高层建筑结构地震损伤与倒塌分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济、科技水平的发展,近二十年来,我国建造了一批举世瞩目的高层和超高层建筑。作为城市标志性建筑的高层建筑具有巨大的社会影响力,而这些高层建筑几乎都建设在地震区,一旦发生因丧失功能而导致的结构局部倒塌或整体倒塌,将会造成巨大的经济损失和人员伤亡,给社会带来难以估量的负面影响。因此,深入研究高层建筑结构在强震作用下的损伤演化规律及倒塌机制,进而进一步采取有效的抗倒塌设计和措施,对提高高层建筑结构的抗震能力,具有重要的理论意义和工程价值。
     本文以高层钢框架结构、高层钢框架—混凝土核心筒结构为研究对象,系统研究高层建筑结构在强震作用下的损伤演化规律和破坏倒塌机制,主要研究工作和创新成果如下:
     (1)高层建筑结构竖向承重构件(钢柱、钢筋混凝土剪力墙和钢筋混凝土柱)地震损伤分析。在考虑Bauschinger效应的Krieg&Key本构模型(简称K&K模型)基础上,引入Bonora损伤模型,提出了钢柱考虑损伤累积效应的修正K&K模型,分析表明考虑材料损伤累积效应,钢柱竖向承载力显著降低,钢柱损伤在峰值加速度出现时段内发展迅速,随地震强度增大而增大;在Sina滞回模型基础上,引入Fukuzawa算法准则,提出了钢筋混凝土剪力墙考虑强度退化和负刚度效应的修正Sina模型,分析表明修正Sina模型可较好地模拟混凝土开裂、钢筋屈服、强度退化和负刚度效应等重要性能,钢筋混凝土剪力墙损伤随加载幅值增加而增大,在加载幅值改变处发生突变;采用钢筋混凝土柱精细化分析模型,建立基于竖向剩余承载力的损伤模型,通过增量动力分析(Incremental DynamicAnalysis简称IDA)得到钢筋混凝土柱的地震响应和损伤值,提出了钢筋混凝土柱基于易损性曲线的地震损伤评估方法,分析表明该方法可较准确地评估其在不同地震作用下的损伤程度。
     (2)高层钢框架结构考虑损伤累积效应的地震倒塌分析。基于中心差分法的显式积分格式,通过定义结构的层损伤,将修正的K&K模型应用到结构中,以考虑结构在地震作用下强度和刚度的退化规律,针对结构倒塌破坏的不确定性,提出一种用于高层钢框架结构在强震作用下倒塌全过程模拟的数值方法,通过编制有限元程序将该方法用于分析一座20层Benchmark钢框架结构地震响应、失效极限荷载、失效路径和倒塌全过程。分析表明该方法考虑材料损伤累积效应能更精确确定Benchmark钢框架结构的失效极限荷载,可在未知结构失效破坏模式前提下,较好地追踪结构在强震作用下的失效路径,模拟Benchmark钢框架结构的倒塌破坏全过程,得到其最终破坏模式,在一定程度上揭示高层钢框架结构的倒塌破坏机理。
     (3)高层钢框架—混凝土核心筒结构基于等效刚度的地震倒塌分析。依据高层钢框架—混凝土核心筒结构在地震作用下的滞回特性,以无损状态下的等效刚度作为初始标量,考虑结构各层能量分布特性,建立按能量分配的结构层损伤模型,提出了高层钢框架—混凝土核心筒结构基于等效刚度的地震损伤模型,分析表明基于等效刚度的地震损伤模型可较好地评估高层钢框架—混凝土核心筒结构在地震作用后的损伤破坏程度,所建立的考虑损伤累积效应、强度退化和负刚度效应的分析模型能较好地模拟高层钢框架—混凝土核心筒结构的地震损伤演化规律和倒塌破坏全过程,即混凝土核心筒先于钢框架发生损伤破坏,随后钢框架承担大部分水平地震力,导致首层框架柱因损伤累积而逐渐丧失其竖向承载力,当角柱柱脚发生严重损伤时,整体结构发生倒塌破坏。
     (4)钢—混凝土结构地震损伤与失效过程的模型振动台试验。设计制作了一座3层钢—混凝土结构模型,对其进行振动台试验,分析了钢—混凝土结构模型在地震作用下的损伤演化规律和失效过程,采用基于等效刚度的地震损伤模型对其进行损伤程度评估,验证了基于等效刚度损伤模型的正确性,分析表明该损伤模型能较好地评估钢—混凝土结构模型在地震作用后的剩余刚度和损伤破坏程度。所采用的考虑粘结滑移效应的实体模型和考虑损伤累积效应的纤维模型均能较好地模拟钢—混凝土结构模型的地震响应,前者计算精度略高于后者,但后者具有较高的计算效率。所采用的考虑损伤累积效应的修正K&K模型和修正Faria模型相结合的纤维模型能较精确地模拟钢—混凝土结构模型在地震作用下的损伤演化规律,有效提高其地震响应的模拟精度。
With the development of economy and science and technology, in recent twentyyears, a great number of tall building structures and super tall building structures havebeen built as the focus of the world in our country. These tall building structures havegreat social influence as the land marks of a city. However, most of these buildingsare located in seismic region, the loss of structural bearing capacity tends to causelocal collapse or overall collapse of the structure when strong earthquake occurs. Suchcollapse will result in great economic loss and casualties and has immeasurablenegative social impacts. Therefore, it is of significant theoretical and practical value tostudy the damage evolution and the collapse mechanism of tall building structuresunder severe earthquakes, and to improve structural seismic capability by takingeffective design methods and collapse resistance measurements.
