IDH1基因在人脑胶质瘤中突变及其功能意义研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:分析IDH1R132基因突变在人脑胶质瘤中的分布特征。方法:90例不同级别的胶质瘤活体标本及其血液标本,苯酚—氯仿抽提法提取DNA,设计相应引物,PCR及直接测序。结果:90例胶质瘤标本中共发现42例IDH1基因突变,IDH1基因突变为R132H。其中在Ⅱ、Ⅲ级胶质瘤中发现突变38例,其突变率高达55%(突变平均年龄为38.6±2.2岁;非突变平均年龄为47.5±2.9岁),两组间年龄比较有显著性差异。而在Ⅰ级胶质瘤中未发现;Ⅳ级胶质瘤中发现突变4例,突变率为21.1%(突变组患者平均年龄41.5±2.3岁,非突变组53.3±3.6岁),两组间年龄比较有显著性差异。而所有患者其相应血液标本中未发现该突变。结论:在国内率先报道了IDH1R132基因在中国人群胶质瘤中的突变频率。并且发现突变组平均年龄较非突变组小。
     目的:构建稳定表达IDH1 wild-pCDNA3.1及IDH1 R132H-pCDNA3.1的Hela及U251细胞株。方法:将IDHlwild和R132H型分别转染Hela和U251细胞,然后运用RT-PCR、Western-Blotting进行验证。结果:获得了稳定转染IDH1 wild-pCDNA3.1及IDH1 R132H-pCDNA3.1的Hela及U251细胞株。结论:获得了稳定转染IDH1 wild-pCDNA3.1及IDH1 R132H-pCDNA3.1的Hela及U251细胞株。
     目的:在稳定转染IDH1 wild及R132H的Hela及U251细胞株中,观察IDH1R132H对细胞功能的影响。方法:(1)通过MTT法检测比较转染细胞活性并绘制生长曲线,并用流式细胞仪检测转染后细胞周期的变化及细胞凋亡的情况;(2)同时对IDH1酶活力进行检测;(3)免疫组化检测同级别胶质瘤中突变标本和非突变标本中HIF-1α及VEGF的表达情况。结果:(1)转染野生型基因的Hela或U251细胞生长增殖速度与空转组、未转染、突变转染组相比均显著降低,突变型与空转组及未转染组相比均无统计学差异。流式细胞仪检测细胞周期发现:空转、野生和突变转染组Hela细胞处于G1期比例分别为:57.75±4.15%、61.10±3.22%、47.41±2.17%,S期的细胞比例分别为:30.54±2.11%、29.81±2.92%、38.84±1.92%,G2期的细胞比例分别:11.70±3.17%、7.21±2.41%、13.74±3.01%。突变转染组细胞出现G2+S期细胞比例高于空转和野生转染组,野生转染组和空转组比较无统计学差异。U251细胞空转、野生和突变转染细胞G2+S比例分别为34.12±3.56%、36.45±4.73%、43.68±3.16%,突变转染组细胞均出现G2+S期细胞比例高于空转和野生转染组,而野生转染组和空转组比较无统计学差异。(2)转染后,酶的活力测定结果表明:与野生转染组相比,Hela突变转染组酶的活力下降了64.09%,空转组下降了72.44%。U251突变转染组酶的活力较野生转染组下降了39.79%,空转组下降了48.9%。野生转染组与突变转染及空转组相比酶活力增加(P<0.05),空转组及突变转染组比较无统计学差异。(3)HIF-1α、VEGF阳性反应物分别定位于细胞核、胞浆,染色为棕黄色,两者在突变胶质瘤中阳性表达率显著高于野生组(P<0.05)。结论:在两种转染的细胞株中均发现IDH1R132H组生长增殖活跃、而转染野生型后IDH酶活力明显增强。IDH1基因可能是抑癌基因。同时研究发现在同级别胶质瘤突变组中HIF-1α及VEGF表达高于非突变组。
     目的:在转染的U251细胞株中,检测IDH1 R132H突变对化疗药物敏感性。方法:观察不同浓度顺铂对于U251细胞株在不同时间点的细胞抑制率。从而选择合适的药物干预浓度及时间点。在转染之野生和突变U251细胞株分别加入顺铂,流式细胞仪检测细胞凋亡及Western-Blotting观察Caspase-3蛋白的表达情况。
     结果:突变转染组较野生转染及空转组细胞凋亡明显增加(P<0.05);野生转染组与空转组无明显差异。突变组其表达Caspase-3蛋白(P<0.05)高于野生转染组及空转组。野生转染与空转组无明显差异。结论:IDH1基因突变后增强了U251细胞对于化疗药物敏感性。
Objective To investigate isocitrate dehydrogenase 1R132(IDH1R132) mutation in human gliomas. Methods 90 tumor samples and matched norma blood lymphocytes samples were collected for DNA extraction. Exon 4 of IDH1 gene was amplified with the use of a polymerase-chain-reaction(PCR) assay and sequenced in DNA from the tumor and lymphocytes from each patient. Results IDH1R132 mutation was more than 55% in WHO gradeⅡandⅢgliomas(patients with mutation had a median age of 38.6±2.2 years,while wild-type 47.5±2.9 years), none in WHO grade,21.1% in in WHO gradeⅣ(patients with mutation had a median age of 41.5±2.3 years, wild-type 53.3±3.6 years). None mutation of IDH1R132 was found in lymphocytes. Conclusion Mutations of the IDH1R132were frequently found in several types of grade II and III gliomas with a younger age compared with wild type.
