输流管道横向振动机理及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输流管道在航空航天工程、水利工程、石油化工、农业及人们日常生活中都有着广泛应用。由于流固耦合的作用,当管道内流体的流速较高或其发生脉动时,常常会引起管道的强烈振动,严重时会导致管道破裂损毁而造成无法估计的损失。为了使管道能够安全稳定地在各行业中发挥作用,就需要对其振动机理及如何控制振动进行深入研究。
     本文首先分析了输流管道流固耦合振动问题的研究现状,然后采用理论结合实验的方法对输流管道的稳定性、参数共振、具有内共振的强迫振动以及振动控制等问题展开研究,结论可为工程中管道的稳定性分析和危害评估提供必要的理论依据,也为管道振动的可行性控制奠定了理论基础。全文主要研究内容包括:
     (1)建立了输流管道系统的力学模型,利用牛顿法推导了管道横向非线性振动微分方程,并进行了无量纲化和离散化,得到了最简形式的运动微分方程。
     (2)对两端支承及弹性地基上管道系统的静态和动态稳定性进行了分析。利用Galerkin离散法和复模态方法计算了系统的固有频率和临界流速,并应用平均法得到了脉动内流作用时管道的前两阶主参数共振和组合共振区域,讨论了地基的线性刚度、剪切刚度及其它一些参数对系统稳定性的影响。研究发现,系统的固有频率和稳定性将随流速的增大而降低;地基的剪切刚度对系统稳定性的影响相当显著,不能忽略;同时管道预紧力、流体介质与管道质量比、粘弹性系数和管内介质平均流速等参数也会对系统的稳定性产生一定的影响。
     (3)利用增量谐波平衡法对管道非线性运动方程进行求解,并用数值方法对结果进行了验证。根据方程解的情况分析了脉动流作用下管道系统的动态响应特性。结果表明,增量谐波平衡法是求解非线性振动问题的精确有效的半解析半数值方法;随着脉动流频率的增大,系统响应振幅的解会出现分岔情况,导致系统可能出现零响应,稳定响应,或零响应、稳定、不稳定响应共存的情况;系统发生第几阶参数共振,第几阶模态就对响应起主要作用,而其它模态的影响很微弱。
     (4)利用多元L-P法和增量谐波平衡法对两端铰支和两端固定管道具有内共振的横向强迫振动进行研究,并对两种方法的结果进行比较分析。讨论了前两阶主共振和组合共振响应情况及内共振与外激励幅值的关系,并分析了各模态的振动情况。研究发现,在系统第2阶固有频率约为第1阶固有频率3倍的情况下,当外激励频率接近前两阶固有频率或其和的一半时,系统将发生内部共振,两个模态相互激励。但某些内共振的发生取决于外激励幅值的大小。
     (5)采用陶瓷压电片作为控制激励器和模态传感器,根据最优控制方案对弹性地基上脉动流管道的参数共振实施了主动控制,并分析了控制参数对控制效果的影响。数值模拟结果表明,本文设计的最优控制器可使管道的各种参数共振均得到较好的控制,同时还具备一定的抗参数扰动能力。
     (6)对脉动流作用下输流管道的动态稳定性进行了实验研究。建立了输流管道实验系统,给出了一些关键参数的有效测量方法,并对两种管道的第一阶1/2次谐波参数共振进行了重点观察与分析,用实验的方法确定了相应的参数共振区域。将其与理论共振区域进行对比,结果在定性上吻合得比较好。同时对误差产生的原因进行了讨论。
Now, pipes conveying fluid have been extensively applied in aeronautic and aerospace engineering, hydraulic engineering, petrochemical industry, agriculture and our daily life. Due to the effect of fluid-structure interaction (FSI), pipes always vibrate violently when the inner flow velocity is high or pulsatile, which may even result in pipe rupture in some serious cases and cause incalculable loss. So, in order to make the pipe work safely and stably in all industries, an intensive study of the vibration mechanism and its control of the pipe conveying fluid should be made.
