CYP2C9基因多态性研究及与格列本脲代谢的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】
     研究健康正常人与糖尿病患者CYP2C9基因多态性情况;分析人体内CYP2C9酶突变等位基因对格列本脲药物代谢的影响。从个体遗传学角度阐明临床治疗中药物反应的个体差异性问题,为指导格列本脲等糖尿病药物的临床合理应用提供依据,实现糖尿病的个体化医疗,为药物遗传学研究打下基础。
     【方法】
     采用聚合酶链式反应-限制性片段长度多态性(PCR-RFLP)及测序鉴定等方法,对150例健康正常人和100例Ⅱ型糖尿病患者以及7例长期服用格列本脲治疗的Ⅱ型糖尿病患者CYP2C9基因启动子区、第2外显子、第3外显子、第4外显子、第6外显子及第7外显子突变位点及突变频率进行多态性研究;并采用HPLC等技术对7例长期服用格列本脲治疗的Ⅱ型糖尿病患者进行服药后1、2.5、4、8 h不同时间点药物代谢水平研究,利用3P97药动学程序计算药动学参数并采用配对t检验进行比较。
     【结果】
     1.检测的150例健康正常人中,CYP2C9基因启动子区-1188C/T位点、第2外显子269T>C位点、第3外显子430C>T位点、第6外显子895A>G位点及第7外显子1075A>C位点分别有53.9%、1.3%、0%、2%、7%的杂合携带者;100例Ⅱ型糖尿病患者在这些位点分别有60.4%、0%、1%、1%、7%的杂合携带者。第4外显子中未发现多态性位点。
     2.统计分析显示健康正常人与糖尿病患者在CYP2C9基因启动子区-1188C/T位点、第2外显子269T>C位点及第3外显子430C>T位点差异较大,但无统计学意义。本课题研究结果与中国其他地区人群、亚洲地区日本韩国人群、欧美人群CYP2C9等位基因频率比较结果发现:第3外显子430位点与欧美人群存在显著性差异(Χ2p=65.3154,P<0.05);第7外显子1075位点与亚洲地区日本韩国人群(Χ2p=5.6488,P<0.05)及欧美人群(Χ2p=11.6795,P<0.05)均存在显著性差异,其他位点比较结果差异不显著(P>0.05)。
     3.在格列本脲的药物代谢实验中发现了一例弱代谢者(PM),基因测序表明,该受试PM的CYP2C9基因为第6外显子895A>G位点为CYP2C9*1/*16基因型杂合子。该受试PM的格列本脲血浆半衰期为51.87h,而其他受试糖尿病个体(基因型CYP2C9*1/*1)平均半衰期为5.775h,是CYP2C9*1/*1基因型者的约9倍。
     【结论】
     1.多态性研究表明,CYP2C9基因启动子区-1188C/T位点、第2外显子269T>C位点、第3外显子430C>T位点、第6外显子895A>G位点及第7外显子1075A>C位点均存在多态位点,150例健康正常人及100例Ⅱ型糖尿病患者共250例样品中这些位点分别有56.5%、0.8%、0.4%、1.6%、7.0%的杂合携带者,第4外显子中未发现多态位点。
     2.本课题研究结果与中国其他地区人群、亚洲地区日本韩国人群、欧美人群CYP2C9等位基因频率比较结果发现:第3外显子430位点与欧美人群存在显著性差异,第7外显子1075位点与亚洲地区日本韩国人群及欧美人群均存在显著性差异(P<0.05)。
     3.对糖尿病患者CYP2C9酶等位基因CYP2C9*16(第6外显子895A>G位点)研究表明该位点突变对格列本脲的药代动力学有显著性影响。本课题研究结果表明,CYP2C9基因分型对指导临床合理用药和个体化医疗具有重要意义。
【Objective】
     Study of the CYP2C9 gene polymorphism in healthy controls and diabetics; Analysis the effect of the human body CYP2C9 enzyme mutant allele on glibenclamide drug metabolism. Elucidate the clinical treatment of drug reaction individual differences from the perspective of individual genetics, to provide a evidence for guide glibenclamide and other diabetes drugs clinical rational application , to achieve diabetes individuation medical ,and to lay the foundation for the Pharmacogenetics study.