     Objective To establish Hela and U251 cell line stably expressing IDH1 wild-pCDNA3.1 and IDH1 R132H-pCDNA3.1. Methods After Hela and U251 cell line stably expressing IDH1 wild-pCDNA3.1 and IDH1 R132H-pCDNA3.1 were established, RT-PCR、Western-Blotting were used for confirmation. Results We established Hela and U251 cell line stably expressing IDH1 wild-pCDNA3.1 and IDH1 R132H-pCDNA3.1. Conclusion Hela and U251 cell line stably expressing DH1 wild-pCDNA3.1 and IDH1 R132H-pCDNA3.1 were obtained.
     Objective To investigate the functional change of IDH1R132H mutation gene. Methods (1)The proliferation ability of transfected cells was examined by MTT assay, and then draw cell growth curve. The change of cell cycle and cell apoptosis were analyzed by flow cytometry; (2)The enzymatic activity of wild and IDH1R132H transfected types was assessed; (3)We compared HIF-la and VEGF expression in mutation and wild tumor samples using immunohistochemistry. Results (1)MTT assay was used to measure the proliferative index. Compared with the empty vector, untransfection cells and IDH132H transfected groups, the expression of wild transfected group could effectively inhibit the proliferation in Hela and U251.While no statistics difference between mutant IDH1R132H and empty vector, untransfected groups.The cell cycle was analyzed by flow cytometry.The percentage in G1 phase of Hela-Vector, Hela-Vector-WT and Hela-Vector-IDHR132H were 57.75±4.15%、61.10±3.22%、47.41±2.17% respectively, and S phase were 30.54±2.11%、29.81±2.92%、38.84±1.92%. Compared with wild type and empty vector, G2+S phase in IDH132H increased. While in U251-Vector, U251-Vector-WT-IDH1, and U251-Vector-IDHR132H, the percentage of G2+S were 34.12±3.56%、36.45±4.7%,43.68±3.16%, respectively. The results showed that the percentage of cells(Hela& U251)-Vector-IDH1R132H in G2+S phase all increased, compared with their matched wild type and empty vector. While compared wild type and empty vector, there was no statistics difference. (2)Compared with wild transfected group type,the enzymatic activity of IDH1R132H transfected group decreased 64.09%(Hela,P<0.05),39.79%(U251, P<0.05) respectively, empty-vector decreased 2.44%(Hela, P<0.05),48.9% (U251 P<0.05),while there was no significance between Vector-IDHR132H and empty-vector. (3)The HIF-1α、VEGF positive staining were brown-yellow.They were located in the cell nucleus and cytoplasm respectively. The both positive expression rates in IDHR132H cases increased significantly compared with wild cases(P<0.01). Conclusion After transfection, IDHR132H-vector group had a more proliferative capability,while a higher enzymatic activity in wild-vector group. Two positive(HIF-1α&VEGF) expression rates in mutations cases increased significantly compared with wild cases.
