胶质瘤不同病理级别差异miRNA/mRNA动态表达谱构建及其对接研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]
     胶质瘤是颅内最常见的恶性肿瘤,以星形细胞胶质瘤最为多见,其次为胶质母细胞瘤。研究表明,胶质瘤的发生发展常涉及p53、p16、RB、PTEN、LRRC4等抑癌基因的失活以及c-Myc、HRAS、EGFR、MDM2等基因的过表达,而这些基因在不同病理级别的胶质瘤中具有特定的表达变化模式,如p53突变与过表达、MDM2过表达常发生于各级别胶质瘤,其表达水平与病理分级之间无明显关联,然而亦有文献报道,p53突变与过表达在高级别胶质瘤中表现更为明显;p16、LRRC4氐表达亦常发生于各级别胶质瘤,且在高级别胶质瘤中改变更为明显;PTEN突变,RB失活,c-Myc、HRAS、EGFR过表达则发生于高级别胶质瘤。基因表达受DNA水平、转录水平、转录后水平及蛋白水平等多层面的调控,其中miRNA在转录后水平对基因表达的精细调控近年来倍受关注。研究表明,miRNA在细胞增殖、分化、凋亡以及机体发育、代谢等基本生命活动过程中发挥重要作用,miRNA表达异常与包括胶质瘤在内的多种肿瘤的发生密切相关。研究发现,miR-21、miR-221、miR-10b等在胶质母细胞瘤中表达上调,而原本在正常脑组织中含量丰富的rniR-128、miR-181等则表达下调。进一步研究表明,这些表达异常的miRNA在胶质瘤发生发展过程中可能发挥类似癌基因或抑癌基因的作用。然而,对于miRNA在胶质瘤不同病理级别中的动态表达模式鲜有报道。
     基于以上认识,本研究同时采用miRNA芯片和全基因组表达谱芯片探讨miRNA与基因在胶质瘤不同病理级别中的表达变化规律,构建胶质瘤不同病理级别差异miRNA/mRNA动态表达谱,并对筛选的差异miRNA/mRNA进行了对接研究。
     [胶质瘤不同病理级别差异miRNA动态表达谱构建]
     采用miRNA芯片分析了3例正常脑组织及13例星形细胞胶质瘤组织(Ⅰ级3例、Ⅱ级5例、Ⅲ级5例)中637种miRNA的表达情况,结合非参数检验、方差分析以及t检验获得不同病理级别胶质瘤的差异miRNA。我们对这些差异miRNA在各级别胶质瘤中的表达变化规律进行了总结分析,结果显示,差异miRNA在不同病理级别胶质瘤中的表达模式大致分为8类。其中miR-26a在各级别胶质瘤中均表达上调,尤其以在胶质瘤Ⅲ级中表达上调最为明显,而miR-21、miR-23a则主要在胶质瘤Ⅲ级中表达上调,这些提示miR-26a可能与胶质瘤的发生及恶性进展相关,而miR-21、miR-23a则主要与胶质瘤的恶性进展相关;此外,miR-107、miR-124、miR-128a/128b、miR-138、miR-149、miR-181a、miR-181b、miR-302b在各级别胶质瘤中均表达显著下调,提示这些差异miRNA与胶质瘤的发生密切相关。由此可见,miRNA在不同病理级别胶质瘤中的表达并不是单一的上调或下调,它们存在各自特定的表达变化模式,以此构成胶质瘤不同病理级别特定的差异miRNA表达谱。
     [部分差异miRNA在不同病理级别胶质瘤中动态表达模式的验证]
     应用Real-time PCR对miR-107、miR-124、miR-138、miR-149、miR-302b. miR-23a在6例正常脑组织及50例胶质瘤组织(Ⅰ级6例、Ⅱ级20例、Ⅲ级9例、Ⅳ级15例)中进行了验证,证实miR-107、miR-124、miR-138. miR-149在各级别胶质瘤中表达均显著下调,且其表达水平与病理分级负相关,该验证结果与芯片结果相符。miR-23a则在胶质瘤Ⅱ、Ⅲ级中表达逐渐上调,以在胶质瘤Ⅲ级中表达水平最高,与芯片结果相符,但在胶质瘤Ⅳ级中几乎检测不到表达。随后我们应用miR-23a寡核苷酸探针在同一批组织样本中进行了原位杂交验证,结果显示,miR-23a在正常脑组织中主要表达于神经元的胞核,而在胶质瘤Ⅱ、Ⅲ级中主要表达于胶质细胞的胞浆,在胶质瘤Ⅳ级中仍未检测到阳性表达。我们推测,miR-23a在神经元胞核中的表达一方面可能是由于原位杂交探针不能区分miRNA前体与成熟体,另一方面不排除miR-23a在胶质瘤发生发展过程中发生表达移位,其具体机制有待于进一步研究。
     [miR-124、miR-149在胶质瘤发生发展中可能发挥抑癌功能]
     将Lip2000、NC、miR-107、miR-124、miR-138、miR-149 mimics分别转染胶质瘤细胞,通过MTT、细胞划痕实验观察恢复这些miRNA的表达对胶质瘤细胞生物学行为的影响。MTT实验表明转染miR-107、miR-124、miR-138、miR-149 mimics后,胶质瘤细胞SF126、U251的生长受到不同程度的抑制,尤其以miR-124. miR-149的抑制作用最为明显,转染第四天时,与阴性对照组相比,转染miR-124mimics的细胞其增长率降低40%,转染miR-149 mimics的细胞其增长率降低33%;细胞划痕实验表明,miR-124、miR-149能明显抑制SF126、U251细胞的迁移能力,划痕后48hr,其它各组的伤口均已愈合,而转染miR-124、miR-149 mimics的细胞其伤口仍清晰可见。以上提示miR-124、miR-149在胶质瘤发生发展过程中可能发挥抑癌功能。
     [胶质瘤不同病理级别差异mRNA动态表达谱构建]
     采用全基因组表达谱芯片检测用于miRNA芯片分析的3例正常脑组织及13例胶质瘤组织中30968个基因的表达情况,并运用与miRNA芯片数据分析同样的方法进行差异基因筛选。将筛选的各级别胶质瘤中差异表达基因进行整合,探讨其在不同病理级别胶质瘤中的表达变化规律,结果显示,差异基因在不同病理级别胶质瘤中的表达模式大致分为14类。BMP1、CDK4、DDX5、DEK、HARS、HNRNPA2B1、IKBKB、LAMA4. p53、PCNA、PLAGL2、TLR3、VCAM1等在各级别胶质瘤中均表达上调,其中HARS、HNRNPA2B1、p53、PLAGL2的表达水平与胶质瘤的病理分级无明显关联,BMP1、DDX5、DEK、IKBKB、LAMA4、PCNA、TLR3的表达水平则与病理分级正相关;ANXA1、JAK2、JUN、MMP14、RAP1B、STAT1、VCL、VIM等主要在胶质瘤Ⅱ、Ⅲ级中表达上调;此外,ANK1、APC等在胶质瘤Ⅰ、Ⅱ、Ⅲ级中逐渐表达下调。
     [胶质瘤不同病理级别差异mRNA的生物信息学分析]
     应用基因功能分析软件DAVID,分别对各级别胶质瘤中表达上调和表达下调的差异基因进行Gene Ontology_BP分析,结果显示:胶质瘤Ⅰ、Ⅱ级中表达上调的基因主要参与转录调控、RNA剪接、核酸代谢、生物大分子组装、细胞应激反应等一系列生物学过程,此外胶质瘤Ⅰ级中表达上调的基因还参与了细胞增殖,胶质瘤Ⅲ级中表达上调的基因则主要参与细胞凋亡、生物大分子组装、细胞粘附、RNA剪接、细胞周期、信号转导等一系列生物学过程;胶质瘤Ⅰ、Ⅱ、Ⅲ级中表达下调的基因主要参与磷酸化代谢、信号转导、蛋白定位、生物大分子运输、神经元分化等一系列生物学过程。由此可见,在不同病理级别胶质瘤中表达下调的基因其生物学功能大致相似,而表达上调的基因其生物学功能重心发生了转移,表现为在胶质瘤Ⅰ级中以参与转录调控、细胞增殖的基因为主,而在胶质瘤Ⅱ、Ⅲ级中参与细胞凋亡、细胞粘附的基因逐渐增多。
     结合KEGG数据库,我们发现在胶质瘤中多个信号通路分子,如RAP1B、JUN、FOS、JAK2、STAT1、TCF7L1、IKBKB、TRl3、MYD88等表达上调,而信号通路负调控因子如DUSP8、APC、CYLD等表达下调,提示MAPK、JAK/STAT、WNT、NF-kB、Toll样受体等多条信号通路的活化参与了胶质瘤的发生发展。
     [胶质瘤不同病理级别差异ⅠniRNA/mRNA的对接研究]