     【Methods】
     Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing methods were used to study the CYP2C9 gene polymorphism on promoter region、exon 2、exon 3、exon 4、exon 6 and exon 7 mutational site and frequency analysis in 150 healthy controls、100 typeⅡdiabetics and 7 cases of long-term use of glibenclamide treatment of typeⅡdiabetics;HPLC techniques were used to study the drug metabolism for 7 cases of long-term use of glibenclamide treatment of typeⅡdiabetics after 1、2.5、4、8h at different time points. 3P97 pharmacokinetic software was used to calculate pharmacokinetic parameters and paired t-test to comparison.
     【Results】
     1. In the detection of 150 healthy controls, CYP2C9 gene promoter region -1188C/T sites、exon 2 269T>C sites、exon 3 430C>T sites、exon 6 895A>G sites and exon 7 1075A>C sites were 53.9% 1.3%,0%,2%,7% heterozygous carriers; 100 diabetics in these sites were 60.4%,0%,1%,1%,7% heterozygous carriers . Exon 4 found no polymorphism loci.
     2. Statistical analysis showed that CYP2C9 gene promoter region -1188C/T、exon 2 269T>C and exon 3 430C>T mutational site exist quite different, but no statistical significance . The present study results with the other parts of China in total population, the Asian population( Japanese and Korean), Europe and the United States population CYP2C9 allele frequency comparisons found : exon 3 430C>T sites,with the population Europe and the United States, there was significant difference (Χ2p =65.3154, P<0.05); exon 7 1075A>C sites with the Asian population ( Japanese and Korean) (Χ2p =5.6488. P <0.05) and Europe and the United States population (Χ2p =11.6795. P <0.05) were significantly different, Other results of the comparison sites no significant difference (P>0.05).
     3. In glibenclamide drug metabolism experiment found one poor metabolizer(PM). CYP2C9 gene sequencing showed that the subject of PM is a exon 6 895A>G site CYP2C9*1/*16 heterozygous genotype. The subject of PM glibenclamide plasma half-life of 51.87h. and other diabetics subjects (CYP2C9*1/*1) on average half-life of the individual 5.775h. It is about 9 times than CYP2C9*1/*1 genotype.
     【Conclusion】
     1. Polymorphism study showed, CYP2C9 gene promoter -1188C/T sites. Exon 2 269T>C sites, exon 3 430C>T sites, Exon 6 895A>G sites and exon 7 1075A>C sites there are polymorphic loci. Including 150 healthy controls and 100 typeⅡdiabetics these sites were 56.5%、0.8%、0.4%、1.6%、7.0% heterozygous carriers,and in exon 4, we found no polymorphism loci.
     2. The present study results with the other parts of China population, the Asian population( Japanese and Korean), Europe and the United States population CYP2C9 allele frequency comparisons found: exon 3 430C>T sites, there was significant difference with the population Europe and the United States;exon 7 1075A>C sites,there was significant difference with the Asian population ( Japanese and Korean)、 Europe and the United States population(P<0.05).
     3. Diabetics with glibenclamide metabolism study shows that CYP2C9 enzyme mutant allele CYP2C9*16(Exon 6 895A>G sites)to glibenclamide Pharmacokinetics significant affected, The research show that according to CYP2C9 gene typing of clinical specimens and Individual medical is of great guiding significance.
引文
[1] Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998 Apr 15;279(15):1200-5.