     Objective To identify Chemosensitivity of IDH1R132H mutation to Chemotherapy agents in U251 cell line. Methods Different concentration DDP was added into U251 cells, and its inhibitive rate was obtained at different time. DDP were added into three kinds of U251 cells. Cell apoptosis was obtained by FCM, and its Caspase-3 protein was expressed by Western-Blotting. Results Compared with empty vector and wild transfected group, IDH1R132H had a obvious apoptosis. The same as cleaved Caspase-3 protein. Conclusion Chemosensitivity was enhanced after IDH1R132H mutation.
引文
[1]Brandes AA, Tosoni A, Franceschi E, et al. Glioblastoma in adults. Crit Rev Oncol Hematol.2008,67(2):139-52.
    [2]Furnari FB, Fenton T, Bachoo RM, et al. Malignant.astrocytic glioma:genetics, biology, and paths to treatment. Genes Dev,2007,21(21):2683-710.
    [3]Yamanaka R.Molecular-targeted therapy for malignant glioma. Brain Nerve. 2009,61(2):177-88.
    [4]Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science.2008,321(5897):1807-12.
    [5]Narahara K, Kimura S, Kikkawa K et al. Probable assignment of soluble isocitrate dehydrogenase (IDH1) to 2q33.3. Hum Genet 1985,71:37-40.
    [6]Devlin TM. Textbook of Biochemistry with Clinical Correlations. Hoboken, N. J. Wiley-Liss,2006.
    [7]Geisbrecht BV, Gould SJ. The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. J Biol Chem 1999; 274: 30527-33.
    [8]Yan H, Parsons DW, Jin G et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009,360:765-73.
    [9]Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 2008, 116:597-602.
    [10]Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 Mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 2009,174:1149-53.
    [11]Bleeker FE, Lamba S, Leenstra S et al. IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat 2009,30:7-11.
    [12]Reitman ZJ, Olby NJ, Mariani CL, et al. IDH1 and IDH2 hotspot mutations are not found in canine glioma. Int J Cancer.2009.
    [13]彭秋平,梁后杰.糖酵解代谢在恶性肿瘤细胞中的特异性表型及其意义.临床肿瘤学杂志,2009,5:470-473.
    [14]徐翔.人源细胞浆内异柠檬酸脱氢酶的结构与功能的研究[D].中国优秀博硕士学位论文全文数据库(博士),2006,(10).
    [15]Sun L, Sun TT, Lavker RM. Identification of a cytosolic NADP+-dependent isocitrate dehydrogenase that is preferentially expressed in bovine corneal epithelium. A corneal epithelial crystallin. J Biol Chem.1999,274(24):17334-41.
    [16]Lee SM, Koh HJ, Huh TL, et al. Radiation sensitivity of an Escherichia coli mutant lacking NADP+-dependent isocitrate dehydrogenase. Biochem Biophys Res
    Commun.1999,254(3):647-50.
    [17]King A, Selak MA, Gottlieb E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer.Oncogene.2006,25(34):4675-82.
    [18]Zhao S, Lin Y, Xu W, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-lalpha. Science.2009 324(5924):261-5.
    [19]Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome, N. Engl. J. Med.2009,361(11):1058-1066.
    [20]Kang MR, Kim MS, Oh JE, et al, Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers, Int. J. Cancer.2009,125 (2):353-355.
    [21]Murugan AK, Bojdani E, Xing M. Identification and functional characterization of isocitrate dehydrogenase 1 (IDH1) mutations in thyroid cancer. Biochem Biophys Res Commun.2010,393(3):555-9.