     通过对胶质瘤不同病理级别差异miRNA/mRNA表达谱的对接分析,我们发现,表达上调的miRNA中以miR-23a、miR-26a、miR-338-5p、miR-491-3p对接的靶基因数目较多;表达下调的miRNA中以miR-107、miR-124、miR-128a/128b、miR-138、miR-149、miR-181a、miR-181b、miR-302b对接的靶基因数目较多;差异表达基因中以PLAGL2、HNRNPA2B1、RAP1B、DEK等对接的miRNA数目较多,其中RAP1B与miR-149的负相关表达模式已经证实,提示一种miRNA可调控多个基因的表达,而一个基因的表达又可受多种miRNA调控,同时也说明了上述差异rniRNA与基因在胶质瘤发生发展中可能起重要作用。
     综上所述,我们通过对同一批正常脑组织与各级别胶质瘤组织样本中差异miRNA/mRNA动态表达谱的研究及对接分析,初步揭示了差异miRNA与基因在胶质瘤不同病理级别中的表达变化规律,进一步阐明了胶质瘤发生发展的分子机制,为寻找有效的胶质瘤早期诊断及恶性进展的分子标志提供了充分的理论依据。
[Background]
     Glioma is the most common intracranial malignant tumor, and astrocytoma is the most common one, followed by glioblastoma. Many researches have shown that the tumorigenesis of gliomas is often correlated with the inactivation of several tumor suppressor genes such as p53, p16, RB, PTEN, LRRC4 and activation of c-Myc, HRAS, EGFR, MDM2. We found that these genes have their specific expression profile in different pathological grades of gliomas. The mutation and overexpression of p53 and MDM2 are common in gliomas and showed no apparent correlation with the tumor grades, however there has also been reported that the mutation and overexpression of p53 is even obvious in high-grade gliomas. p16 and LRRC4 are down-expressed in gliomas and their expression levels are correlated with the glioma grades. The mutation of PTEN, loss of RB and overexpression of c-Myc, HRAS and EGFR are involved in high-grade gliomas.
     Gene expression is regulated at the genomic, transcriptomic, post-transcriptomic and proteomic levels. Recently the function of miRNAs in post-transcriptomic regulation are highly been concerned. Many researches have shown that miRNAs are playing important roles in cell proliferation, differentiation, apoptosis, development and metabolism. And it is noticed that the alteration of miRNA expression is common in most type of tumors including glioma. Studies showed that mir-21, mir-221 and mir-lOb are overexpressed, whereas a set of brain-enriched miRNAs such as mir-128 and mir-181 are down-expressed in glioblastomas. Further researches have found that these miRNAs could act as oncogene or tumor suppressors during tumorigenesis. However the miRNA expression profile in different pathological grades of gliomas was little known.
     According to the knowledge above, we analyzed simultaneously the expression profiles of miRNA and mRNA in gliomas with different pathological grades by using miRNA and cDNA microarray. Then the dynamics expression profiles of miRNAs and mRNAs were obtained, and docking study was done in gliomas with different pathological grades.
     [Construction of miRNA dynamics expression profiles in gliomas with different pathological grades]
     The expression levels of 637 miRNAs were detected in 3 normal brain tissue and 13 gliomas (3 grade I,5 grade II and 5 grade III) by miRNA microarray. Multi-methods were used to analyze the differentially expressed miRNAs in different pathological grades. Then the expression profiles of significant miRNAs were analyzed, and further classified into 8 categories. miR-26a is overexpressed in all gliomas especially in grade III whereas miR-21 and miR-23a are overexpressed mainly in grade III, which indicate that miR-26a may contribute to the initiation and progression of gliomas while miR-21 and miR-23a are mainly involved in the progression of gliomas. Additionally, miR-107, miR-124, miR-128a/128b, miR-138, miR-149, miR-181a, miR-181b, miR-302b are significantly down-regulated in all gliomas, and we infer that these miRNAs are correlated with the tumorigenesis of gliomas. These results implied that differentially expressed miRNAs have their specific expression profiles in different pathological grades of glioma.