     In this dissertation, the damage evolution and the collapse mechanism of themajor vertical bearing members (such as steel column, reinforced concrete shear walland reinforced concrete column), tall steel frame structure and tall steelframe-concrete tube hybrid structure under severe earthquake is addressed. Primaryresearch contents and achievements are summarized as follows:
     (1) Seismic damage analysis of the major vertical bearing members (such as steelcolumn, reinforced concrete shear wall and reinforced concrete column) of tallbuilding structures is conducted. A modified Krieg&Key constitutive model (K&Kmodel) with a consideration of the damage accumulation effect is proposed, based onthe K&K model considering the Bauschinger effect of steel material is developed byimporting the Bonora damage model. The results indicate that the vertical bearingcapacity of the steel column decrease significantly while considering the materialcumulative damage effect. The damage of steel column develops rapidly after thepeak acceleration appeared which also increases with the seismic intensity. With aconsideration of the degradation of strength and effects of negative stiffness, amodified Sina model of reinforced concrete shear wall on the basis of Sina hystereticmodel is introduced by importing the Fukuzawa algorithm criterion. The resultsindicate that the modified Sina model is well capable of simulating the mechanicalperformance of the reinforced concrete shear wall at different stages, such as concrete cracking, steel yielding, strength degrading and negative stiffness effects etc. Thedamage increase with loading amplitude and changes abruptly at the loading changepoint. By employing the refined analysis model, the damage model based on verticalresidual bearing capacity is established. The vulnerability curves with lognormaldistribution are constructed through incremental dynamic analysis for damageassessment. A seismic damage assessment method based on vulnerability curves isproposed for reinforced concrete columns. It is indicated that the recommendedmethod of damage assessment for reinforced concrete columns is simple in computingand effective in evaluating the damage level under different seismic intensity indices.
     (2) Seismic collapse analysis of tall steel frame considering damageaccumulation. On the basis of the explicit integration form of the central differencemethod and the modified K&K model is applied to the whole structure throughdefining a structural damage index for story level so as to study the rule of structurestrength and stiffness degradation due to earthquakes. Against the uncertainty ofstructure collapse, a numerical approach for simulating the collapse process of steelframe structure under the severe earthquake is proposed.The seismic response, failureultimate loading, failure path and the collapse process of a20stories benchmark steelframe structure under earthquake using this approach was studied, and the resultsdemonstrate that the damage accumulation effect considered in this numericalapproach works better at determining the failure ultimate loading of the tall steelframe. For the cases with unknown failure mode, of the structure, this approach canbetter simulate the failure path, the collapse process of structure and reveal thecollapse mechanism of structure to some extent.
     (3) Seismic collapse analysis of tall steel frame-concrete tube hybrid structurebased on equivalent stiffness. On the basis of the seismic hysteretic characteristics forthe structure, a damage model taking the equivalent stiffness of undamaged structureas an initial scalar is proposed. A story damage model is also established according tothe energy distribution on each story. Analysis on the damage evolution and collapseof the tall steel frame-concrete tube hybrid structure under severe earthquake isconducted. The results indicate that this damage model can effectively evaluate thedamage level of such structure, and the analysis model considering damageaccumulation effect, strength degrading and negative stiffness effects can effectivelysimulate the damage evolution and trace the route of collapse, i.e., the collapseprocess begins from the concrete tube, then, steel frame carries the majority of horizontal seismic force causing the ground floor columns gradually losing theirvertical bearing capacity, furthermore, the ground floor column will completely losetheir vertical bearing capacity when their bottom is seriously damaged and causes thewhole structure collapse.
     (4) The shaking table tests of the damage and failure process the scaled model isperformed. A three-story steel-concrete hybrid structure scaled model is designed andfabricated to analyse the damage evolution and failure process and to verify thedamage model based on the equivalent stiffness. The damage level evaluation of thescaled model is carried out using this damage model proving the damaged modelworks well in evaluating the residual stiffness and damage level after earthquake. Theresults indicate that the solid model with the consideration of bond slip effect andfiber model with the consideration of damage accumulation effect can effectivelysimulate the seismic response of the scaled model respectively. The simulatingprecision of solid model is slight better than that of fiber model, whereas, thecomputer efficiency of fiber model is far higher than that of solid model. The fibermodel combined with the modified K&K model and modified Faria model caneffectively simulate the damage evolution and dynamic responses of the scaled modelunder the earthquakes.
引文
[1] Krawinkler H, Zohrei M. Cumulative damage in steel structures subjected toearthquake ground motions[J]. Computers and Structures,1983,16(1-4):531-541.
    [2]龚胡广.基于性能的抗震设计方法及其在高层混合结构抗震评估中的应用[D].湖南:湖南大学,2006.
    [3] Yun SY, Hamburger RO, Cornell CA, Foutch DA. Seismic performace evaluationfor steel moment frames[J]. Journal of Structural Engineering, ASCE,2002,128(4):534-545.
    [4] Foutch DA, Yun SY. Modeling of steel moment frames for seismic loads[J].Journal of Construction Steel Research,2002,58(5-8):529-564.