    [22]Asher A, Burger PC, Croteau D, et al.A Primer of brain tumors:a patient's reference. USA,ABTA,2004:8-10.
    [23]陶铭.基因治疗及其研究[J].生物学通报,2008,43(4):16-18.
    [24]Sonoda Y, Kumabe T, Nakamura T, et al. Analysis of IDHl and IDH2 mutations in Japanese glioma patients. Cancer Sci.2009,100(10):1996-8.
    [25]Kang MR, Kim MS, Oh JE, et al.Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer.2009,125(2):353-5.
    [26]Sonoda Y, Kumabe T, Nakamura T,et al. Analysis of IDH1 and IDH2 mutations in Japanese glioma patients. Cancer Sci.2009,100(10):1996-8.
    [27]Geisbrecht BV, Gould SJ. The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. J Biol Chem.1999, 274(43):30527-33.
    [28]Furnari FB, Fenton T, Bachoo RM. Malignant astrocytic glioma:genetics, biology, and paths to treatment. Genes Dev.2007,21(21):2683-710.
    [29]Korshunov A, Meyer J, Capper D, et al. Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol.2009,401-5.
    [30]Ducray F, El Hallani S, Idbaih A. Diagnostic and prognostic markers in gliomas. Curr Opin Oncol.2009,21(6):537-42.
    [31]Hartmann C, Meyer J, Balss J, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age:a study of 1,010 diffuse gliomas. Acta Neuropathol.2009,118(4):469-74.
    [32]Paulus W. GFAP, Ki67 and IDH1:perhaps the golden triad of glioma immunohistochemistry. Acta Neuropathol.2009,118(5):603-4.
    [33]Capper D, WeiBert S, Balss J, et al. Characterization of R132H Mutation-specific IDH1 Antibody Binding in Brain Tumors. Brain Pathol.2009 Oct 27.
    [34]Dalziel K. Isocitrate dehydrogenase and related oxidative decarboxylases. FEBS Lett.1980,117 Suppl:K45-55.
    [35]Flint AP, Denton RM. The role of nicotinamide-adenine dinucleotide phosphate-dependent malate dehydrogenase and isocitrate dehydrogenase in the supply of reduced nicotinamide-adenine dinucleotide phosphate for steroidogenesis in the superovulated rat ovary. Biochem J.1970,117(1):73-83.
    [36]Kim J, Kim KY, Jang HS, et al. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney. Am J Physiol Renal Physiol.2009,296(3):F622-33.
    [37]Lee SM, Koh HJ, Park DC, et al. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med. 2002,32(11):1185-96.
    [38]Xu X, Zhao J, Xu Z, Peng B,et al. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J Biol Chem.2004,279(32):33946-57.
    [39]Ward PS, Patel J, Wise DR, et al.The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell.2010,17(3):225-34.
    [40]Duran M, Kamerling P, Bakker HD, et al. L-2-hydroxyglutaric aciduria:an inborn error of metabolism? J Inherit Metab Dis.1980,3:109-12.
    [41]Van Schaftingen E, Rzem R, Veiga-da-Cunha M. L-2-hydroxyglutaric aciduria, a disorder of metabolite repair. J Inherit Metab Dis 2009,32:135-42.
    [42]Semenza GL,Wang GL. A nuclear factor induced by hypoxiavia de novo protein synthesis binds to the human erythropoietingene enhancer at a site required for transcriptional activation.Mol Cell Biol 1992; 12:5447-5454.
    [43]Wang GL,Jiang B-H,Rue EA,et al. Hypoxiainduciblefactor 1 is a basic-helix-loop-helix-PAS heterodimerregulated by cellular 02 tension. Proc Natl Acad Sci USA.1995,92:5510-5514.
    [44]Ema M,Taya S,Yokotani N,et al.A novel bHLH-PAS factorwith close sequence similarity to hypoxia-inducible factor 1aregulates the VEGF expression and is potentially involved inlung and vascular development. Proc Natl Acad Sci USA.1997;94:4273-4278.
    [45]WARBURG O.On the origin of cancer cells.Science.1956,123(3191):309-14.