     [Validation of miRNA dynamics expression profiles for six miRNAs in different pathological grades]
     The expression profiles of miR-107, miR-124, miR-138, miR-149, miR-302b and miR-23a in 6 normal brain tissue and 50 gliomas (6 grade I,20 grade II,9 grade III and 15 grade IV) were analyzed by Real-time PCR. It has been validated that miR-107, miR-124, miR-138, miR-149 are down-regulated in all gliomas and their expression levels are negatively correlated with pathological grades, which are consistent with the results of microarray. The expression level of miR-23a is increased gradually in gliomas and reaches the highest level in grade III, whereas no expression is detected in grade IV. Then we detected the expression level of miR-23a by in situ hybridization in same samples. The results showed that miR-23a is mainly expressed in nucleus of normal neurons and cytoplasma of glials in glioma gradeⅡandⅢ. We speculated that the expression of miR-23a in nucleus of neurons is possibly due to the inability of miR-23a probe to discriminate the pre-miRNA and mature miRNA. We don't exclude the possibility that there has an expression transition of miR-23a during the progression of gliomas. So, further experimental validation is very necessary.
     [The tumor suppressor function of miR-124 and miR-149 in glioma cells lines SF126 and U251]
     miR-107, miR-124, miR-138 and miR-149 were transfected into glioma cell lines to observe their cellular biological functions by multiple methods. MTT assay showed that miR-107, miR-124, miR-138 and miR-149 can inhibit the growth of SF126 and U251, and the inhibitory effects of miR-124 and miR-149 are the most significant. At the fourth day after transfection with miR-124 and miR-149, the proliferation rate of SF126 has decreased by 40% and 33% respectively, the similar result was observed in U251. Would healing assay indicated that miR-124 and miR-149 can inhibit the migration ability of SF126 and U251 significantly.48 hours after wounding, all cells have repaired their wounds except those transfected with miR-124 and miR-149 mimics. These results implied a possible tumor suppressor role of miR-124 and miR-149 during the tumorigenesis of gliomas.
     [Construction of mRNA dynamics expression profiles in gliomas with different pathological grades]
     By cDNA microarray, the expression levels of 30968 genes were detected in the same samples that ever used in miRNA microarray, and the same statistical approach used in miRNA data analysis was also applied. We found the expression profiles of significant genes in gliomas with different pathological grades could be classified into 14 categories. BMP1, CDK4, DDX5, DEK, HARS, HNRNPA2B1, IKBKB, LAMA4, p53, PCNA, PLAGL2, TLR3, VCAM1 are up-regulated in all gliomas. The expression levels of HARS, HNRNPA2B1, p53, PLAGL2 showed no apparent correlation with pathological grades while the expression levels of BMP1, DDX5, DEK, IKBKB, LAMA4, PCNA, TLR3 are positively correlated with pathological grades. ANXA1, JAK2, JUN, MMP14, RAP1B, STAT1, VCL, VIM are down-regulated mainly in glioma grade II and III. Additionally, the expression levels of ANK1 and APC are negatively correlated with glioma grades.
     [Bioinformatic analysis of differentially expressed mRNAs]
     A comprehensive functional annotation software DAVID was used to analyze the Gene Ontology_BP (biological process) of differentially expressed genes. Analysis showed that the up-regulated genes in glioma grade I are mainly involved in transcription, RNA splicing, cell proliferation and so on. While the up-regulated genes in glioma grade III are mainly involved in apoptosis, biological adhesion, RNA splicing, cell cycle, signal transduction, and so on. The down-regulated genes of glioma grade I, II and III are mainly involved in phosphorus metabolic process, intracellular signaling cascade, protein localization, intracellular transport, neuron differentiation, and so on. These results implied that the biological function of down-regulated genes has no significant difference among the glioma grades, whereas the biological function of up-regulated genes has made an obvious transition from low-grade glioma to high-grade glioma.
     Then the signaling pathways were analyzed and found several genes that involved in the regulation of MAPK, JAK/STAT, WNT, NF-κB and Toll-like receptor signaling pathways have altered expression in gliomas. The positive factors in regulation of the signaling pathways mentioned above such as RAP1B, JUN, FOS, JAK2, STAT1, TCF7L1, IKBKB, TRL3, MYD88 are up-regulated in gliomas while the negative factors such as DUSP8, APC, CYLD are down-regulated in gliomas. These results implied that MAPK, JAK/STAT, WNT, NF-κB and Toll-like receptor signaling pathways are activated during the tumorigenesis of gliomas.
     [Docking study of differentially expressed miRNAs and mRNAs]
     Pearson correlation analysis was used for estimating the correlation between differentially expressed miRNAs and their predicted target mRNAs, and the mRNAs negatively correlated in expression level with their corresponding miRNAs are considered as putative target mRNAs. The negative correlation analysis indicates that miR-23a, miR-26a, miR-338-5p, miR-491-3p, miR-107, miR-124, miR-128a/128b, miR-138, miR-149, miR-181a, miR-181b and miR-302b have more putative target mRNAs than others and PLAGL2, HNRNPA2B1, RAP1B, DEK, etc have more corresponding miRNAs. The negative correlation between RAP IB and miR-149 in expression level has been validated by Real-time PCR. These results implied that one miRNA can regulate several mRNAs while one mRNAs can be regulated by several miRNAs. Taken together, the miRNAs and genes mentioned may play an important role in the initiation and progression of gliomas.
     [Conclusion]
     We have analyzed simultaneously the expression profiles of differentially expressed miRNAs and mRNAs in gliomas with different pathological grades and obtained some preliminary conclusions, which contribute to the further clarification of the molecular mechanisms involved in the tumorigenesis of gliomas and the finding of diagnostic and deteriorated markers in gliomas.
引文
[1]Krex D, Klink B, Hartmann C, et al. Long-term survival with glioblastoma multiforme. Brain,2007,130(Pt 10):2596-2606.
    [2]Watanabe K, Sato K, Biernat W, et al. Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin Cancer Res,1997,3(4):523-530.
    [3]Cui W, Wu R, Cao H, et al. P53 gene mutation and expression of MDM2, P53, P16 protein and their relationship in human glioma. J Huazhong Univ Sci Technolog Med Sci,2005,25(6):622-624,635.
    [4]Duerr EM, Rollbrocker B, Hayashi Y, et al. PTEN mutations in gliomas and glioneuronal tumors. Oncogene,1998,16(17):2259-2264.
    [5]Wu M, Huang C, Gan K, et al. LRRC4, a putative tumor suppressor gene, requires a functional leucine-rich repeat cassette domain to inhibit proliferation of glioma cells in vitro by modulating the extracellular signal-regulated kinase/protein kinase B/nuclear factor-kappaB pathway. Mol Biol Cell,2006, 17(8):3534-3542.
