169: 87-95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700