    [46]Seyfried TN, Shelton LM. Cancer as a metabolic disease.Nutr Metab.2010,7:7.
    [47]Seyfried TN, Mukherjee P. Targeting energy metabolism in brain cancer:review and hypothesis.Nutr Metab.2005,2:30.
    [48]Kobayashi T, Masumoto J, Tada T, et al.Prognostic significance of the immunohistochemical staining of cleaved caspase-3, an activated form of caspase-3, in gliomas.Clin Cancer Res.2007,13(13):3868-74.
    [49]Gown AM, Willingham MC. Improved detection of apoptotic cells in archival paraffin sections:immunohistochemistry using antibodies to cleaved caspase 3. Histochem Cytochem.2002,50:449-54.
    [50]Nunez G, BenedictMA, HuY, et al. Caspases:the proteases of the apoptotic pathway. Oncogene 1998;17:3237-45.
    [51]Dang L, White DW, Gross S et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature.2009,462:739-747.
    [52]Koehler A, Van Noorden. Reduced nicotinamide adenine dinucleotide phosphate and the higher incidence of pollution-induced liver cancer in female flounder. Environ Toxicol Chem.2003,22:2703-2710.
    [53]Veech RL, Eggleston LV, Krebs HA. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem J,1969,115(4):609-619.
    [54]Minard KI, Jennings GT, Loftus TM. Sources of NADPH and expression of mammalian NADP+-specific isocitrate dehydrogenases in Saccharomyces cerevisiae. J Biol Chem.1998,273(47):31486-93.
    [55]Ozben T. Oxidative stress and apoptosis:impact on cancer therapy. J Pharm Sci. 2007,96(9):2181-96.
    [56]Biaglow JE, Miller RA. The thioredoxin reductase/thioredoxin system:novel redox targets for cancer therapy.Cancer Biol Ther.2005,4(1):6-13.
    [57]Tonissen KF, Di Trapani G. Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy. Mol Nutr Food Res.2009,53(1):87-103.
    [58]Gandin V, Fernandes AP, Rigobello MP, et al. Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase. Biochem Pharmacol. 2010,79(2):90-101.
    [1]Ohgaki H, Dessen P, Jourde B et al. Genetic pathways to glioblastoma:a population-based study. Cancer Res 2004; 64:6892-9.
    [2]Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 2005; 64:479-89.
    [3]Okamoto Y, Di Patre PL, Burkhard C et al. Population-based study on incidence, survival rates, and genetic alterations of low-grade astrocytomas and oligodendrogliomas. Acta Neuropathol 2004; 108:49-56.
    [4]Lee MJ, Stephenson DA. Recent developments in neurofibromatosis type 1. Curr Opin Neurol 2007; 20:135-41.
    [5]Watanabe K, Tachibana O, Sato K, Yonekawa Y, Kleihues P, Ohgaki H. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 1996; 6:217-24.
    [6]Tohma Y, Gratas C, Biernat W et al. PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas. J Neuropathol Exp Neurol 1998; 57:684-9.
    [7]Biernat W, Huang H, Yokoo H, Kleihues P, Ohgaki H. Predominant expression of mutant EGFR (EGFRvⅢ) is rare in primary glioblastomas. Brain Pathol 2004; 14: 131-6.
    [8]Knobbe CB, Merlo A, Reifenberger G. Pten signaling in gliomas. Neuro Oncol 2002; 4:196-211.
    [9]Kita D, Yonekawa Y, Weller M, Ohgaki H. PI3KCA alterations in primary (de novo) and secondary glioblastomas. Acta Neuropathol 2007; 113:295-302.
    [10]Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455:1061-8.
    [11]Hermanson M, Funa K, Hartman M et al. Platelet-derived growth factor and its receptors in human glioma tissue:expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 1992; 52:3213-9.
    [12]Reifenberger J, Reifenberger G, Ichimura K, Schmidt EE, Wechsler W, Collins VP. Epidermal growth factor receptor expression in oligodendroglial tumors. Am J Pathol 1996; 149:29-35.