    [2] Krishan DR, Koltz U. Extrahepatci metaboilsm of drugs in humans. Ciln pharmacok, 1994, 24: 144-66
    [3] Nelson D R , Koymans L, Kamtaki T, et al .P450 superfamily: update on new sequences, gene mapping, accession numbers and nomencalture . Pharmacogenetcis, 1996, 6: 1-42
    [4] www.doctorfungus.org/.../antif_interaction.htm
    [5] Evans WE, Relling MV. Relling Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286_ 487-491.
    [6] Ieiri I, Tainaka H, Morita T, et al. Catalytic activity of three variants (Ile, Leu, and Thr) at amino acid residue 359 in human CYP2C9 gene and simultaneous detection using single-strand conformation polymorphism analysis.Ther Drug Monit. 2000 Jun;22(3):237-44.
    [7] egp.gs.washington.edu/data/cyp2c9/
    [8] Williams PA, Cosme J, Ward A, et al. Matak Vinkovic D, Jhoti H. Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 2003; 424: 464-468.
    [9] Ibeanu GC, Goldstein JA. Transcriptional regulation of human CYP2C genes: functional comparison of CYP2C9 and CYP2C18 promoter regions. Biochemistry. 1995 Jun27;34(25):8028-36.
    [10] Yang JQ, Morin S, Verstuyft C, et al. Frequency of cytochrome P450 2C9 allelic variants in the Chinese and French populations. Fundam Clin Pharmacol. 2003 Jun;17(3):373-6.
    [11] Human Cytochrome P450 (CYP) Allele Nomenclature Committee, http://www.cypalleles.ki.se/cyp2c9.htm
    [12] Xie HG, Prasad HC, Kim RB, et al. CYP2C9 allelic variants: ethnicdistribution and functional significance. Adv Drug Deliv Rev. 2002,54(10):1257.
    [13] Imai J, Ieiri I, Mamiya K, Polymorphism of the cytochrome P450 (CYP) 2C9 gene in Japanese epileptic patients: genetic analysis of the CYP2C9 locus. Pharmacogenetics. 2000 Feb;10(1):85-9.
    [14] Dickmann LJ, Rettie AE, Kneller MB, et al.Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol Pharmacol. 2001 Aug;60(2):382-7.
    [15] Kidd RS, Curry TB, Gallagher S, et al. Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin.Pharmacogenetics. 2001 Dec;11(9):803-8
    [16] Schwarz UI. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene.Eur J Clin Invest. 2003 Nov;33 Suppl 2:23-30.
    [17] Silber BM. Pharmacogenomics. biomarkers, and the promise of personalized medicine. In: Pharmacogenomics(Kalow W,Meyer UA,Tyndale RF,Eds.)New York,Basel: Marcel Dekker,2001;11-13.
    [18] Meyer UA, Zanger UM. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu Rev Pharmacol Toxicol 1997;37:269-296.
    [19] Evans WE, Relling MV. Pharmacogenomics: Translating functional genomic into rational therapeutics.Science 1999;286:487-491.
    [20] Ingelman-Sundberg M, Oscarson M, Mclellan RA. Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol Sci 1999;20:342-349.
    [21] Sullivan-Klose TH, Ghanayem BI, Bell DA, et al. The role of the CYP2C9-Leu 359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics. 1996 Aug;6(4):341-9.
    [22] Kirchheiner J, Brockmoller J, Meineke I, et al. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin Pharmacol Ther 2002;71:286–96.
    [23] Niemi M, Cascorbi I, Timm R, et al.Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin Pharmacol Ther 2002; 72 :326–32.
    [24] Rettie AE, Wienkers LC, Gonzalez FJ, et al. Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9 [J]. Pharmacogenetics, 1994,4(1):39.
    [25] Tai G, Farin F, Rieder MJ, et al. In-vitro and in-vivo effects of the CYP2C9*11 polymorphism on warfarin metabolism and dose. Pharmacogenet Genomics. 2005 Jul;15(7):475-81.
    [26] Veronese ME, Doecke CJ, Mackenzie PI, et al. Site-directed mutation studies of human liver cytochrome P-450 isoenzymes in the CYP2C subfamily. Biochem J 1993; 289:533–8.