     In this dissertation, the existing achievements in pipe FSI vibration are summarized first, then the stability, parametric resonance, forced vibration with internal resonance and vibration control of pipes are investigated by using theoretical and experimental methods. The conclusions in present work may provide a theoretical basis for the stability analysis and hazard assessment of the pipes in the engineering, and also establish the theoretical foundation for the feasible vibration control of the pipes. The main contents are as follows:
     (1) The mechanical systems of pipes conveying fluid are modeled, and the differential equations of transverse nonlinear vibration for the pipes are derived through Newton's method. After nondimensionalization and discretization, a differential equation of motion with simplest type is obtained.
     (2) Static and dynamic stabilities of supported pipes and those on the elastic foundation are analyzed. Applying the Galerkin and complex mode methods, the natural frequencies and critical flow velocity are calculated. For the case of pulsating inner flow, the regions of principal parametric resonances for first two modes and combination resonance are obtained using the averaging method. The contributions of the linear, sheer foundation rigidities and other parameters on the stabilities of the systems are discussed. The results reveal that the natural frequencies and the stability decrease with the flow velocity increasing; the effect of the sheer rigidity on the stabilities is great and can't be neglected; moreover, some parameters such as tension force, mass ratio of fluid to pipe, viscoelastic coefficient and mean flow velocity have effect on the stabilities of the systems.
     (3) Nonlinear equation of motion for the pipes is solved by incremental harmonic balance (IHB) method, and the results are verified by using numerical simulations. According to the solutions of the equation, dynamic response characteristics of the pipe systems in the case of pulsating inner flow are analyzed. The results demonstrate that the semi-analytical and semi-numerical IHB method is precise and effective for the nonlinear vibration problems; with the pulsation frequency increasing, the solutions of the response amplitude may bifurcate, which results in nonresponse, stable response or unstable response with them; when the parametric resonance of the nth mode occurs, the motion of this mode is dominant, and others may contribute weakly.
     (4) Forced vibrations with internal resonance of pinned-pinned and clamped-clamped pipes are researched through the multiple dimensions Lindstedt-Poincaré(MDLP) method, and the results obtained are compared with those of the IHB method. The resonance responses of the first two modes and combination resonance are investigated and the relationship between the internal resonance and excitation amplitude is discussed. The motions of all the modes are analyzed. The results show that the internal resonance may occur as the excitation frequency is near the first, second natural frequency or half the sum of them under the condition that the second natural frequency is three times the first one, when the first two modes are excited by each other. However some of the internal resonances are decided by the excitation amplitude.
     (5) With taking the ceramic piezoelectric gauge as the control actuator and modal transducer, parametric resonances of pipes conveying pulsating fluid on elastic foundation are controlled actively base on the optimal theory. The effect of the control parameters on the performance of the controller is analyzed. Numerical simulations demonstrate that all kinds of parametric resonances of the pipes can be controlled well with present optimal controller, and it has the ability to resist the perturbation of parameters.
     (6) An experiment is conducted to study the dynamic stability of pipes conveying pulsating fluid. The experimental apparatus is set up and effective methods to measure some important parameters are put forward. The first sub-harmonic parametric resonances of order 1/2 for the two pipes are observed and analyzed. The unstable regions are obtained experimentally and they are compared with the theoretical results. It can be seen that qualitative agreement is fairly good. Furthermore, the reasons inducing errors are discussed.