    [6]Henson JW, Schnitker BL, Correa KM, et al. The retinoblastoma gene is involved in malignant progression of astrocytomas. Ann Neurol,1994,36(5):714-721.
    [7]Orian JM, Vasilopoulos K, Yoshida S, et al. Overexpression of multiple oncogenes related to histological grade of astrocytic glioma. Br J Cancer,1992, 66(1):106-112.
    [8]Lam PY, Di Tomaso E, Ng HK, et al. Expression of p19INK4d, CDK4, CDK6 in glioblastoma multiforme. Br J Neurosurg,2000,14(1):28-32.
    [9]Jin W, Xu X, Yang T, et al. p53 mutation, EGFR gene amplification and loss of heterozygosity on chromosome 10,17 p in human gliomas. Chin Med J (Engl), 2000,113(7):662-666.
    [10]Brennecke J, Hipfner DR, Stark A, et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell,2003,113(1):25-36.
    [11]Kawasaki H, Taira K. Functional analysis of microRNAs during the retinoic acid-induced neuronal differentiation of human NT2 cells. Nucleic Acids Res Suppl,2003, (3):243-244.
    [12]Xu P, Vernooy SY, Guo M, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol,2003, 13(9):790-795.
    [13]Krichevsky AM, King KS, Donahue CP, et al. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA,2003, 9(10):1274-1281.
    [14]Boehm M, Slack FJ. MicroRNA control of lifespan and metabolism. Cell Cycle, 2006,5(8):837-840.
    [15]Osada H, Takahashi T. MicroRNAs in biological processes and carcinogenesis. Carcinogenesis,2007,28(1):2-12.
    [16]Ciafre SA, Galardi S, Mangiola A, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun,2005, 334(4):1351-1358.
    [17]Shi XB, Xue L, Yang J, et al. An androgen-regulated miRNA suppresses Bakl expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A,2007,104(50):19983-19988.
    [18]Wang WX, Rajeev BW, Stromberg AJ, et al. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci,2008,28(5):1213-1223.
    [19]Divakaran V, Mann DL. The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res,2008,103(10):1072-1083.
    [20]Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res,2005,65(14):6029-6033.
    [21]Conti A, Aguennouz M, La Torre D, et al. miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol, 2009,93(3):325-332.
    [22]Sasayama T, Nishihara M, Kondoh T, et al. MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer,2009,125(6):1407-1413.
    [23]Malzkorn B, Wolter M, Liesenberg F, et al. Identification and Functional Characterization of microRNAs Involved in the Malignant Progression of Gliomas. Brain Pathol,2009 Aug 19.
    [24]Gabriely G, Wurdinger T, Kesari S, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol,2008, 28(17):5369-5380.
    [25]Chen Y, Liu W, Chao T, et al. MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett,2008, 272(2):197-205.
    [26]Shi L, Cheng Z, Zhang J, et al. mir-181a and mir-181b function as tumor suppressors in human glioma cells. Brain Res,2008,1236:185-193.
    [27]Chen G, Zhu W, Shi D, et al. MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Oncol Rep,2010,23(4):997-1003.
    [28]Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA,2005, 11(3):241-247.
    [29]Lee KH, Lotterman C, Karikari C, et al. Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology,2009,9(3):293-301.
    [30]Agirre X, Vilas-Zornoza A, Jimenez-Velasco A, et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res,2009, 69(10):4443-4453.
    [31]Saito Y, Friedman JM, Chihara Y, et al. Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun,2009,379(3):726-731.
    [32]Takahashi Y, Forrest AR, Maeno E, et al. MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines. PLoS One,2009, 4(8):e6677.
    [33]Pallasch CP, Patz M, Park YJ, et al. miRNA deregulation by epigenetic silencing disrupts suppression of the oncogene PLAG1 in chronic lymphocytic leukemia. Blood,2009,114(15):3255-3264.
    [34]Liu X, Chen Z, Yu J, et al. MicroRNA Profiling and Head and Neck Cancer. Comp Funct Genomics,2009:837514.
    [35]Silber J, Lim DA, Petritsch C, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med,2008,6:14.
    [36]Pierson J, Hostager B, Fan R, et al. Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol,2008,90(1):1-7.
    [37]Li KK, Pang JC, Ching AK, et al. miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol,2009, 40(9):1234-1243.
    [38]Furuta M, Kozaki KI, Tanaka S, et al. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis,2010,31(5):766-776.
    [39]Liu X, Jiang L, Wang A, et al. MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett,2009,
    286(2):217-222.
    [40]Jiang L, Liu X, Kolokythas A, et al. Down-regulation of the Rho GTPase signaling pathway is involved in the microRNA-138 mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int J Cancer,2010 Mar 15.
    [41]Zhao X, Yang L, Hu J, et al. miR-138 might reverse multidrug resistance of leukemia cells. Leuk Res,2009, [Epub ahead of print].
    [42]Mitomo S, Maesawa C, Ogasawara S, et al. Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci,2008, 99(2):280-286.
    [43]Wong TS, Liu XB, Wong BY, et al. Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res,2008, 14(9):2588-2592.
    [44]Schaefer A, Jung M, Mollenkopf HJ, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer,2010, 126(5):1166-1176.
    [45]Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A,2004,101(9):2999-3004.
    [46]Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene,2007,26(28):4148-4157.
    [47]Childs G, Fazzari M, Kung G, et al. Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am J Pathol,2009,174(3):736-745.
    [48]Li Y, VandenBoom TG 2nd, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res,2009, 69(16):6704-6712.
    [49]Nakajima G, Hayashi K, Xi Y, et al. Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics,2006,3(5):317-324.
    [50]Kumar MS, Erkeland SJ, Pester RE, et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A, 2008,105(10):3903-3908.
    [51]Jeong SH, Wu HG, Park WY. LIN28B confers radio-resistance through the posttranscriptional control of KRAS. Exp Mol Med,2009,41(12):912-918.
    [52]Ueda T, Volinia S, Okumura H, et al. Relation between microRNA expression and progression and prognosis of gastric cancer:a microRNA expression analysis. Lancet Oncol,2010,11(2):136-146.
    [53]Lan FF, Wang H, Chen YC, et al. Hsa-let-7g inhibits proliferation of hepatocellular carcinoma Cells by down-regulation of c-Myc and Up-regulation of p16(INK4A). Int J Cancer,2010 Mar 22.