    [13]Di Rocco F, Carroll RS, Zhang J, Black PM. Platelet-derived growth factor and its receptor expression in human oligodendrogliomas. Neurosurgery 1998; 42:341-6.
    [14]Sherr CJ, Roberts JM. CDK inhibitors:positive and negative regulators of G1-phase progression. Genes Dev 1999; 13:1501-12.
    [15]Stott FJ, Bates S, James MC et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998; 17:5001-14.
    [16]Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69:1237-45.
    [17]Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992; 358:80-3.
    [18]Pomerantz J, Schreiber-Agus N, Liegeois NJ et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 1998; 92:713-23.
    [19]Toledo F, Wahl GM. MDM2 and MDM4:p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol 2007; 39:1476-82.
    [20]Nakamura M, Watanabe T, Klangby U et al. P14Arf deletion and methylation in genetic pathways to glioblastomas. Brain Pathol 2001; 11:159-68.
    [21]Biernat W, Kleihues P, Yonekawa Y, Ohgaki H. Amplification and overexpression of MDM2 in primary (de novo) glioblastomas. J Neuropathol Exp Neurol 1997; 56: 180-5.
    [22]Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res 1993; 53:2736-9.
    [23]Zawlik I, Kita D, Vaccarella S, Mittelbronn M, Franceschi S, Ohgaki H. Common polymorphisms in the MDM2 and TP53 genes and the relationship between TP53 mutations and patient outcomes in glioblastomas. Brain Pathol 2009; 19: 188-94.
    [24]Watanabe T, Yokoo H, Yokoo M, Yonekawa Y, Kleihues P, Ohgaki H. Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendrogliomas. J Neuropathol Exp Neurol 2001; 60:1181-9.
    [25]Biernat W, Tohma Y, Yonekawa Y, Kleihues P, Ohgaki H. Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol 1997; 94:303-9.
    [26]Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455:1061-8.
    [27]Narahara K, Kimura S, Kikkawa K et al. Probable assignment of soluble isocitrate dehydrogenase (IDH1) to 2q33.3. Hum Genet 1985; 71:37-40.
    [28]Devlin TM. Textbook of Biochemistry with Clinical Correlations. Hoboken, N.J.: Wiley-Liss,2006.
    [29]Geisbrecht BV, Gould SJ. The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. J Biol Chem 1999; 274: 30527-33.
    [30]Yan H, Parsons DW, Jin G et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360:765-73.
    [31]Zhao S, Lin Y, Xu W et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-lalpha. Science 2009; 324:261-5.
    [32]Parsons DW, Jones S, Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321:1807-12.
    [33]Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 2008; 116:597-602.
    [34]Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 Mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 2009;174:1149-53.
    [35]Bleeker FE, Lamba S, Leenstra S et al. IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat 2009; 30:7-11.
    [36]Rasheed BK, McLendon RE, Friedman HS et al. Chromosome 10 deletion mapping in human gliomas:a common deletion region in 10q25. Oncogene 1995; 10: 2243-6.
    [37]Karlbom AE, James CD, Boethius J et al. Loss of heterozygosity in malignant gliomas involves at least three distinct regions on chromosome 10. Hum Genet 1993; 92:169-74.
    [38]Ichimura K, Schmidt EE, Miyakawa A, Goike HM, Collins VP. Distinct patterns of deletion on 10p and 10q suggest involvement of multiple tumor suppressor genes in the development of astrocytic gliomas of different malignancy grades. Genes Chromosomes Cancer 1998; 22:9-15.
    [39]Fujisawa H, Reis RM, Nakamura M et al. Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas. Lab Invest 2000; 80:65-72.
    [40]Fults D, Pedone CA, Thompson GE et al. Microsatellite deletion mapping on chromosome 10q and mutation analysis of MMAC1, FAS, and MXI1 in human glioblastoma multiforme. Int J Oncol 1998; 12:905-10.
    [41]Balesaria S, Brock C, Bower M et al. Loss of chromosome 10 is an independent prognostic factor in high-grade gliomas. Br J Cancer 1999; 81:1371-7.