引文
1.徐鉴,杨前彪.输流管模型及其非线性动力学近期研究进展[J].力学进展,2004,34(2):182-194
    2.邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38
    3.张立翔,黄文虎,Tijsseling A S.输流管道流固耦合振动研究进展[J].水动力学研究与进展A辑,2000,15(3):366-379
    4.任建亭,姜节胜.输流管道系统振动研究进展[J].力学进展,2003,33(3):313-324
    5.张立翔,黄文虎.输液管流固耦合非线性动力稳定分析[J].应用数学和力学,2002,23(9):951-960
    6.吴勤勤,雷国璞.关于输液管道系统的研究-进展与趋向[J].力学进展,1994,24(1):59-65
    7.Semler C,Li G X,Pa(i|¨)doussis M P.The non-linear equations of motion of pipes conveying fluid[J].Journal of Sound and Vibration.1994,169(5):577-599
    8.张立翔,黄文虎.输流管道非线性流固耦合振动的数学建模[J].水动力学研究与进展A辑,2000,15(1):116-128
    9.Lee S I,Chung J.New non-linear modeling for vibration analysis of a straight pipe conveying fluid[J].Journal of Sound and Vibration.2002,254(2):313-325
    10.Chen S S.Flow-induced in-plane instabilities of curved pipes[J].Nuclear Engineering and Design,1972,23(1):29-38
    11.Chen S S.Out-of-plane vibrations and stability of curved tubes conveying fluid[J].ASME Journal of Applied Mechanics,1973,40:362-368
    12.Hatfield F J,Wiggert D C.Seismic pressure surges in liquid-filled pipelines[J].ASME Journal of Pressure Vessel Technology,1990,112(3):279-283
    13.Budny D D,Hatfield F J,Wiggert D C.An experimental study on the influence of structural damping on internal fluid pressure during a transient flow[J].ASME Journal of Pressure Vessel Technology,1990,112(3):284-290
    14.Lesmez M W,Wiggert D C,Hatfield F J.Modal analysis of vibrations in liquid-filled piping systems[J].ASME Journal of Fluids Engineering,1990,112(3):311-318
    15.Lavooij C S W,Tijsseling A S.Fluid-structure interaction in liquid-filled piping systems[J].Journal of Fluids and Structures,1991,5(5):573-595
    16.Brevart B J,Fuller,C R.Effect of an internal flow on the distribution of vibrational energy in an infinite fluid-filled thin cylindrical elastic shell[J].Journal of Sound and Vibration,1993,167(1):149-163
    17.Wylie E B,Streeter V L.Fluid Transients in systems[M].Englewood Cliffs,New Jersey:Prentice Hall,1993
    18.Svingen B,Kjeldsen M.Fluid structure interaction in piping systems[A].Proc of Int Conf on Finite Elements in Fluids-New Trends and Applications,Venice,Italy,1995,955-963
    19.Gajic A,Pejovic S,Stojanovic Z.Hydraulic oscillation analysis using the fluid-structure interaction model[A].Proc of 17th IAHR Symp on Hydraulic Machines and Cavitation,Valencia,Spain,1996, 845-854
    20.Moussou P,Vaugrante P,Guivarch M,Seligmann D.Coupling effects in a two elbows piping system[A].Proc of 7th Int Conf on Flow Induced Vibration,Lucerne,Switzerland,2000,579-586
    21.Piet-Lahanier N,Ohayon R.Finite element analysis of a slender fluid-structure system[J].Journal of Fluids and Structures,1990,4(6):631-645
    22.王世忠,刘玉兰,黄文虎.输送流体管道的固-液耦合动力学研究[J].应用数学和力学,1998,19(11):987-993
    23.Heinsbroek A G T J,Lavooij C S W,Tijsseling A S.Fluid-structure interaction in non-rigid piping -a numerical investigation[A].Transactions of SMIRT 11,Tokyo,Japan,Paper B12/1,1991,309-314
    24.Kruisbrink A C H,Heinsbroek A G T J.Fluid-structure interaction in non-rigid pipeline systems-large scale validation tests[A].International Conference on Pipeline System BHR Group,Manchester,UK,1992,151-164
    25.Wang Z M,Tan S K.Coupled analysis of fluid transients and structural dynamic responses of a pipeline system[J].Journal of Hydraulic Research,1997,35(1):119-131
    26.Wang Z M,Tan S K.Vibration and pressure fluctuation in a flexible hydraulic power system on an aircraft[J].Computers & Fluids,1998,27(1):1-9