    [54]Ji J, Zhao L, Budhu A, et al. Let-7g targets collagen type I alpha2 and inhibits cell migration in hepatocellular carcinoma. J Hepatol,2010,52(5):690-697.
    [55]Shimizu S, Takehara T, Hikita H, et al. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol,2010,52(5):698-704.
    [56]Yang N, Kaur S, Volinia S, et al. MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res,2008,68(24):10307-10314.
    [57]Lawrie CH, Chi J, Taylor S, et al. Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma. J Cell Mol Med,2009,13(7):1248-1260.
    [58]Hui AB, Lenarduzzi M, Krushel T, et al. Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res,2010, 16(4):1129-1139.
    [59]Ladeiro Y, Couchy G, Balabaud C, et al. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology,2008,47(6):1955-1963.
    [60]Yamakuchi M, Lotterman CD, Bao C, et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A,2010, 107(14):6334-6339.
    [61]Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res,2005,65(16):7065-7070.
    [62]Scott GK, Goga A, Bhaumik D, et al. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem,2007,282(2):1479-1486.
    [63]Visone R, Pallante P, Vecchione A, et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene,2007,26(54):7590-7595.
    [64]Nam EJ, Yoon H, Kim SW, et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res,2008,14(9):2690-2695.
    [65]Bousquet M, Quelen C, Rosati R, et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med,2008,205(11):2499-2506.
    [66]Ichimi T, Enokida H, Okuno Y, et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer,2009, 125(2):345-352.
    [67]Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature,2008,451 (7175):147-152.
    [68]Wong QW, Lung RW, Law PT, et al. MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathminl. Gastroenterology,2008,135(1):257-269.
    [69]Wang X, Tang S, Le SY, et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One,2008,3(7):e2557.
    [70]Crawford M, Brawner E, Batte K, et al. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem Biophys Res Commun,2008, 373(4):607-612.
    [71]Shen WF, Hu YL, Uttarwar L, et al. MicroRNA-126 regulates HOXA9 by binding to the homeobox. Mol Cell Biol,2008,28(14):4609-4619.
    [72]Guo C, Sah JF, Beard L, et al. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer,2008, 47(11):939-946.
    [73]Zhang J, Du YY, Lin YF, et al. The cell growth suppressor, mir-126, targets IRS-1. Biochem Biophys Res Commun,2008,377(1):136-140.
    [74]Liu B, Peng XC, Zheng XL, et al. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer, 2009,66(2):169-175.
    [75]Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell,2006,9(6):435-443.
    [76]Lee JW, Choi CH, Choi JJ, et al. Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res,2008,14(9):2535-2542.
    [77]Dixon-McIver A, East P, Mein CA, et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One, 2008,3(5):e2141.
    [78]Tryndyak VP, Ross SA, Beland FA, et al. Down-regulation of the microRNAs
    miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog,2009,48(6):479-487.
    [79]Robertus JL, Harms G, Blokzijl T, et al. Specific expression of miR-17-5p and miR-127 in testicular and central nervous system diffuse large B-cell lymphoma. Mod Pathol,2009,22(4):547-555.
    [80]Mi S, Lu J, Sun M, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci U S A,2007,104(50):19971-19976.
    [81]Zhang Y, Chao T, Li R, et al. MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med,2009,87(1):43-51.
    [82]Godlewski J, Nowicki MO, Bronisz A, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res,2008,68(22):9125-9130.
    [83]Khan AP, Poisson LM, Bhat VB, et al. Quantitative proteomic profiling of prostate cancer reveals a role for miR-128 in prostate cancer. Mol Cell Proteomics,2010, 9(2):298-312.
    [84]Bellon M, Lepelletier Y, Hermine O, et al. Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia. Blood, 2009,113(20):4914-4917.
    [85]Liu H, Brannon AR, Reddy AK, et al. Identifying mRNA targets of microRNA dysregulated in cancer:with application to clear cell Renal Cell Carcinoma. BMC Syst Biol,2010,4(1):51.
    [86]Pichiorri F, Suh SS, Ladetto M, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S A,2008, 105(35):12885-12890.
    [87]Maillot G, Lacroix-Triki M, Pierredon S, et al. Widespread estrogen-dependent repression of micrornas involved in breast tumor cell growth. Cancer Res,2009, 69(21):8332-8340.
    [88]Gao W, Yu Y, Cao H, et al. Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother,2010 Feb 25.
    [89]Zanette DL, Rivadavia F, Molfetta GA, et al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res,2007, 40(11):1435-1440.
    [90]Schetter AJ, Leung SY, Sohn JJ, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA,2008, 299(4):425-436.
    [91]Yan LX, Huang XF, Shao Q, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA,2008,14(11):2348-2360.
    [92]Cervigne NK, Reis PP, Machado J, et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet, 2009,18(24):4818-4829.
    [93]Wang B, Hsu SH, Majumder S, et al. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene,2010, 29(12):1787-1797.
    [94]Zhu W, Shan X, Wang T, et al. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer,2010 Feb 16.
    [95]Segura MF, Hanniford D, Menendez S, et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci U S A,2009, 106(6):1814-1819.
    [96]Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem,2009,284(35):23204-23216.
    [97]Sarver AL, French AJ, Borralho PM, et al. Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are
    characteristic of undifferentiated proliferative states. BMC Cancer,2009,9:401.
    [98]Myatt SS, Wang J, Monteiro LJ, et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res,2010,70(1):367-377.
    [99]Roa W, Brunet B, Guo L, et al. Identification of a new microRNA expression profile as a potential cancer screening tool. Clin Invest Med,2010,33(2):E124.
    [100]Meng F, Henson R, Lang M, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology,2006,130(7):2113-2129.
    [101]Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth. Oncogene,2007, 26(19):2799-2803.
    [102]Wang T, Zhang X, Obijuru L, et al. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer,2007,46(4):336-347.
    [103]Fulci V, Chiaretti S, Goldoni M, et al. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood,2007, 109(11):4944-4951.
    [104]Zhu S, Si ML, Wu H, et al. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem,2007,282(19):14328-14336.
    [105]Tran N, McLean T, Zhang X, et al. MicroRNA expression profiles in head and neck cancer cell lines. Biochem Biophys Res Commun,2007,358(1):12-17.
    [106]Lawrie CH, Soneji S, Marafioti T, et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer,2007,121 (5):1156-1161.
    [107]Lui WO, Pourmand N, Patterson BK, et al. Patterns of known and novel small RNAs in human cervical cancer. Cancer Res,2007,67(13):6031-6043.