    [5] Cofer W F. Documentation of strengths and weaknesses of current computeranalysis methods for seismic performance of reinforced concrete members[R].PEER Report1999/07, Pacific Earthquake Engineering Research Center,University of California, Berkeley, CA,1999.
    [6] Cofer W F, Zhang Y, McLean D I. A comparison of current computer analysismethods for seismic performance of reinforced concrete members[J]. FiniteElements in Analysis and Design,2002,38(9):835-861.
    [7] Taucer F F, Spacone E, Filippou F C. A fiber beam-column element for seismicresponse analysis of reinforced concrete structures[R]. EERC Report91/17,Earthquake Engineering Research Center, University of California, Bekerley, CA,1991.
    [8]王萱,赵星明,王慧等.基于ANSYS的钢筋混凝土结构三维实体建模技术探讨[J].山东农业大学学报,2004,35(1):113-117.
    [9]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1994.
    [10]董哲仁.钢筋混凝土结构非线性有限元原理与应用[M].北京:中国水利水电出版社,2002.
    [11]吕西林.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997.
    [12] Kaba S A, Mahin S A. Refined modelling of reinforced concrete columns forseismic analysis[R]. UCB/EERC-84/03, Earthquake Engineering Research Center,University of California, Berkeley.
    [13]Scordelis A C. Computer models for nonlinear analysis of reinforced andprestressed concrete structures[J]. PCI Journal,1984,29(6):116-132.
    [14]Taucer F F, Spacone E, Filippou F C. A fiber beam-column element for seismicresponse analysis of reinforced concrete structures[R]. UCB/EERC91/17,Earthquake Engineering Research Center, University of California, Berkeley.
    [15]Spacone E. Filippou F. C., and Taucer F. F. Fiber beam-column model fornon-linear analysis of R/C frames: part I. Formulation[J]. Earthquake Engineeringand Structural Dynamics,1996,25(7):711-725.
    [16]Spacone E., Filippou F. C., and Taucer F. F. Fiber beam-column model fornon-linear analysis of R/C frames: part II. Applications[J]. EarthquakeEngineering and Structural Dynamics,1996,25(7):727-742.
    [17]Monti G, Spacone E. Reinforced concrete fiber beam element with bond-slip[J].ASCE Journal of Structural Engineering,2000,126(6):654-661.
    [18]Marini A, Spacone E. Analysis of reinforced concrete elements including sheareffects[J]. ACI Structural Journal,2006,103(5):645-655.
    [19]Petrangeli M, Pinto P E, Ciampi V.Fiber element for cyclic bending and shear ofRC structures: part I. Theory[J].ASCE Journal of Engineering Mechanics,1999,125(9):994-1001.
    [20]Petrangeli M. Fiber element for cyclic bending and shear of RC structures: part II.Verification[J]. ASCE Journal of Engineering Mechanics,1999,125(9):1002-1009.
    [21]Valipour H R, Foster S J. A total secant flexibility-based formulation for frameelements with physical and geometrical nonlinearities[J]. Finite Elements inAnalysis and Design,2010,46(3):288-297.
    [22]Ceresa P, Petrini L, Pinho R. Flexure-shear fiber beam-column elements formodeling frame structures under seismic loading-state of the art[J]. Journal ofEarthquake Enigeering,2007,11(S12007):46-88.
    [23]禚一.钢筋混凝土桥梁精细化建模及地震碰撞分析[D].天津:天津大学,2010.
    [24]薛伟辰,周氏,吕志涛.混凝土杆系结构滞回全过程分析[J].工程力学,1996,13(3):8-16.
    [25]叶列平,陆新征,马千里等.混凝土结构抗震非线性分析模型、方法及算例[J].工程力学,2006,33(sup. II):131-140.
    [26]Izzuddin B A, Karayannis C G, Elnashai A S. Advanced nonlinear formulationfor reinforced concrete beam-columns[J]. Journal of structural engineering, ASCE,1994,120(10):2913-2934.
    [27]Karayannis C G, Izzuddin B A, Elnashai A S. Application of adaptive analysis toreinforced concrete frames[J]. Journal of structural engineering, ASCE,1994,120(10):2935-2957.
    [28]Mahasuverachai M. and Powell G. H. Inelastic analysis of piping and tubularstructures[R], EERC Report84/27, Earthquake Engineering Research Center,University of California, Berkeley,1982.
    [29]Zeris C. A. and Mahin S. A. Analysis of reinforced concrete beam-columns underuniaxial excitation[J]. Journal of Structural Engineering, ASCE,1988,114(4):804-820.
    [30]Zeris C. A. and Mahin S. A. Behavior of reinforced concrete structures subjectedto biaxial excitation[J]. Journal of Structural Engineering, ASCE,1991,117(9):2657-2673
    [31]Ciampi V. and Carlesimo L. A nonlinear beam element for seismic analysis ofstructures[C]. Proceedings,8th Europe Conference on Earthquake Engineering.Lisbon,1986.
    [32]Spacone E., Ciampi V., and Filippou F. C. Mixed formulation of nonlinear beamfinite element[J]. Computer and Structures,1996,58(1):71-83.
    [33]陈滔.基于有限单元柔度法的钢筋混凝土框架非弹性地震反应分析[D].重庆:重庆大学,2003.