    27.EI-Raheb M.Vibrations of three-dimensional pipe systems with acoustic coupling[j].Journal of Sound and Vibration.1981,78(1):39-67
    28.Dupuis C,Rousselet J.The equations of motion of curved pipes conveying fluid[J].Journal of Sound and Vibration.1992,153(3):473-489
    29.焦宗夏.飞机液压能源管道系统的振动特性分析[J].北京航空航天大学学报,1997,23(3):316-321
    30.焦宗夏,华清,于凯.传输管道流固耦合振动的模态分析[J].航空学报,1999,20(4):316-320
    31.Pa(i|¨)doussis M P,Issid N T.Dynamic stability of pipes conveying fluid[J].Journal of Sound and Vibration,1974,33(3):267-294
    32.Ashley H,Haviland G.Bending vibrations of a pipeline containing flowing fluid[J].ASME Journal of Applied Mechanics.1950,17:229-232
    33.Pa(i|¨)doussis M P.Flow-induced instabilities of cylindrical structures[J].Applied Mechanics Reviews.1987,40(2):163-175
    34.Pa(i|¨)doussis M P,Li G X.Pipes conveying fluid:a model dynamical problems[J].Journal of Fluids and Structures.1993,7(2):137-204
    35.Pa(i|¨)doussis M P.Fluid-Structure Instabilities:Slender Structures and Axial Flow[M].San Diego:Academic Press,1998
    36.Pa(i|¨)doussis M P.Aspirating pipes do not flutter at infinitesimally small flow[J].Journal of Fluids and Structures,1999,13(3):419-425
    37.Sarkar A,Pa(i|¨)doussis M P.A cantilever conveying fluid:coherent modes versus beam modes[J].International Journal of Non-Linear Mechanics,2004,39(3):467-481
    38.Pa(i|¨)doussis M P,Semler C,Wadham-Gagnon M.A reappraisal of why aspirating pipes do not flutter at infinitesimal flow[J].Journal of Fluids and Structures,2005,20(1):147-156
    39.Li G.X,Pa(i|¨)doussis M P.Stability,double degeneracy and chaos in cantilevered pipes conveying fluid[J].International Journal of Non-Linear Mechanics,1994,29(1):83-107
    40.Pa(i|¨)doussis M P,Moon F C.Nonlinear and chaotic fluidelastic vibrations of a flexible pipe conveying fluid[J].Journal of Fluids and Structures,1988,2(6):567-591
    41.Pa(i|¨)doussis M P,Li G X,Moon F C.Chaotic oscillations of the autonomous system of a constrained pipe conveying fluid[J].Journal of Sound and Vibration,1989,135(1):1-19
    42.Pa(i|¨)doussis M P,Semler C.Nonlinear dynamics of a fluid-conveying cantilevered pipe with an intermediate spring support[J].Journal of Fluids and Structures,1993,7(3):269-298
    43.Pa(i|¨)doussis M P,Semler C,Wadham-Gagnon M,Saaid S.Dynamics of cantilevered pipes conveying fluid.Part 2:Dynamics of the system with intermediate spring support[J].Journal of Fluids and Structures,2007,23(4):569-587
    44.Pa(i|¨)doussis M P,Semler C.Non-linear dynamics of a fluid-conveying cantilevered pipe with a small mass attached at the free end[J].International Journal of Non-Linear Mechanics,1998,33(1):15-32
    45.Modarres-Sadeghi Y,Semler C,Wadham-Gagnon M,Pa(i|¨)doussis M P.Dynamics of cantilevered pipes conveying fluid.Part 3:Three-dimensional dynamics in the presence of an end-mass[J].Journal of Fluids and Structures,2007,23(4):589-603
    46.Noah S T,Hopkins G R.Dynamic stability of elastically supported pipes conveying pulsating fluid[J].Journal of Sound and Vibration,1980,71(1):103-116
    47.Tang D M,Dowell E H.Chaotic oscillations of a cantilevered pipe conveying fluid[J].Journal of Fluids and Structures,1988,2(3):263-283
    48.Koo G H,Park Y S.Vibration analysis of a 3-dimensional piping system conveying fluid by wave approach[J].International Journal of Pressure Vessels and Piping,1996,67(3):249-256
    49.Ryu S U,Sugiyama Y,Ryu B J.Eigenvalue branches and modes for flutter of cantilevered pipes conveying fluid[J].Computers & Structures,2002,80(14/15):1231-1241