    [42]Miyakawa A, Ichimura K, Schmidt EE, Varmeh-Ziaie S, Collins VP. Multiple deleted regions on the long arm of chromosome 6 in astrocytic tumours. Br J Cancer 2000; 82:543-9.
    [43]Veeriah S, Brennan C, Meng S et al. The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl Acad Sci U S A 2009; 106:9435-40.
    [44]Solomon DA, Kim JS, Cronin JC et al. Mutational inactivation of PTPRD in glioblastoma multiforme and malignant melanoma. Cancer Res 2008; 68:10300-6.
    [45]Nakamura M, Ishida E, Shimada K et al. Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. Lab Invest 2005; 85: 165-75.
    [46]Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, eds. WHO Classification of Tumours of the Central Nervous System. Lyon:IARC,2007.
    [47]Cairncross JG, Ueki K, Zlatescu MC et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998; 90:1473-9.
    [48]Bauman GS, Ino Y, Ueki K et al. Allelic loss of chromosome 1p and radiotherapy plus chemotherapy in patients with oligodendrogliomas. Int J Radiat Oncol Biol Phys 2000; 48:825-30.
    [49]Felsberg J, Erkwoh A, Sabel MC et al. Oligodendroglial tumors:refinement of candidate regions on chromosome arm 1p and correlation of 1p/19q status with survival. Brain Pathol 2004; 14:121-30.
    [50]Jenkins RB, Blair H, Ballman KV et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 2006; 66:9852-61.
    [51]Smith JS, Tachibana I, Lee HK et al. Mapping of the chromosome 19 q-arm glioma tumor suppressor gene using fluorescence in situ hybridization and novel microsatellite markers. Genes Chromosomes Cancer 2000; 29:16-25.
    [52]Smith JS, Perry A, Borell TJ et al. Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol 2000; 18:636-45.
    [53]Cairncross G, Berkey B, Shaw E et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma:Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol 2006; 24:2707-14.
    [54]Ino Y, Zlatescu MC, Sasaki H et al. Long survival and therapeutic responses in patients with histologically disparate high-grade gliomas demonstrating chromosome 1p loss. J Neurosurg 2000; 92:983-90.
    [55]Nakamura M, Yang F, Fujisawa H, Yonekawa Y, Kleihues P, Ohgaki H. Loss of heterozygosity on chromosome 19 in secondary glioblastomas. J Neuropathol Exp Neurol 2000; 59:539-43.
    [56]Homma T, Fukushima T, Vaccarella S et al. Correlation among pathology, genotype, and patient outcomes in glioblastoma. J Neuropathol Exp Neurol 2006; 65: 846-54.
    [57]Tohma Y, Gratas C, Van Meir EG et al. Necrogenesis and Fas/APO-1(CD95) expression in primary (de novo) and secondary glioblastomas. J Neuropathol Exp Neurol 1998; 57:239-45.
    [58]Karcher S, Steiner HH, Ahmadi R et al. Different angiogenic phenotypes in primary and secondary glioblastomas. Int J Cancer 2006; 118:2182-9.
    [59]Godard S, Getz G, Delorenzi M et al. Classification of human astrocytic gliomas on the basis of gene expression:a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res 2003; 63:6613-25.
    [60]Tso CL, Freije WA, Day A et al. Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res 2006; 66:159-67.
    [61]Reddy SP, Britto R, Vinnakota K et al. Novel glioblastoma markers with diagnostic and prognostic value identified through transcriptome analysis. Clin Cancer Res 2008; 14:2978-87.
    [62]Somasundaram K, Reddy SP, Vinnakota K et al. Upregulation of ASCL1 and inhibition of Notch signaling pathway characterize progressive astrocytoma. Oncogene 2005;24:7073-83.
    [63]Furuta M, Weil RJ, Vortmeyer AO et al. Protein patterns and proteins that identify subtypes of glioblastoma multiforme. Oncogene 2004; 23:6806-14.
