开口腔内耦合换热的模拟及其解的非线性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用数值方法,研究了开口腔内导热、表面辐射、自然对流的耦合换热问题。电子电气设备的冷却、盾构热环境控制等大量的工程问题,都可以抽象为这种开口腔的耦合换热问题。由于实际工程中要预测发热体和环境的温度,以设计合理的设备结构或创造合适的环境,需要查明这种具有开口的空腔内在各种复杂条件下导热对流和辐射多种换热方式耦合的流动和换热的机理和规律。因此,对这种理论模型进行的研究,具有广泛的工程应用价值。除了工程背景外,这种开口腔内耦合的流动与换热,还表现出了振荡、分岔、混沌等丰富的非线性特性;对其流动和换热机理和特性进行研究,分析其非线性动力学特征,对于更深刻地认识自然,揭示传热学规律和丰富传热学理论,还有更深刻和重要的理论意义。
     本文在各种复杂条件下,采用具有QUICK差分格式的SIMPLE方法对开口腔内耦合换热问题进行了数值模拟。首先对具有恒热流和孤立热源的开口腔内自然对流换热进行了数值模拟,给出了相应边界条件和孤立热源的数值处理方法;然后进一步发展处理导热与对流耦合,导热、对流、表面辐射耦合,导热、对流、表面辐射及内部孤立热源耦合等各种较复杂情况的数值处理方法,并对相对应的各种情况进行数值计算;继而,对在各种不同条件下得到的数值模拟结果分析其流动和换热的机理和规律,并进一步进行非线性特性的分析。最后,作为应用,本文对以太阳能热烟囱发电系统为背景的一个模型进行了数值模拟。
     本文获得了如下研究结果:
     1.对各种条件下的开口腔内流动换热问题建立了计算模型。给出了采用整体求解方法时,处理表面辐射、导热和对流耦合问题的数值处理方法。
     2.对恒热流加热开口腔的数值模拟结果表明:在一定Rayleigh数下,存在使腔内与环境质量交换达到最大的腔体深度高度比值。对具有孤立内热源的开口腔自然对流的数值模拟结果表明:在腔体倾斜角不变时,平均Nu数为Ra数的增函数。当Ra>106时,平均Nu数在φ=45°时达到最大值。
     3.对导热和对流耦合的倾斜开口腔内的流动和换热进行的数值模拟计算结果表明:对于一个恒壁温加热的耦合开口腔体,无论其倾斜角度是多少,当固体导热系数增大到一定值时,换热就不能被明显地增强;Ra数较小时,换热对倾斜角度的变化较为敏感。随着倾斜角度的减小,换热先增大后减小继而再略微增大。而Ra数较大时,换热经历一个先减弱后增强的过程;对于开口竖直向上的开口腔体,存在一个临界Ra数使腔体内部的流动形式发生变化的临界的Ra数,在本文计算的几何和物理条件下,这个临界Ra数约为11948。
     4.对恒热流加热开口腔的耦合换热稳态结果的分析表明:随着导热系数比值(kr)的增大,平均总Nut数也随之增长。在kr超过100时,继续提高导热性能对总体换热的增强效果就不显著了。与无辐射换热的情况相比,有辐射换热时的总平均Nut数增加了大约54.1%到64.0%;
     5.对恒壁温加热开口腔的耦合换热非稳态过程分析表明:对一个固定的Ra和kr取值组合,存在一个临界发射率εc。当ε≥εc时,流动与换热的解为非稳态,具体为周期性振荡解或者混沌解。在下壁面形成的热羽流和其相应产生的二次涡流是流动和换热振荡的原因,并且热羽流和二次涡流形成的周期性与Nu数的周期性相对应。
     6.对耦合换热计算中出现的三种不同性质的解进行了功率谱分析。对数值模拟解得的平均总Nut数时间序列,采用C-C算法计算嵌入维数和延迟时间,进行了相空间的重构。在重构了的相空间基础上,采用小数据量法求得了不同工况下的最大Lyapunov指数。
     7.对太阳能热烟囱系统内流动换热的模拟结果表明,随着加热热流密度的增加,系统空气流量增加,系统出力增加。随着入口高度的增加,系统空气流量相应减小,即系统出力减小。
     以上获得的研究成果,可为相关工程问题及进一步的理论分析提供参考。
     本文得到了国家自然科学基金面上项目(50576057,50876067),上海教委科研创新重点项目(10ZZ91)和上海市重点学科建设项目资助(J50501)的资助。
Combined heat transfer by natural convection-conduction and surface radiation inan open cavity is studied in this paper. Numerous engineering problems can beabstracted to the combined flow and heat transfer problems such as electronic coolingand thermal environment controlling for shield tunneling. The requirement of predictingthe temperature of heating source and its environment for designing the devices orcontrolling the surroundings asks for the investigate of the mechanism and laws on thecombined flow and heat transfer by natural convection conduction and surface radiationunder various complex conditions. Therefore, the study on the theoretical models hassignificant interest in a range of engineering application. Beside the engineeringapplications, the problem of nature convection in open cavities has abundantcharacteristics of nonlinear dynamic system such as the oscillation and bifurcation. Theanalysis of the nonlinear dynamic characteristic is of great significance for profoundunveiling the flow and heat transfer in open cavities.