    50.Lee U,Park J.Spectral element modelling and analysis of a pipeline conveying internal unsteady fluid[J].Journal of Fluids and Structures,2006,22(2):273-292
    51.Aldraihem O J.Analysis of the dynamic stability of collar-stiffened pipes conveying fluid[J].Journal of Sound and Vibration,2007,300(3/5):453-465
    52.Yoon H I,Son I S.Dynamic response of rotating flexible cantilever pipe conveying fluid with tip mass[J].International Journal of Mechanical Sciences,2007,49(7):878-887
    53.Stangl M,Gerstmayr J,Irschik H.An alternative approach for the analysis of nonlinear vibrations of pipes conveying fluid[J].Journal of Sound and Vibration,2008,310(3):493-511
    54.Jung D H,Chung J T.In-plane and out-of-plane motions of an extensible semi-circular pipe conveying fluid[J].Journal of Sound and Vibration,2008,311(1/2):408-420
    55.黄玉盈,邹时智等.输流管的非线性振动、分叉与混沌-现状与展望[J].力学进展,1998,28(1):30-42
    56.江建祥,曹云中,潘继志.输流管道参数振动失稳区域的计算[J].浙江工业大学学报,2001,29(1): 75-78
    57.金基铎,杨晓东,尹峰.两端铰支输流管道在脉动内流作用下的稳定性和参数共振[J].航空学报,2003,24(4):317-322
    58.金基铎,宋志勇,杨晓东.两端固定输流管道的稳定性和参数共振[J].振动工程学报,2004,17(2):190-195
    59.赵凤群,王忠民,冯振宇,刘宏昭.具有可移动弹性支承输流管道的稳定性分析[J].机械工程学报,2004,40(9):38-41
    60.任建亭,林磊,姜节胜.管道轴向流固耦合振动的行波方法研究[J].航空学报,2006,27(2):280-284
    61.包日东,闻邦椿.水下悬跨管道动力响应分析[J].振动与冲击,2007,26(8):140-143
    62.杨晓东,金基铎.输流管道流-固耦合振动的固有频率分析[J].振动与冲击,2008,27(3):80-81
    63.Ni Q,Huang Y Y.Differential quadrature method to stability analysis of pipes conveying fluid with spring support[J].Acta Mechanica Solida Sinica,2000,13(4):320-327
    64.Jin J D.Stability and chaotic motions of a resrained pipe conveying fluid[J].Journal of Sound and Vibration,1997,208(3):427-439
    65.Jin J D,Zou G S.Bifurcations and chaotic motions in the autonomous system of a restrained pipe conveying fluid[J].Journal of Sound and Vibration,2003,260(5):783-805
    66.金基铎,邹光胜,张宇飞.悬臂输流管道的运动分岔现象和混沌运动[J].力学学报,2002,34(6):863-873
    67.邹光胜,金基铎,闻邦椿.粘弹性输流管道混沌运动的多模态分析[J].东北大学学报(自然科学版),2003,24(2):132-135
    68.包日东,金志浩,闻邦椿.端部约束悬臂输流管道的分岔与混沌响应[J].振动与冲击,2008,27(5):36-39
    69.包日东,毕文军,闻邦椿.两端固定输流管道混沌运动预测[J].振动与冲击,2008,27(6):99-102
    70.Chen S S,Jendrzejczyk J A.General characteristics,transition and control of instability of tubes conveying fluid[J].Journal of the Acoustical Society of America,1985,77:887-895
    71.Jendrzejczyk J A,Chen S S.Experiments on tubes conveying fluid[J].Thin-Walled Structure,1985,3(2):109-134
    72.倪樵,黄玉盈,陈贻平.微分求积法分析具有弹性支承输液管的临界流速[J].计算力学学报,2000,18(2):146-149
    73.Ryu S U,Sugiyama Y,Ryu B J.Eigenvalue branches and modes for flutter of cantilevered pipes conveying fluid[J].Computers & Structures,2002,80(14/15):1231-1241
    74.Jin J D.Stability and chaotic motions of a restrained pipe conveying fluid[J].Journal of Sound and Vibration,1997,208(3):427-439
    75.Pa(i|¨)doussis M P,Li G X,Rand R H.Chaotic motions of a constrained pipe conveying fluid:comparison between simulation,analysis,and experiment[J].ASME Journal of Applied Mechanics,1991,58(2):559-565
    76.Jin J D.Bifurcations in the motion of a pipe conveying fluid[A].Proc of A-PVC,1995,76-80
    77.Jin J D.Chaotic motions of a restrained pipe conveying fluid[A].Proc of A-PVC,1997,169-172
    78.金基铎,林颖,邹光胜.悬臂输流管的颤振和混沌运动分析[J].振动工程学报,1997,10(3):314-320
    79.Zou G S,Jin J D,et al.Chaotic vibrations of a cantilevered pipe conveying fluid[A].Proc of ICVE,1998,309-312
    80.Zou G S,Jin J D.Jin.Stability and chaotic vibrations of a pipe conveying fluid under harmonic excitation[J].Journal of ShangHai University,2000,4(3):179-185