    [27] Kidd RS, Straughn AB, Meyer MC, et al. Pharmacokinetics of chlorpheniramine, phenytoin,glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele. Pharmacogenetics 1999;9:71–80.
    [28] van der Weide J, Steijns LS, van Weelden MJ, et al. The effect of genetic polymorphism of cytochrome P450CYP2C9 on phenytoin dose requirement. Pharmacogenetics. 2001 Jun;11(4):287-91.
    [29] Allabi AC, Gala JL, Horsmans Y. CYP2C9, CYP2C19, ABCB1 (MDR1) genetic polymorphisms and phenytoin metabolism in a Black Beninese population. Pharmacogenet Genomics. 2005 Nov;15(11):779-86.
    [30] Garcia-Martin E, Martinez C, Tabares B, et al. Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clin Pharmacol Ther. 2004 Aug;76(2):119-27.
    [31] McCrea JB, Cribb A, Rushmore T, et al. Phenotypic and genotypic investigations of a healthy volunteer deficient in the conversion of losartan to its active metabolite E-3174. Clin Pharmacol Ther 1999;65:348–52.
    [32] Yasar U, Forslund-Bergengren C, Tybring G, et al. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther 2002;71:89–98.
    [33] Babaoglu MO, Yasar U, Sandberg M, CYP2C9 genetic variants and losartan oxidation in a Turkish population. Eur J Clin Pharmacol. 2004 Jul;60(5):337-42.Epub 2004 Jun 10.
    [34] Chang TK, Yu L, Goldstein JA, et al. Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics. 1997 Jun;7(3):211-21.
    [35] 陈珍珊,闻京伟,高秋娜.格列本脲片的紫外分光光度测定法.河南医药信息. 1994,2(6)
    [36] Takahashi H, Ieiri I, Wilkinson GR, et al. 5′-flanking region polymorphisms of CYP2C9 and their relationship to S-warfarin metabolism in white and Japanese patients. Blood 2004;103:3055-7.
    [37] Shintani M, Ieiri I, Inoue K, et al. Genetic polymorphisms and functional characterization of the 5′-flanking region of the human CYP2C9 gene: in vitro and in vivo studies. Clin Pharmacol Ther. 2001;70:175-182.
    [38] Si D, Guo Y, Zhang Y, et al. Identification of a novel variant CYP2C9 allele in Chinese[J]. Pharmacogenetics. 2004 ,14(7):465.
    [39] Bae JW, Kim HK, Kim JH, et al. Allele and genotype frequencies of CYP2C9 in a Korean population[J].Br J Clin Pharmacol. 2005 ,60(4):418.
    [40] 卢爱华,舒焱,周宏灏. 细胞色素氧化酶CYP2C9的研究进展[J]中国临床药理学杂志 ,2000,16(05) .
    [41] Leung AY, Chow HC, Kwong YL, et al. Genetic polymorphism in exon 4 of cytochrome P450 CYP2C9 may be associated with warfarin sensitivity in Chinese patients[J]. Blood.,2001,98:2584-2587.
    [42] Zarza J, Hermida J, Montes R, et al. Leu208Valand Ile181Leu variants of cytochrome P450 CYP2C9 are not related to the acenocoumarol dose requirement in a Spanish population[J]. Blood,2002,100:734.
    [43] Goldstein J. Polymorphisms in the human CYP2C subfamily [J]. Drug Metab Rev. 2002,34(suppl 1):5,Abstract 9.
    [44] Zhao F, Loke C, Rankin SC,et al. Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose. Clin Pharmacol Ther. 2004 Sep;76(3):210-9.
    [45] DeLozier TC, Lee SC, Coulter SJ, et al., Functional characterization of novel allelic variants of CYP2C9 recently discovered in southeast Asians. Pharmacol Exp Ther. 2005 Dec;315(3) :1085-90. Epub 2005 Aug 11.