    [34]陈滔,黄宗明.基于有限单元柔度法的钢筋混凝土空间框架非弹性地震反应分析[J].建筑结构学报,2004,25(2):79-84.
    [35]Fajfar P, Fischinger M. Mathematical modeling of reinforced concrete structuralwalls for nonlinear seismic analysis[J]. Structural Dynamic,1990,10(2):471-478.
    [36]Hiraishi H, Kawashima T. Deformation behavior of shear walls after flexuralyielding[C].//Proceedings of9th World conference on earthquake engineering,Tokyo, Kyoto,1988.
    [37]Kabeyasawa T, Shiohara H, Otani S. U.S.-Japan cooperative research on R/Cfull-scale building test: part5. Discussion of dynamic response system[C].//Proc.8th of World conference on earthquake engineering, San Francisco,1984.
    [38]Kabeyasawa T, Shiohara H, Otani S, et al. Analysis of the full scale seven storyreinforced concrete test structure[J]. Earthquake effects on reinforced concretestructure,1985,84(2):203-241.
    [39]Milev J. I. Two dimensional analytical model of reinforced concrete shearwalls[C].//Proc.11th of World conference on earthquake engineering, Tokyo,Kyoto,1996.
    [40]Vulcano A, Bertero V V. Dynamic modeling for predicting the lateral response ofRC shear wall: evaluation of their reliability[R]. Report No. UCB/EERC-87/19.California: University of California, Berkeley,1987.
    [41]孙景江,江近仁.框架-剪力墙结构的非线性随机地震反应和可靠性分析[J].地震工程与工程振动,1992,12(2):59-68.
    [42]朱杰江,郑琼,田堃.非线性剪力墙单元模型的改进及其应用[J].上海大学学报(自然科学版),2009,15(3):316-319.
    [43]Linde P, Bachmann H. Dynamic modeling and design of earthquake-resistantwalls[J]. Earthquake engineering and structural dynamic,1994,23:1331-1350.
    [44]Vulcano A, Bertero V V, Colotti V. Analytical modeling R/C structural walls[C].//Proceedings of9th World conference on earthquake engineering, Tokyo, Kyoto,1988.
    [45]谢凡,沈蒲生.一种新型剪力墙多垂直杆单元模型:原理和应用[J].工程力学,2010,27(9):154-160.
    [46]Ghobarah A, Youssef M. Modelling of reinforced concrete structural walls[J].Engineering Structures,1999,21:912-923.
    [47]Colotti V. Shear behavior of R/C structural walls[J]. Journal of structuralengineering, ASCE,1993,119(3):728-746.
    [48]吕西林,卢文生.纤维墙元模型在剪力墙结构非线性分析中的应用[J].力学季刊,2005,26(1):72-80.
    [49]Saiidi M, Sozen M A. Simple and complex models for nonlinear seismic responseof reinforced concrete structures[R]. Structural research series No.465, Universityof Illinois, Urbana(Illinois), USA,1979.
    [50]Saiidi M. User’s manual for the LARZ family. Structural research series No.466.University of Illinois, Urbana(Illinois), USA,1979.
    [51]Hidalgo P, Jordan R, Ledezma C. Experimental study of reinforced concrete wallsender shear failure[C].//Proceedings of the sixth US national conference onearthquake engineering, Seattle, Washington,1998.
    [52]Hidalgo P, Jordan R, Martinez M. An analytical model to predict the inelasticseismic behavior of shear wall, reinforced concrete structures[J]. EngineeringStructures,2002,24:85-98.
    [53]缪志伟,陆新征,叶列平.分层壳单元在剪力墙结构有限元计算中的应用[J].建筑结构学报(增刊),2006,27(S2):932-935.
    [54]林旭川,陆新征,缪志伟等.基于分层壳单元的RC核心筒结构有限元分析和工程应用[J].土木工程学报,2009,42(3):49-54.
    [55]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [56]Lemaitr J. A course on damage mechanics[M].1Berlin: Spring Verlag,1992.
    [57]Lemaitre J.Evaluation of dissipation and damage in metals submitted to dynamicloading[C].//Proceedings of first international conference, Kyoto, Japan,1971.
    [58]Fatemi A, Yang L. Cumulative fatigue damage and life prediction theories: asurvey of the state of the art for homogeneous materials[J]. International Journalof Fatigue,1998,20(1):9-34.
    [59]Rousselier G. Finite Deformation Constitutive Relations including DuctileFracture Damage[C].//Proceedings of the IUTAM Symposium on ThreeDimensional Constitutive Relations and Ductile Fracture, North-HollandPub.Company,1980.
    [60]Lemeaitre J, Chaboche J L. Mechanics of Solid Materials[M]. Cambridge:Cambridge University press,1990.
    [61]Lemaitre J. One damage law for different mechanisms[J]. ComputationalMechanics,1997,20(1-2):84-88.
    [62]Sidoroff F. Description of anisotropic damage application to elasticity[J]. Physicalnonlinearities in structural analysis in IUTAM Colloquium,1981:237-244.
    [63]Chaboche J L. Continuum Damage Mechanics: Present State and FutureTrends[J]. Nuclear engineering and design,1987,105(1):19-33.
    [64]Chow C L, Wang J. An anisotropic theory of continuum damage mechanics forductile fracture[J]. Engineering fracture mechanics,1987,27:547-558.