    81.Jin J D,Zou G S.Nonlinear dynamics of a pipe conveying fluid[A].Proc of ICAPV,2000,468-472
    82.Holmes P J.Pipes supported at both ends cannot flutter[J].ASME Journal of Applied Mechanics,1978,45:619-622
    83.Chen S S.Dynamic stability of a tube conveying fluid[J].ASME Paper,1971,Paper No.71-Vibr.-39
    84.Ginsberg J H.The dynamic stability of a pipe conveying a pulsatile flow[J].International Journal of Engineering Science,1973,11(9):1013-1024
    85.Pa(i|¨)doussis M P,Sundararajan C.Parametric and combination resonances of a pipe conveying pulsating fluid[J].ASME Journal of Applied Mechanics.1975,42:780-784
    86.Ariaratnam S T,Namachchivaya N S.Dynamic stability of pipes conveying pulsating fluid[J].Journal of Sound and Vibration.1986,107(2):215-230
    87.Namachchivaya N S.Non-linear dynamics of supported pipe conveying pulsating fluid.1.Subharmonic resonance[j].International Journal of Non-Linear Mechanics,1989,24(3):185-196
    88.Namachchivaya N S,Tien W M.Non-linear dynamics of supported pipe conveying pulsating fluid.2.Combination resonance[J].International Journal of Non-Linear Mechanics,1989,24(3):197-208
    89.Namachchivaya N S,Tien W M.Bifurcation behavior of nonlinear pipes conveying pulsating flow[J].Journal of Fluids and Structures,1989,3(6):609-629
    90.Jin J D,Song Z Y.Parametric resonances of supported pipes conveying pulsating fluid[J].Journal of Fluids and Structures,2005,20(6):763-783
    91.McDonald R J,Namachchivaya N S.Pipes conveying pulsating fluid near a 0:1 resonance:Local bifurcations[j].Journal of Fluids and Structures,2005,21(5/7):629-664
    92.McDonald R J,Namachchivaya N S.Pipes conveying pulsating fluid near a 0:1 resonance:Global bifurcations[j].Journal of Fluids and Structures,2005,21(5/7):665-687
    93.Sorokin S V,Terentiev A V.Nonlinear statics and dynamics of a simply supported nonuniform tube conveying an incompressible inviscid fluid[J].Journal of Fluids and Structures,2003,17(3):415-431
    94.Yang X D,Yang T Z,Jin J D.Dynamic stability of a beam-model viscoelastic pipe for conveying pulsative fluid[J].Acta Mechanica Solida Sinica,2007,20(4):350-356
    95.Panda L N,Kar R C.Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances[j].Nonlinear Dynamics,2007,49:9-30
    96.Panda L N,Kar R C,Nonlinear dynamics of a pipe conveying pulsating fluid with combination,principal parametric and internal resonances[J].Journal of Sound and Vibration,2008,309(3/5):375-406
    97.de Langre E,Ouvrard A E.Absolute and convective bending instabilities in fluid-conveying pipes[J].Journal of Fluids and Structures,1999,13(6):663-680
    98.Impollonia N,Elishakoff I.Effect of elastic foundations on divergence and flutter of an articulated pipe conveying fluid[l].Journal of Fluids and Structures,2000,14(4):559-573
    99.Doare O,de Langre E.Local and global instability of fluid-conveying pipes on elastic foundations[J].Journal of Fluids and Structures,2002,16(1):1-14
    100.王忠民,张战午,李会侠.弹性地基上输送振荡流粘弹性管道的动力稳定性[J].机械工程学报,2005,41(10):57-60
    101.Dutta S C,Roy R.A critical review on idealization and modeling for interacion among soil-foundation-structure system[J].Computers & Structures,2002,80(20/21):1579-1594
    102.张战午,王忠民.Kelvin地基上悬臂输流管道的动力特性分析[J].西安理工大学学报,2003,19(1):56-60
    103.杨志安.非线性弹性地基上圆形薄板主参数共振-主共振研究[J].工程力学,2008,25(2):78-82
    104.Chellapilla K R,Simha H S.Critical velocity of fluid-conveying pipes resting on two-parameter foundation[J].Journal of Sound and Vibration,2007,302(1/2):387-397