    [108]Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology,2007,133(2):647-658.
    [109]Asangani IA, Rasheed SA, Nikolova DA, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene,2008, 27(15):2128-2136.
    [110]Markou A, Tsaroucha EG, Kaklamanis L, et al. Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem,2008,54(10):1696-1704.
    [111]Zhang Z, Li Z, Gao C, et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest,2008,88(12):1358-1366.
    [112]Li T, Li D, Sha J, et al. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun,2009,383(3):280-285.
    [113]Li Y, Li W, Yang Y, et al. MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res,2009,1286:13-18.
    [114]Qin W, Zhao B, Shi Y, et al. BMPRII is a direct target of miR-21. Acta Biochim Biophys Sin (Shanghai),2009,41(7):618-623.
    [115]Song B, Wang C, Liu J, et al. MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res,2010,29:29.
    [116]Gottardo F, Liu CG, Ferracin M, et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol,2007,25(5):387-392.
    [117]Huang S, He X, Ding J, et al. Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. Int J Cancer, 2008,123(4):972-978.
    [118]Yu ZW, Zhong LP, Ji T, et al. MicroRNAs contribute to the chemoresistance of cisplatin in tongue squamous cell carcinoma lines. Oral Oncol,2010, 46(4):317-322.
    [119]Sander S, Bullinger L, Klapproth K, et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood,2008,112(10):4202-4212.
    [120]Yu T, Wang XY, Gong RG, et al. The expression profile of microRNAs in a model of 7,12-dimethyl-benz[a]anthrance-induced oral carcinogenesis in Syrian hamster. J Exp Clin Cancer Res,2009,28:64.
    [121]Wang G, Zhang H, He H, et al. Up-regulation of microRNA in bladder tumor tissue is not common. Int Urol Nephrol,2010,42(1):95-102.
    [122]Huse JT, Brennan C, Hambardzumyan D, et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev,2009,23(11):1327-1337.
    [123]Ji J, Shi J, Budhu A, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med,2009,361(15):1437-1447.
    [124]Mott JL, Kobayashi S, Bronk SF, et al. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene,2007,26(42):6133-6140.
    [125]Park SY, Lee JH, Ha M, et al. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol,2009,16(1):23-29.
    [126]Garzon R, Liu S, Fabbri M, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood, 2009,113(25):6411-6418.
    [127]Flavin R, Smyth P, Barrett C, et al. miR-29b expression is associated with disease-free survival in patients with ovarian serous carcinoma. Int J Gynecol Cancer,2009,19(4):641-647.
    [128]Visone R, Rassenti LZ, Veronese A, et al. Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood,2009,114(18):3872-3879.
    [129]Hiroki E, Akahira J, Suzuki F, et al. Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer Sci,2010,101(1):241-249.
    [130]Ferretti E, De Smaele E, Miele E, et al. Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J, 2008,27(19):2616-2627.
    [131]Wang CH, Lee DY, Deng Z, et al. MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression. PLoS One,2008,3(6):e2420.
    [132]Pan YZ, Morris ME, Yu AM. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol,2009,75(6):1374-1379.
    [133]Eiring AM, Harb JG, Neviani P, et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell, 2010,140(5):652-665.
    [134]Huang XH, Wang Q, Chen JS, et al. Bead-based microarray analysis of microRNA expression in hepatocellular carcinoma:miR-338 is downregulated. Hepatol Res,2009,39(8):786-794.
    [135]Li X, Zhang Y, Zhang Y, et al. Survival prediction of gastric cancer by a seven-microRNA signature. Gut,2010,59(5):579-585.
    [136]Caramuta S, Egyhazi S, Rodolfo M, et al. MicroRNA Expression Profiles Associated with Mutational Status and Survival in Malignant Melanoma. J Invest Dermatol,2010 Apr 1.
    [137]Lee EJ, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer,2007,120(5):1046-1054.
    [138]Liu X, Sempere LF, Ouyang H, et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor
    suppressors. J Clin Invest,2010,120(4):1298-1309.
    [139]Li Z, Lu J, Sun M, et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci U S A,2008, 105(40):15535-15540.
    [140]Veerla S, Lindgren D, Kvist A, et al. MiRNA expression in urothelial carcinomas:important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer,2009,124(9):2236-2242.
    [141]Nakano H, Miyazawa T, Kinoshita K, et al. Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X(L) in colorectal cancer cells. Int J Cancer,2009 Dec 28.
    [142]Navon R, Wang H, Steinfeld I, et al. Novel rank-based statistical methods reveal microRNAs with differential expression in multiple cancer types. PLoS One, 2009,4(11):e8003.
    [143]Zhang H, Luo XQ, Zhang P, et al. MicroRNA patterns associated with clinical prognostic parameters and CNS relapse prediction in pediatric acute leukemia. PLoS One,2009,4(11):e7826.
    [144]Yamada H, Yanagisawa K, Tokumaru S, et al. Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11-21 in human lung cancer. Genes Chromosomes Cancer,2008, 47(9):810-818.
    [145]Wu W, Lin Z, Zhuang Z, et al. Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur J Cancer Prev,2009,18(1):50-55.
    [146]Lionetti M, Biasiolo M, Agnelli L, et al. Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood,2009,114(25):e20-26.
    [147]Guil S, Gattoni R, Carrascal M, et al. Roles of hnRNP A1, SR proteins, and p68 helicase in c-H-ras alternative splicing regulation. Mol Cell Biol,2003, 23(8):2927-2941.
    [148]Camats M, Guil S, Kokolo M, et al. P68 RNA helicase (DDX5) alters activity of cis-and trans-acting factors of the alternative splicing of H-Ras. PLoS One,2008,3(8):e2926.
    [149]Causevic M, Hislop RG, Kernohan NM, et al. Overexpression and poly-ubiquitylation of the DEAD-box RNA helicase p68 in colorectal tumours. Oncogene,2001,22;20(53):7734-7743.
    [150]Shin S, Rossow KL, Grande JP, et al. Involvement of RNA helicases p68 and p72 in colon cancer. Cancer Res,2007,67(16):7572-7578.
    [151]Beier UH, Maune S, Meyer JE, et al. Overexpression of p68 mRNA in head and neck squamous cell carcinoma cells. Anticancer Res,2006, 26(3A):1941-1946.
    [152]Clark EL, Coulson A, Dalgliesh C, et al. The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Res,2008,68(19):7938-7946.