    [65]Chow C L, Wang J. An anisotropic theory of elasticity for continuum damagemechanics[J]. Inernational journal of fracture,1987,33:3-16.
    [66]Zuyan Shen, Bao Dong. An experiment-based cumulative damage mechanicsmodel of steel under cyclic loading[J]. Advances in Structural Engineering,1997(1):39-46.
    [67]宋振森,超高层钢结构考虑损伤和损伤累积分析方法[D].上海:同济大学博士后论文,2004.
    [68]Bonora N. A nonlinear CDM model for ductile failure[J]. Engineering FractureMechanics,1997,58(1-2):11-28.
    [69]Pirondi A, Bonora N. Modeling ductile damage under fully reversed cycling[J].Computational Materials Science,2003,26:129-141.
    [70]Bonora N, Gentile D, Pirondi A, et al. Ductile damage evolution under triaxialstate of stress: theory and experiments[J]. International Journal of Plasticity,2005,21(5):981-1007.
    [71]Pirondi A, Bonora N. Simulation of failure under cyclic plastic loading bydamage models[J]. International Journal of Plasticity,2006,22(11):2146-2170.
    [72]Bonora N, Ruggiero A, Gentile D, et al. Practical applicability and limitations ofthe elastic modulus degradation technique for damage measurements in ductilemetals[J]. An International Journal For Experimental Mechanics,2010,10(1):1-14.
    [73]Mazars J. A description of micro-and macro-scale damage of concretestructures[J]. Engineering Fracuture Mechanics,1986,25(5-6):729-737.
    [74]Mazars J, Pijaudier-Cabot G. Continous damage theory: Application toconcrete[J]. ASCE Journal of Engineering Mechanics,1989,115(2):345-365.
    [75]Cervera M, Oliver J, Faria R. Seismic evaluation of concrete dams via continuumdamage models[J].1995,24(9):1225-1245.
    [76]Faria R, Oliver J,Cervera M. Modeling material failure in concrete structuresunder cyclic actions[J].Journal of Structural Engineering,2004,130(12):1997-2005.
    [77]Comi C, Perego U. Fracture energy based bi-dissipative damage model forconcrete[J].2001,38(36-37):6427-6454.
    [78]李正,李忠献.一种修正的混凝土弹性损伤本构模型及其应用[J].工程力学,2011,28(8):145-150.
    [79]Ju J W.On energy-based coupled elastoplastic damage theories: constitutivemodeling and computational aspects[J].International Journal of Solids andStructrues,1989,25(7):803-833.
    [80]Yazdani S, Schreyer H L. Combined plasticity and damage mechanics model forplain concrete[J]. ASCE Journal of Engineering Mechanics,1990,116(7):1435-1450.
    [81]Faria R, Oliver J. A rate dependent plastic-damage constitutive model for largescale computations in concrete structures[M]. Spain: CIMNE,1993.
    [82]Lee J, Fenves G L. Plastic-damage model for cyclic loading of concretestructures[J].ASCE Journal of Engineering Mechanics,1998,124(8):892-900.
    [83]Lee J, Fenves G L. A plastic-damage concrete model for earthquake analysis ofdams[J]. Earthquake Engineering and Structural Dynamics,1998,27(9):937-956.
    [84]Gatuingt F, Pijaudier G. Coupled damage and plasticity modeling in transientdynamic analysis of concrete[J]. International Journal for Numerical andAnalytical Methods in Geomechanics,2002,26(1):1-24.
    [85]Jefferson AD. Craft-a plastic-damage-contact model for concrete. I Model theoryand thermodynamic consideration[J]. International Journal of Solids andStructures,2003,40(22):5973-5999.
    [86]Jefferson AD. Craft-a plastic-damage-contact model for concrete. II Modelimplementation with implicit return-mapping algorithm and consistent tangentmatrix[J]. International Journal of Solids and Structures,2003,40(22):6001-6022.
    [87]Jason L, Huerta A, Pijaudier-Cabot G, et al. An elastic plastic damageformulation for concrete: Application to elementary tests and comparison with anisotropic damage model[J].Computer Methods in Applied mechanics andengineering,2006,195(52):7077-7092.
    [88]李杰,吴建营.混凝土弹塑性损伤本构模型研究I:基本公式[J].土木工程学报,2005,38(9):14-20.
    [89]吴建营,李杰.混凝土弹塑性损伤本构模型研究II:数值计算和试验验证[J].土木工程学报,2005,38(9):21-27.
    [90]Grassl P, Jirasek M. Damage-plastic model for concrete failure[J]. InternationalJournal of Solids and Structures,2006,43(22-23):7166-7196.
    [91]Voyiadjis GZ, Taqieddin ZN, Kattan PI. Anisotropic damage-plasticity model forconcrete[J]. International Journal of Plasticity,2008,24(10):1946-1965.
    [92]Cicekli U, Voyiadjis GZ, Abu Al-Rub RK. A plasticity and anisotropic damagemodel for plain concrete[J]. International Journal of Plasticity,2007,23(10-11):1874-1900.
    [93]Salari M R, Saeb S, Willam KJ. Patchet SJ, Carrasco RC. A coupled elastoplasticdamage model for geomaterials[J]. Computer Methods in Applied Mechanics andEngineering,2004,193(27-29):2625-2643.