    105.Pa(i|¨)doussis M P,Issid N T.Experiments on parametric resonance of pipes containing pulsatile flow[J].ASME Journal of Applied Mechanics,1976,43:198-202
    106.Pa(i|¨)doussis M P,Moon F C.Nonlinear and chaotic fluidelastic vibrations of a flexible pipe conveying fluid[j].Journal of Fluids and Structures,1988,2(6):567-591
    107.Semler C,Pa(i|¨)doussis M P.Nonlinear analysis of the parametric resonances of a planar fluid-conveying contilevered Pipe[J].Journal of Fluids and Structures,1996,10(7):787-825
    108.Sugiyama Y,Tanaka Y,Kishi T,et al.Effect of a spring support on the stability of pipes conveying fluid[J].Journal of Sound and Vibration,1985,100(2):257-270
    109.Kuiper G L,Metrikine A V.Experimental investigation of dynamic stability of a cantilever pipe aspirating fluid[J].Journal of Fluids and Structures,2008,24(4):541-558
    110.邹光胜,金基铎,沙云东.简谐激励下输流管动态响应特性的实验研究[J].振动、测试与诊断,2001,21(1):26-29
    111.Budny D D,Wiggert D C,Hatfield F J.The influence of structural damping on internal pressure during a transient flow[I].ASME Journal of Fluids Engineering,1991,113:424-429
    112.Chiba T,Kobayashi H.Response characteristics of piping system supported by visco-elastic and elasto-plastic dampers[J].ASME Journal of Pressure Vessel Technology,1990,112(1):34-38
    113.Otani A,Kobayashi H,Kobayashi N,Tadalshi Y.Performance of a viscous damper using electrorheological fluid[A].Proceedings of the 1994 ASME Pressure Vessel and Piping Conference,Minneapolis,1994,93-97
    114.Shin Y W,Wiedermann A H.A method for suppression of pressure pulses in fluid-filled piping,part Ⅰ:Theoretical analysis[J].ASME Journal of Pressure Vessel Technology,1992,114(1):60-65
    115.Shin Y W,Wiedermann A H.A method for suppression of pressure pulses in fluid-filled piping,part Ⅱ:Experimental verification[J].ASME Journal of Pressure Vessel Technology,1992,114(1):66-73
    116.Fang J,Lyons G J.Structural damping of tensioned pipes with reference to cables[J].Journal of Sound and Vibration,1996,193(4):891-907
    117.Kwong A H M,Edge K A.Structure-borne noise prediction in liquid-conveying pipes systems[A].Proc of Institution of Mechanical Engineers Part Ⅰ-J Syst Control Eng,1996,210(3):189-200
    118.Kwong A H M,Edge K A.A method to reduce noise in hydraulic systems by optimizing pipe clamp locations[A].Proc of Institution of Mechanical Engineers Part Ⅰ-J Syst Control Eng,1998,212(14):267-280
    119.Tijsseling A S,Vardy A E.On the suppression of coupled liquid / pipe vibrations[A].Proc 18th International Symposium on Hydraulic Machinery and Cavitation,Valencia,Spain,1996,945-954
    120.Koo G H,Part Y S.Vibration reduction by using periodic supports in a piping system[J].Journal of Sound and Vibration,1998,210(1):53-68
    121.Doki H,Tani J.Active control of cantilevered pipes conveying fluid[A].Proc of International Conference on Computational Mechanics Vol.Ⅵ,1986,47-52
    122.Doki H,Tani J.Dynamic stability and active control of cantilevered pipes conveying fluid:An attempt of stabilization by tendon control method[J].Transactions of JSME Series C,1988,54:357-362
    123.Doki H,Aso K.Dynamic stability and active control of cantilevered pipes conveying fluid:Effect of mass of the tendon or the thruster on the stabilization[A].Proc of the 1989 ASME Pressure Vessels and Piping Conference,1989,PVP-Vol.154:25-30
    124.Doki H,Aso K,Kanno K.Simplified active control of cantilevered pipes conveying fluid using a PID controller[J].Transactions of JSME Series C,1995,61:1816-1821