    [46] Williams PA, Cosme J, Ward A, et al.. Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature. 2003;424:464-8.
    [47] Stubbins MJ, Harries LW, Smith G. et al. Genetic analysis of the cytochrome P4502C9 locus. Pharmacogenetics. 1996; 6: 429-439.
    [48] Nasu K, Kubota T, Ishizaki T. Genetic analysis of CYP2C9 polymorphism in a Japanese population. Pharmacogenetics. 1997, 7: 405-409.
    [49] Kimura M, Ieiri I, Mamiya K, et al. Genetic polymorphism of cytochrome P450s, CYP2C19, and CYP2C9 in a Japanese population. Ther Dru Monit, 1998; 20: 243-247.
    [50] Takanashi K, Tainaka H, Kobayashi K, et al. CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenetics,2000; 10:95-104
    [51] Yamazaki H, Inoue K, Shimada T. Roles of two allelic variants (Arg144Cys and Ile359Leu) of cytochrome P4502C9 in the oxidation of tolbutamide and Warfarin by human liver microsomes. Xenobiotica, 1998;28:103-115
    [52] Wang S L,Huang J,Lai M D,et al. Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese[J]. Pharmacogenetics,1995,5:37-42.
    [53] Pirmohamed M,Alfirevic A,Vilar J,et al. Association analysis of drug metabolizing enzyme gene polymorphisms in HIV-positive patients with co-trimoxazole hypersensitivjity[J].Pharmacogenetics,2000,10(8):705-713.
    [54] Gaedigk A,Casley W L,Tyndale R F,et al. Cytochrome P4502C9 (CYP2C9) allele frequencies in Canadian Native Indian and Inuit populations [J].Can .J .Physiol .Pharmacol ,2001,79:841-847.
    [55] Kwok S,Kellogg D E,Mckinney N,et al. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 modelstudies [J].Nucleic Acids Res,1990,18(4):999-1005.
    [56] Nassal M, Rieger A. PCR-based site-directed mutagenesis using primers with mismatched 3'-ends [J].Nucleic Acids Res,1990,18(10):3077-3078.
    [57] 杨敏,余细勇,欧晓鹏,等. 中成药中格列本脲人体血浆浓度测定方法及药代动力学特性. 中药新药与临床药理.2002,13(2):77-79
    [58] 李晓天,王广基,王素军. LC-MS 法测定人血浆中格列苯脲及其在健康志愿者中的药代动力学. 中国药科大学学报. 2004 ,35(6) :532~535
    [59] 郭继芬,张爱军,赵毅民,等. 液相色谱一串联质谱法测定人体血浆中格列本腮浓度. 质谱学报. 2003,24
    [60] 石英,刘松青,代青. LC-MS和HPLC法测定人血浆中格列本脲和二甲双胍方法的建立.第三军医大学学. 2005,27(8)
    [61] 黄作君,黎月玲,郑企琨,等. 高效液相色谱法测定人血浆中格列本脲浓度.中国医院药学杂志.2004,24(1):22-23
    [62] Cui HD, Jiang WD, Zhu XX, et al. Pharmacokinetics and relative bioavailability of tablet of micronized glibenclamide in 4 Chinese healthy men. Zhongguo Yao Li Xue Bao. 1993 May;14(3):193-7.
    [63] 秦晓怡,胡国新,邱相君. 血浆格列本脲的反相-高效液相色谱法改进. 中国公共卫生 2005 年 3 月第 21 卷第 3 期
    [64] 杨志,徐超群,潘晓鹃. HPLC测定消渴平颗粒中格列本脲的含量.华西药学杂志. 2002 ,17 (4)::290-291
    [65] 张逸凡, 陈笑艳, 郭颖杰, 细胞色素 P450 CYP2C93 3对格列本脲和氯诺昔康中国人体药代动力学的影响. 药学学报 2005, 40(9) : 796 - 799

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700