    [94]李正,李忠献.基于修正弹塑性损伤模型的钢筋混凝土高桥墩地震损伤分析[J].土木工程学报,2011,44(7):71-76.
    [95]Cervenka J, Papanikolaou V K. Three dimensional combined fracture-plasticmaterial model for concrete[J]. International Journal of Plasticity,2008,24(12):2192-2220.
    [96]Oritz M A. constitutive theory for the inelastic behavior of concrete[J]. Mechanicsof Materials,1985,4(1):67-93.
    [97]Imran I, Pantazopoulu S J. Plasticity model for concrete under triaxialcompression[J]. Journal of Engineering Mechanics,2001,127(3):281-290.
    [98]Lubliner J, Oliver J, Oller S, Onate E.A plastic-damage model for concrete[J].International Journal of Solids and Structures,1989,25(3):299-326.
    [99]Kratzig WB, Polling R. An elasto-plastic damage model for reinforced concretewith minimum number of material parameters[J]. Computers and Structures,2004,82(15-16):1201-1215.
    [100]Anaiev S, Ozbolt J. Plastic-damage model for concrete in principal directions[C]//Fracture Mechanics of Concrete Structures. Colorado, USA:2004:271-278.
    [101]Menzel A, Ekh M, Runesson K, Steinmann P. A framework for multiplicativeelastoplasticity with kinematic hardening coupled to anisotropic damage[J].International Journal of Plasticity,2005,21(3):397-434.
    [102]Newmark N M. An Engineering Approach to Blast Resistant Design[J].Transaction, ASCE,1956,121(16):45-65.
    [103]Powell G H, Allchabadi R. Seismic damage prediction by deterministic method:Concept and procedures[J]. Earthquake Engineering and Structural Dynamics,1998,16:719-734.
    [104]Shiata A, Sezoen M A. The Substitute Structure Method for Seismic DesignRC[J]. Journal of the structural division, ASCE,1976,1(102):1-18.
    [105]Housner G W. Limit design of structures to resist earthquake[C].//Proceedingsof1st World conference on earthquake engineering,1956.
    [106]Gosain N K, Brown R H, Jirsa J O. Shear requirement for load reversals on RCmembers[J]. Journal of structural engineering,1977,103(7):1461-1476.
    [107]Dawin D, Nmai CK. Energy dissipation in RC Beams under cyclic load[J].Journal of structural engineering,1986,112(8):1829-1846.
    [108]Mccabe S L, Hall W J. Damage and reserve capacity of structures subjected tostrong earthquake ground motion[C].//Proceedings of10th World conference onearthquake engineering,1992.
    [109]刁波,李淑春,叶英华.反复荷载作用下混凝土异形柱结构累积损伤分析及试验研究[J].建筑结构学报,2008,29(1):57-63.
    [110]曲哲,叶列平.基于有效累积滞回耗能的钢筋混凝土构件承载力退化模型[J].工程力学,2011,28(6):45-51.
    [111]Lai S P, Biggs J M. Inelastic response spectra for a seismic building design[J].Journal of structural division, ASCE,1980,106(6):1295-1310.
    [112]Banon H. Seismic Damage in RC Frames. ASCE,1981,107(8):69-106.
    [113]Park Y J, Ang A H S. Mechanistic Seismic Damage Model for ReinforcedConcrete[J]. Journal of Structural Engineering, ASCE,1985,111(4):722-739.
    [114]Park Y J, Ang A H S, Wen Y K. Seismic Damage Analysis of ReinforcedConcrete Buildings[J]. Journal of Structural Engineering, ASCE,1985,111(4):740-757.
    [115]Kumar S, Usami T. A Note on Evaluation of Damage in Steel Structures underCyclic Loading[J]. Journal of Structural Engineering, JSCE,1994,40:177-188.
    [116]Mehanny S S F, Deierlein G G. Seismic damage and collapse assessment ofcomposite moment frames[J]. Journal of structural engineering ASCE,2001,127(9):1045-1053.
    [117]李军旗,赵世春.钢筋混凝土构件损伤模型[J].兰州铁道学院学报,2000,7(1):25-27.
    [118]吕大刚,王光远.基于损伤性能的抗震结构最优设防水准的决策方法[J].土木工程学报,2001,7(1):44-49.
    [119]王东升,冯启民,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J].土木工程学报,2004,37(11):41-49.
    [120]陈林之,蒋欢军,吕西林.修正的钢筋混凝土结构Park-Ang损伤模型[J].同济大学学报(自然科学版),2010,38(8):1103-1107.
    [121]王振宇,刘晶波.建筑结构地震损伤评估的研究进展[J].世界地震工程,2001,17(3):43-48.
    [122]Kunnath S K, Reinhorn A M, Park Y J. Analytical modeling of inelastic seismicresponse of RC structures[J]. Journal of Structural Engineering, ASCE,1990,116(4):996-1017.
    [123]吴波,欧进萍.钢筋混凝上结构在主余震作用下的反应与损伤分析[J].建筑结构学报,1993,14(10):45-53.
    [124]杨栋,丁大钧,宰金珉.钢筋混凝土框架结构的地震损伤分析[J].南京建筑工程学院学报,1995,35(4):8-13.
    [125]FEMA.FEMA274, NEHRP commentary on the guidelines for the seismicrehabilitation of buildings[R].Washington, D.C.,1997.