    [153]von Lindern M, Fornerod M, van Baal S, et al. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol,1992,12(4):1687-1697.
    [154]Kroes RA, Jastrow A, McLone MG, et al. The identification of novel therapeutic targets for the treatment of malignant brain tumors. Cancer Lett,2000, 56(2):191-198.
    [155]Sanchez-Carbayo M, Socci ND, Lozano JJ, et al. Gene discovery in bladder cancer progression using cDNA microarrays. Am J Pathol,2003,163(2):505-516.
    [156]Grasemann C, Gratias S, Stephan H, et al. Gains and overexpression identify DEK and E2F3 as targets of chromosome 6p gains in retinoblastoma. Oncogene, 2005,24(42):6441-6449.
    [157]Lu ZL, Luo DZ, Wen JM. Expression and significance of tumor-related genes in HCC. World J Gastroenterol,2005, 11(25):3850-3854.
    [158]Carro MS, Spiga FM, Quarto M, et al. DEK Expression is controlled by E2F and deregulated in diverse tumor types. Cell Cycle,2006,5(11):1202-1207.
    [159]Wu Q, Li Z, Lin H, et al. DEK overexpression in uterine cervical cancers. Pathol Int,2008,58(6):378-382.
    [160]Han S, Xuan Y, Liu S, et al. Clinicopathological significance of DEK overexpression in serous ovarian tumors. Pathol Int,2009,59(7):443-447.
    [161]Wise-Draper TM, Allen HV, Jones EE, et al. Apoptosis inhibition by the human DEK oncoprotein involves interference with p53 functions. Mol Cell Biol, 2006,26(20):7506-7519.
    [162]Sierakowska H, Williams KR, Szer IS, et al. The putative oncoprotein DEK, part of a chimera protein associated with acute myeloid leukaemia, is an autoantigen in juvenile rheumatoid arthritis. Clin Exp Immunol,1993, 94(3):435-439.
    [163]Wichmann I, Respaldiza N, Garcia-Lozano JR, et al. Autoantibodies to DEK oncoprotein in systemic lupus erythematosus (SLE). Clin Exp Immunol,2000, 119(3):530-532.
    [164]McKay SJ, Cooke H. hnRNP A2/B1 binds specifically to single stranded vertebrate telomeric repeat TTAGGGn. Nucleic Acids Res,1992, 20(24):6461-6464.
    [165]Tockman MS, Mulshine JL, Piantadosi S, et al. Prospective detection of preclinical lung cancer:results from two studies of heterogeneous nuclear ribonucleoprotein A2/B1 overexpression. Clin Cancer Res,1997,3(12 Pt 1):2237-2246.
    [166]Sueoka E, Goto Y, Sueoka N, et al. Heterogeneous nuclear ribonucleoprotein B1 as a new marker of early detection for human lung cancers. Cancer Res,1999, 59(7):1404-1407.
    [167]Fielding P, Turnbull L, Prime W, et al. Heterogeneous nuclear ribonucleoprotein A2/B1 up-regulation in bronchial lavage specimens:a clinical marker of early lung cancer detection. Clin Cancer Res,1999,5(12):4048-4052.
    [168]Zhou J, Nong L, Wloch M, et al. Expression of early lung cancer detection marker:hnRNP-A2/B1 and its relation to microsatellite alteration in non-small cell lung cancer. Lung Cancer,2001,34(3):341-350.
    [169]Satoh H, Kamma H, Ishikawa H, et al. Expression of hnRNP A2/B1 proteins in human cancer cell lines. Int J Oncol,2000,16(4):763-767.
    [170]Zhou J, Allred DC, Avis I, et al. Differential expression of the early lung cancer detection marker, heterogeneous nuclear ribonucleoprotein-A2/B1 (hnRNP-A2/B1) in normal breast and neoplastic breast cancer. Breast Cancer Res Treat,2001,66(3):217-224.
    [171]Kim SH, Dierssen M, Ferreres JC, et al. Increased protein levels of heterogeneous nuclear ribonucleoprotein A2/B1 in fetal Down syndrome brains. J Neural Transm Suppl,2001, (61):273-280.
    [172]Yan-Sanders Y, Hammons GJ, Lyn-Cook BD. Increased expression of heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP) in pancreatic tissue from smokers and pancreatic tumor cells. Cancer Lett,2002,183(2):215-220.
    [173]Reines D, Chamberlin MJ, Kane CM. Transcription elongation factor SII (TFIIS) enables RNA polymerase II to elongate through a block to transcription in a human gene in vitro. J Biol Chem,1989,264(18):10799-10809.
    [174]Hubbard K, Catalano J, Puri RK, et al. Knockdown of TFIIS by RNA silencing inhibits cancer cell proliferation and induces apoptosis. BMC Cancer, 2008,8:133.
    [175]Anker L, Ohgaki H, Ludeke BI, et al. p53 protein accumulation and gene mutations in human glioma cell lines. Int J Cancer,1993,55(6):982-987.
    [176]Soussi T, Beroud C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer,2001, (3):233-240.
    [177]Zalcenstein A, Stambolsky P, Weisz L, et al. Mutant p53 gain of function: repression of CD95(Fas/APO-1) gene expression by tumor-associated p53 mutants. Oncogene,2003,22(36):5667-5676.
    [178]Weisz L, Zalcenstein A, Stambolsky P, et al. Transactivation of the EGR1 gene contributes to mutant p53 gain of function. Cancer Res,2004, 64(22):8318-8327.
    [179]Zalcenstein A, Weisz L, Stambolsky P, et al. Repression of the MSP/MST-1 gene contributes to the antiapoptotic gain of function of mutant p53. Oncogene, 2006,25(3):359-369.
    [180]Weisz L, Damalas A, Liontos M, et al. Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Res, 2007,67(6):2396-2401.
    [181]Miyatake K, Gemba K, Ueoka H, et al. Prognostic significance of mutant p53 protein, P-glycoprotein and glutathione S-transferase-pi in patients with unresectable non-small cell lung cancer. Anticancer Res,2003, 23(3C):2829-2836.
    [182]Oh MJ, Choi JH, Lee YH, et al. Mutant p53 protein in the serum of patients with cervical carcinoma:correlation with the level of serum epidermal growth factor receptor and prognostic significance. Cancer Lett,2004,203(1):107-112.
    [183]Buyukbayram H, Cureoglu S, Arslan A, et al. Prognostic value of PCNA and mutant p53 expression in laryngeal squamous cell carcinoma. Cancer Invest, 2004,22(2):195-202.