    125.Doki H,et al.Stabilization of cantilevered pipes conveying fluid using H~∞ control[J].Transactions of JSME Series C,1996,62:3394-3399
    126.Doki H,Hiramoto K.Active control of cantilevered pipes conveying fluid with constraints on input energy[J].Journal of Fluids and Structures,1998,12(5):615-628
    127.Yau C H,Bajaj A K,Nwokah O D.Active control of chaotic vibration in a constrained flexible pipe conveying fluid[A].Proc of the Winter Annual Meeting of the American Society of Mechanical Engineers,Anaheim,California,1992,93-108
    128.Semercigil S E,Turan(O|¨) F,Lu S.Employing fluid flow in a cantilevered pipe for vibration control[J].Journal of Sound and Vibration,1997,205(1):103-111
    129.Tani J,Sudani Y.Active flutter suppression of a tube conveying fluid[A].Proc of 1st European Conference on Smart Structures and Material,1992,333-336
    130.Tani J,Sudani Y.Active flutter suppression of a Vertical pipe conveying fluid[J].JSME International Journal,Series C,1995,38(1):55-58
    131.Lin Y H,Tsai Y K.Non-linear active vibration control of a cantilevered pipe conveying fluid[J].Journal of Sound and Vibration,1997,202(4):477-490
    132.Borglund D.Active nozzle control and integrated design optimization of bean subject to fluid-dynamic forces[J].Journal of Fluids and Structures,1999,13(2):269-287
    133.Charalambos A,Panagiotis D C.Feedback control of nonlinear differential difference equation systems[J].Chemical Engineering Science,1999,54(23):5677-5709
    134.陈树辉.强非线性振动系统的定量分析方法[M].北京:科学出版社,2007
    135.Lau S L,Cheung Y K.Amplitude incremental variational principle for non-linear vibration of elastic systems[J].ASME Journal of Applied Mechanics,1981,48(4):959-964
    136.Cheung Y K,Chen S H,Lau S L.Application of the incremental harmonic balance method to cubic non-linearity systems[J].Journal of Sound and Vibration,1990,140(2):273-286
    137.Zhang W Y,Huseyin K.Complex formulation of the IHB technique and its comparison with other methods[J].Applied Mathematical Modelling,2002,26(1):53-75
    138.Sze K Y,Chen S H,Huang J L.The incremental harmonic balance method for nonlinear vibration of axially moving beams[J].Journal of Sound and Vibration,2005,281(3):611-626
    139.Yeh Z F,Shih Y S.Critical load,dynamic characteristics and parametric instability of electrorheological material-based adaptive beams[J].Computers & Structures,2005,83(25/26):2162-2174
    140.Wu G Y,Shih Y S.Analysis of dynamic instability for arbitrarily laminated skew plates[J].Journal of Sound and Vibration,2006,292(1/2):315-340
    141.Wu G Y.The analysis of dynamic instability on the large amplitude vibrations of a beam with transverse magnetic fields and thermal loads[J].Journal of Sound and Vibration,2007,302(1/2):167-177
    142.陈树辉,黄建亮,佘锦炎.轴向运动梁横向非线性振动研究[J].动力学与控制学报,2004,2(1):40-45
    143.蔡铭,刘济科,李军.多自由度强非线性颤振分析的增量谐波平衡法[J].应用数学和力学,2006,27(7):833-838
    144.闻邦椿,李以农,韩清凯.非线性振动理论中的解析方法及工程应用[M].沈阳:东北大学出版社,2001
    145.柳洪义.现代机械工程自动控制[M].沈阳:东北大学出版社,2003
    146.Landau I D.A Survey of model reference adaptive technique(theory and application)[J].Automatica,1974,10(4):353-379
    147.谢新民,丁锋.自适应控制系统[M].北京:清华大学出版社,2002
    148.王德进.H_2和H_∞优化控制理论[M].哈尔滨:哈尔滨工业大学出版社,2001
    149.Lin Y H,Chu C L.Comments on active modal control of vortex-induced vibrations of a flexible cylinder[J].Journal of Sound and Vibration,1994,175(1):135-137
    150.Lee C K,Moon F C.Modal sensors / actuators[J].ASME Journal of Applied Mechanics,1990,57(2):434-441
    151.孙东昌等.智能板振动控制的分布压电单元法[J].力学学报,1996,28(6):692-699

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700