    [126]Ghobarah A, Abou-Elfath H, Biddah A. Response based damage assessment ofstructures[J]. Earthquake Eng Struct Dyn,1999,28:79-104.
    [127]胡晓斌.新型多面体空间刚架结构抗连续倒塌性能研究[D].北京:清华大学,2007
    [128]Nafady A M. System safety performance metrics for skeletal structues[J].Journal of structural engineering,2008,134(3):499-504.
    [129]Lee K, Foutch DA. Performance Evaluation of New Steel Frame Buildings forSeismic Loads[J]. Earthquake Engineering and Structural Dynamics,2002,31(3):653-670.
    [130]Ibarra L F. Krawinkler H. Global Collapse of Frame Structures under SeismicExcitations [R]. Final report on PEER Project3192002,2005.
    [131]Ayoub A,Mijo C,Chenouda M. Seismic Fragility Analysis of DegradingStructural Systems[C].//Proc13th World Confc. on Earthquake Engineering,Canada, Vancouver B C,2004.
    [132]Vamvatsikos D, Cornel C A. Incremental Dynamic Analysis. Earthquake[J].Engineering and Structural Dynamics,2002,31(3):491-514.
    [133]Vamvatsikos D, Cornel C A. Applied Incremental Dynamic Analysis[J].Earthquake Spectra,2004,20(2):523-553.
    [134]Vamvatsikos D, Cornel C A. Direct Estimation of Seismic Demand andCapacity of Multidegree-of-freedom Systems through Incremental DynamicAnalysis of Single Degree of Freedom Approximation[J]. Journal of StructuralEngineering,2005,131(4):589-599.
    [135]张雷明.灾害荷载下结构倒塌机制研究[D].北京:清华大学,2000.
    [136]刘晶波,谷音,牛惠敏等.大空间砖-混凝土组合结构弹塑性地震反应与计算倒塌研究[J].建筑结构学报,2006,27(3):78-83.
    [137]沈聚敏,王传志,江见鲸.钢筋混凝土有限元分析与板壳极限分析[M].北京:清华大学出版社,1993.
    [138]陆新征,江见鲸.世界贸易中心飞机撞击后倒塌过程的仿真分析[J].土木工程学报,2001,34(6):8-10.
    [139]师燕超.爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理
    [D].天津:天津大学,2009.
    [140]Hakuno M, Meguro K. Simulation of Concrete-frame Collapse due toDynamic[J]. Loading. Engineering Mechanic,1993,119(9):1709-1723.
    [141]Meguro K, Hakuno M. Application of the Extended Distinct Element Methodfor Collapse Simulation of a Double-deck Bridge[J]. Structural Engineering andEarthquake Engineering,1994,10(4):175-185.
    [142]秦东,范立础.钢筋混凝土结构倒塌全过程的数值模拟[J].同济大学学报,2001,29(1):80-83.
    [143]宣纲,顾祥林,吕西林.强震作用下混凝土框架结构倒塌过程的数值分析[J].地震工程与工程振动,2003,23(6):24-30.
    [144]金伟良,方韬.钢筋混凝土框架结构破坏性能的离散单元法模拟[J].工程力学,2005,(4):44-48.
    [145]周健,屈俊童,贾敏才.混凝土框架倒塌全过程的颗粒流数值模拟地震研究[J].工程力学,2005,28(3):288-293.
    [146]顾祥林,彭斌,黄庆华.结构抗震分析中的计算机仿真技术[J].自然灾害学报,2007,16(2):92-100.
    [147]Munjiza A, Owen D R J, Bicanic N. A Combined Finite-discrete ElementMethod in Transient Dynamics of Fracturing Solids[J]. Engineering Computer,1995,12:145-174.
    [148]Krieg RD, Key SW. Implementation of a time dependent plasticity theory intostructural computer programs[C]. In Stricklin JA and Saczlski KJ editors,Constitutive equations in viscoplasticity, Computational and engineering aspects,ASME, New York, N. Y.,1976,125-137.
    [149]李永池,潭福利,郭扬等.金属损伤演化方程和层裂准则的确定[J].宁波大学学报,2003,16(4):442-446.
    [150]李忠献,刘志侠,丁阳.爆炸荷载作用下钢结构的动力响应与破坏模式[J].建筑结构学报,2008,29(8):106-111.
    [151]MacRae GA, Kawashima K. Seismic behavior of hollow stiffened steel bridgecolumns[J]. Journal of Bridge Engineering,2001,6(2):110-119.
    [152]Wataba M, Fukuzawa R, Chiba O, et al. Study on load-deflection characteristicsof heavily reinforced concrete shear walls[C].//Trans.10thInt. Conf. on Struct.Mech. In Reactor Tech, AASMIRT,1989.
    [153]Uniform Building Code for wind and seismic[S].1997.
    [154]黄志华,吕西林,周颖.钢筋混凝土剪力墙的变形能力及基于性能的抗震设计[J].地震工程与工程振动,2009,29(5):88-93.
    [155]Priestley M J N, Kowalsky M J. Aspects of drifts and ductility capacity ofrectangular cantilever structural walls[J]. Bulletin of the New Zealand nationalsociety for earthquake engineering,1998,31(2):73-85.