    [64]Huang H, Colella S, Kurrer M, Yonekawa Y, Kleihues P, Ohgaki H. Gene expression profiling of low-grade diffuse astrocytomas by cDNA arrays. Cancer Res 2000; 60:6868-74
    [65]Hunter C, Smith R, Cahill DP et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res 2006; 66:3987-91.
    [66]Stupp R, Hegi ME, Gilbert MR, Chakravarti A. Chemoradiotherapy in malignant glioma:standard of care and future directions. J Clin Oncol 2007; 25:4127-36.
    [67]Pegg AE. Repair of O6-alkylguanine by alkyltransferases. Mutat Res 2000; 462: 83-100.
    [68]Hegi ME, Diserens AC, Gorlia T et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352:997-1003.
    [69]Esteller M, Garcia-Foncillas J, Andion E et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 2000; 343:1350-4.
    [70]Zawlik I, Vaccarella S, Kita D, Mittelbronn M, Franceschi S, Ohgaki H. Promoter methylation and polymorphisms of the MGMT gene in glioblastomas:a population-based study. Neuroepidemiology 2009; 32:21-9.
    [71]Paz MF, Yaya-Tur R, Rojas-Marcos I et al. CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res 2004; 10:4933-8.
    [72]Criniere E, Kaloshi G, Laigle-Donadey F et al. MGMT prognostic impact on glioblastoma is dependent on therapeutic modalities. J Neurooncol 2007; 83:173-9.
    [73]Cahill DP, Levine KK, Betensky RA et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res 2007; 13:2038-45.
    [74]Beier D, Hau P, Proescholdt M et al. CD133(+) and CD133()) glioblastomaderived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 2007; 67:4010-5.
    [75]Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444:756-60.
    [76]Liu G, Yuan X, Zeng Z et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006; 5:67.
    [77]Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63:5821-8.
    [78]Joo KM, Kim SY, Jin X et al. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest 2008; 88: 808-15.
    [79]Griguer CE, Oliva CR, Gobin E et al. CD 133 is a marker of bioenergetic stress in human glioma. PLoS ONE 2008; 3:e3655.
    [1]徐翔.人源细胞浆内异柠檬酸脱氢酶的结构与功能的研究[D].中国优秀博硕士学位论文全文数据库(博士),2006,(10).
    [2]Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360:765-73.
    [3]King A, Selak MA, Gottlieb E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer.Oncogene.2006 Aug 7;25(34):4675-82.
    [4]Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science.2008,321(5897):1807-12.
    [5]Bleeker FE, Lamba S, Leenstra S, et al. IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat.2009 Jan;30(1):7-11.
    [6]Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 2009;174:1149-53.
    [7]Balss J, Meyer J, Mueller W, et al. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol.2008 Dec;116(6):597-602.
    [8]Watanabe T, Nobusawa S, Kleihues P, et al. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol.2009 Apr;174(4):1149-53.
    [9]Kang MR, Kim MS, Oh JE, et al. Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer.2009 Jul 15;125(2):353-5.
    [10]Hartmann C, Meyer J, Balss J, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age:a study of 1,010 diffuse gliomas. Acta Neuropathol.2009 Oct;118(4):469-74.
    [11]Sonoda Y, Kumabe T, Nakamura T, et al.Analysis of IDH1 and IDH2 mutations in Japanese glioma patients. Cancer Sci.2009 Oct;100(10):1996-8.
    [12]Ichimura K, Pearson DM, Kocialkowski S, et al. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol. 2009 Aug;11(4):341-7.
    [13]Zhao S, Lin Y, Xu W, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science.2009 Apr 10;324(5924):261-5.
    [14]Jennings GT, Minard KI, McAlister-Henn L. Expression and mutagenesis of mammalian cytosolic NADP+-specific isocitrate dehydrogenase. Biochemistry.1997 Nov 4;36(44):13743-7.
    [15]Werner P. GFAP, Ki67 and IDH1:perhaps the golden triad of glioma imunohistochemistry. Acta Neuropathol 2009,118:603-604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700