    [184]Dobros W, Rys J, Niezabitowski A, et al. The prognostic value of proliferating cell nuclear antigen (PCNA) in the advanced cancer of larynx. Auris Nasus Larynx,1998,25(3):295-301.
    [185]Sulik M, Guzinska-Ustymowicz K. Expression of Ki-67 and PCNA as proliferating markers in prostate cancer. Rocz Akad Med Bialymst, 2002;47:262-269.
    [186]Zhong W, Peng J, He H, et al. Ki-67 and PCNA expression in prostate cancer and benign prostatic hyperplasia. Clin Invest Med,2008,31(1):E8-E15.
    [187]Sato H, Seiki M. Membrane-type matrix metalloproteinases (MT-MMPs) in tumor metastasis. J Biochem,1996,119(2):209-215.
    [188]Vora HH, Patel NA, Rajvik KN, et al. Cytokeratin and vimentin expression in breast cancer. Int J Biol Markers,2009,24(1):38-46.
    [1]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993, 75:843-854.
    [2]Moss EG, Lee RC, Ambros V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell,1997, 88:637-646.
    [3]Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol,1999,216:671-680.
    [4]Feinbaum R, Ambros V. The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev Biol,1999,210:87-95.
    [5]Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000,403:901-906.
    [6]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science,2001,294:853-858.
    [7]Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science,2001,294:858-862.
    [8]Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science,2001,294:862-864.
    [9]Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants. Genes Dev, 2002,16:1616-1626.
    [10]Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse. Curr Biol,2002,12:735-739.
    [11]Lagos-Quintana M, Rauhut R, Meyer J, et al. New microRNAs from mouse and human. RNA,2003,9:175-179.
    [12]Dostie J, Mourelatos Z, Yang M, et al. Numerous microRNPs in neuronal cells containing novel microRNAs. RNA,2003,9:180-186.
    [13]Zhao T, Li G, Mi S, et al. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev,2007,21:1190-1203.
    [14]Brennecke J, Hipfner DR, Stark A, et al. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell,2003,113:25-36.
    [15]Xu P, Vernooy SY, Guo M, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol,2003, 13:790-795.
    [16]Kawasaki H, Taira K. Functional analysis of microRNAs during the retinoic acid-induced neuronal differentiation of human NT2 cells. Nucleic Acids Res Suppl,2003,3:243-244.
    [17]Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A,2004,101(9):2999-3004.
    [18]Calin GA, Dumitru CD, Shimizu M, et al.Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A,2002,99:15524-15529.
    [19]Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res,2004,64:3753-3756.
    [20]Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res,2005,65(14):6029-6033.
    [21]Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation:stepwise processing and subcellular localization. EMBO J,2002,21(17):4663-4670.
    [22]He L, Hannon GJ. MicroRNAs:small RNAs with a big role in gene regulation. Nat Rev Genet,2004,5(7):522-531.
    [23]Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev,2003,17(24):3011-3016.
    [24]崔念基,卢泰祥,邓小武.实用临床放射肿瘤学.广州:中山大学出版社,2005.598.
    [25]Ciafre SA, Galardi S, Mangiola A, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun,2005, 334(4):1351-1358.
    [26]Corsten MF, Miranda R, Kasmieh R, et al. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res,2007,67(19):8994-9000.
    [27]Gabriely G, Wurdinger T, Kesari S, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol,2008, 28(17):5369-5380.
    [28]Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res,2008, 68(19):8164-8172.
    [29]Chen Y, Liu W, Chao T, et al. MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett,2008, 272(2):197-205.
    [30]Li Y, Li W, Yang Y, et al. MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res,2009,1286:13-18.
    [31]Ren Y, Kang CS, Yuan XB, et al. Co-delivery of as-miR-21 and 5-FU by poly(amidoamine) dendrimer attenuates human glioma cell growth in vitro. J Biomater Sci Polym Ed,2010,21(3):303-314.
    [32]Gillies JK, Lorimer IA. Regulation of p27Kipl by miRNA 221/222 in glioblastoma. Cell Cycle,2007,6(16):2005-2009.
    [33]Medina R, Zaidi SK, Liu CG, et al. MicroRNAs 221 and 222 bypass quiescence
    and compromise cell survival. Cancer Res,2008,68(8):2773-2780.
    [34]Zhang J, Han L, Ge Y, et al. miR-221/222 promote malignant progression of glioma through activation of the Akt pathway. Int J Oncol,2010,36(4):913-920.
    [35]Lukiw WJ, Cui JG, Li YY, et al. Up-regulation of micro-RNA-221 (miRNA-221; chr Xp11.3) and caspase-3 accompanies down-regulation of the survivin-1 homolog BIRC1 (NAIP) in glioblastoma multiforme (GBM). J Neurooncol,2009, 91(1):27-32.
    [36]Ueda R, Kohanbash G, Sasaki K, et al. Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci U S A,2009, 106(26):10746-10751.
    [37]Xia HF, He TZ, Liu CM, et al. MiR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting Bmf. Cell Physiol Biochem,2009, 23(4-6):347-358.
    [38]Sasayama T, Nishihara M, Kondoh T, et al. MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer,2009,125(6):1407-1413.
    [39]Shi L, Cheng Z, Zhang J, et al. hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res,2008,1236:185-193.
    [40]Chen G, Zhu W, Shi D, et al. MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Oncol Rep,2010,23(4):997-1003.
    [41]Godlewski J, Nowicki MO, Bronisz A, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res,2008,68(22):9125-9130.
    [42]Zhang Y, Chao T, Li R, et al. MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med,2009,87(1):43-51.
    [43]Cui JG, Zhao Y, Sethi P, et al. Micro-RNA-128 (miRNA-128) down-regulation in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key regulators of brain cell proliferation. J Neurooncol,2009, [Epub ahead of print].
    [44]Kefas B, Godlewski J, Comeau L, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res,2008,68(10):3566-3572.
    [45]Silber J, Lim DA, Petritsch C, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med,2008,6:14.
    [46]Gal H, Pandi G, Kanner AA, et al. MIR-451 and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells. Biochem Biophys Res Commun,2008, 376(1):86-90.
    [47]Xia H, Qi Y, Ng SS, et al. MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem Biophys Res Commun,2009, 380(2):205-210.
    [48]Xia H, Qi Y, Ng SS, et al. microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res,2009,1269:158-165.
    [49]Xu J, Liao X, Wong C. Downregulations of B-cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG-05MG. Int J Cancer,2010,126(4):1029-1035.
    [50]Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A,2008, 105(30):10513-10518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700