    [156]Kowalsky M J. RC structural walls design according to UBC anddisplacement-based methods[J]. Journal of structural engineering,2001,127(5):506-515.
    [157]梁兴文,邓明科,张兴虎等.高性能混凝土剪力墙性能设计理论的试验研究[J].建筑结构学报,2007,28(5):80-88.
    [158]Lestuzzi P, Wenk T, Baumann H. Dynamic tests of RCstructural walls on theETH earthquake simulator[R]. Bericht No.240, ISBN3-7643-6162-X, IBK,1999.
    [159]Malvar L, Craford J E, Morrill K. K&C concrete material model, release Ⅲ:automated generation of material model input[R]. Karagozian&Case StructuralEngineers,1999.
    [160]Luccioni B M, Lopez D E, Danesi R F. Bond-slip in reinforced concreteelements[J]. Journal of structural engineering,2005,131(11):1690-1698.
    [161]Nishida H, Unjoh S. Dynamic response characteristic of reinforced concretecolumn subjected to bilateral earthquake ground motions[A].13thworldconference on earthquake engineering[C]. Canada Vancouver,2004.
    [162]Weatherby J H. Investigation of bond slip between concrete and steelreinforcement under dynamic loading conditions Mississippi[R]. Mississippi StateUniversity,2003.
    [163]牛荻涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型[J].地震工程与工程振动,1996,16(4):44-54.
    [164]刘伯权.抗震结构的破坏准则及可靠性分析[M].北京:中国建材工业出版社,1996.
    [165]Applied Technology Council. Quantification of building seismic performancefactors, ATC-63[R]. Redwood City, CA: FEMA,2008.
    [166]Karim K R, Yamazaki F. Effect of earthquake ground motions on fragilitycurves of highway bridge piers based on numerical simulation[J]. Earthquakeengineering and structural dynamics,2001,30:1839-1856.
    [167]Sucuoglu H, Yucemen S, Gezer A, et al. Statistical evaluation of the damagepotential of earthquake ground motions[J]. Structural Safety,1999,20(4):357-378.
    [168]熊仲明,史庆轩.钢筋混凝土框架结构倒塌破坏能量分析的研究[J].振动与冲击,2003,22(4):8-13.
    [169]Ohtori Y, Christenson RE, Spencer Jr BF, et al. Benchmark Control problemsfor seismically excited nonlinear buildings[J]. Journal of Engineering Mechanics,2004,130(4):366-385.
    [170]瞿岳前,梁兴文,田野.基于能量分析的地震损伤性能评估[J].世界地震工程,2006,22(1):110-112.
    [171]Wang M L, Shan S P. Reinforced concrete hysteretic model based on thedamage concept[J]. Earthquake Engineering and Structural Dynamics,1987,15(8):993-1003.
    [172]Chung Y S, Meyer C, Shinozuka M. Seismic damage assessment of RCmembers[R]. NUCC Report87-0022, NY:State University of New York atBuffalo,1987.
    [173]Kratzig W B, Meskuris M. Nonlinear seismic analysis of reinforced concreteframes[R]. Earthquake Prognostics, Vogel and Brandes, Vieweg and Sohn,Brauschweig,1987,453-462.
    [174]Roufaiel M S L, Meyer C. Analytical modeling of hysteretic behavior of R/Cframes[J]. Journal of Structural Engineering, ASCE,1987,113(3):429-444.
    [175]Zhang X, Wong K K F, Wang Y. Performance assessment of moment resistingframes during earthquakes based on the force analogy method[J]. EngineeringStructures,2007,29(10):2792-2802.
    [176]Colombo A, Negro P. A damage index of generalised applicability[J].Engineering Structures,2005,27(8):1164-1174.
    [177]胡聿贤.地震工程学[M].北京:地震出版社,2006.
    [178]姚谦峰,苏三庆.地震工程[M].陕西:陕西科学技术出版社,2001.
    [179]陆铁坚,秦素娟,罗应松等.高层钢—混凝土混合结构拟动力试验研究[J].建筑结构学报,2009,30(3):27-35.
    [180]陆铁坚,秦素娟.高层钢—混凝土混合结构地震作用下的能量反应分析[J].计算力学学报,2010,27(3):489-495.
    [181]JGJ99-98.高层民用建筑钢结构技术规程[S].中国建筑工业出版社,1998.
    [182]GB50010-2010.混凝土结构设计规范[S].中国建筑工业出版社,2010.
    [183]Sabnis G M, Harris H G, White R N, et al. Structural modeling and experimentaltechniques[M].Prentice-hall inc, Englewood Cliffs, N.J.,1983.
    [184]刘习军,贾启芬,张文德.工程振动与测试技术[M].天津:天津大学出版社,1999.
    [185]Park S.W., Yen W. P., Cooper J. D. et. A comparative study of U.S.-Japanseismic design of highway bridges: II shake-table model tests[J]. EarthquakeSpectra,2003,19(4):933–958.
    [186]GB50011-2010.建筑抗震设计规范[S].中国建筑工业出版社,2010.
    [187]李正.复杂应力条件下混凝土损伤本构模型及钢筋混凝土桥梁地震损伤分析[D].天津:天津大学,2010.
    [188]Farai R, Pouca N V, Delgado R. Seismic behavior of a R/C wall: numericalsimulation and experimental validation[J]. Journal of Earthquake Engineering,2002,6(4):473-498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700