     Numerical study of natural convection in open cavity under various complexconditions is carried out, using SIMPLE algorithm with QUICK-type discretizationscheme. First, two problems of the natural convections in an open cavity are simulated;one is under a constant flux and the other one is with a discrete heater. The numericalmethod for boundary condition and discrete heater is given. Second, the numericalmethod for natural convection combined with conduction, natural convection combinedwith conduction and surface radiation, natural convection combined withconduction-surface radiation and discrete heater are developed. Then, the flow and heattransfer under various conditions are simulated. Their mechanism and nonlinearcharacteristics are analyzed. Last, a model of flow and heat transfer in the solar chimneysystem is numerically simulated as an application.
     The results of the studies are as following:
     1. Simulation models under various conditions are built. Numerical method forcoupling convection conduction and surface radiation is given under whole-domaincalculation method.
     2. For pure natural convection under a constant flux, the numerical results indicatethat: for the1st problem, at a certain Ra, there is a critical B to maximize the masstransfer between the cavity and ambient; for the natural convection in an open cavity with an isolated heating source, the numerical results indicate that Nu is anincreasing function of Ra under a constant inclined angle; when Ra>106, Nureaches its maximum at φ=45°.
     3. The numerical results of natural convection combined with conduction in inclinedopen cavities indicate that, the heat transfer cannot be enhanced further when theconductivity exceed a certain value. The flow pattern in an upward opening cavityis bifurcated at a critical Rac, the Racis about11948under the conditions ofcalculation geometry.
     4. The numerical results of heat transfer of the cavity with constant flux indicate that,the heat conduction of conductive wall increases total heat transfer, but its effect isclose to a limit when conductivity ratio exceeds100. The sum of increasing effectof radiation and conduction is ranged from54.1%to64.0%.
     5. The numerical results of heat transfer of the cavity with isothermal wall that, for afixed combination of Ra and kr, there is a critical emissivity εc, when ε≥εcthesolution of the flow and heat transfer is unsteady. For the unsteady state, the flowand heat transfer are periodic oscillating or chaotic. The oscillations of flow andheat transfer are caused by the thermal plumes at the bottom wall. If the formationof thermal plumes is periodic.
     6. Power Spectra Analysis is carried out for the unsteady-state solution of coupledheat transfer in open cavity. The phase spaces of the time series of averaged totalNu is reconstructed with C-C method and the largest Lyapunov Exponents iscalculated based on the reconstructed phase space using Small Data Sets method.
     7. Numerical simulation of flow and heat transfer in solar chimney system indicatethat the output of solar chimney and the mass flux are increasing functions of theheat flux of the bottom, and the entrance height is about20m to maximize the massflux.
     The results can be further used for the engineering applications and theoreticalanalysis.The financial support from the Chinese National Natural Science Foundationunder Grants50576057and50876067, Shanghai Education Commission Key Project ofScientific Research No.10ZZ91and Shanghai Key Subjects Construction Project No.J50501.
引文
[1] Kettleborough C.F. Transient laminar free convection between heated vertical platesincluding entrance effects. International Journal of Heat and Mass Transfer,1972,15(5):883-896.
    [2] Sane N.K. and Sukhatme S.P. Natural convection heat transfer from horizontalrectangular fin arrays.5th International Heat Transfer Conference.1974.
    [3] Jacobs H.R., Mason W.E. and Hikida E.T. Natural convection in open rectangularcavities. Proceedings of the Fifth International Conference.1974. Tokyo, Japan.
    [4] Jacobs H.R. and Mason W.E. Natural convection in open rectangular cavities withadiabatic sidewalls. Proceedings of1976Heat Transfer and Fluid MechanicsInstitute Meeting. California: Stanford University Press,1976:33-46.
    [5] Vafai K. and Ettefagh J. The effects of sharp corners on buoyancy-driven flowswith particular emphasis on outer boundaries. International Journal of Heat andMass Transfer,1990,33(10):2311-2328.
    [6] Le Quere P., Humphrey J.A.C. and Sherman F.S. Numerical calculation ofthermally driven two-dimensional unsteady laminar flow in cavities of rectangularcross section. Numerical Heat Transfer, Part A: Applications,1981,4(3):249-283.
    [7] Penot F. Numerical calculation of two-dimensional natural convection in isothermalopen cavities. Numerical Heat Transfer, Part A: Applications,1982,5(4):421-437.
    [8] Humphrey J.A.C. and To W.M. Numerical simulation of buoyant, turbulentflow—II. Free and mixed convection in a heated cavity. International Journal ofHeat and Mass Transfer,1986,29(4):593-610.
    [9] Chan Y.L. and Tien C.L. Laminar Natural Convection in Shallow Open Cavities.Journal of Heat Transfer,1986,108:305-309.
    [10] Chan Y.L. and Tien C.L. Laminar natural convection in shallow open cavities.21stASME/AIChE national heat transfer conference.1983. Seattle, WA, USA.
    [11] Chan Y.L. and Tien C.L. A numerical study of two-dimensional laminar naturalconvection in shallow open cavities. International Journal of Heat and MassTransfer,1985.28(3):603-612.
    [12] Chan Y.L. and Tien C.L. A numerical study of two-dimensional natural convectionin square open cavities. Numerical Heat Transfer, Part A: Applications,1985.8(1):65-80.
    [13] Sernas V. and Kyriakides I. Natural convection in an open cavity. in Proceedings ofthe Seventh International Conference.1982. Munich, West Germany: Washington,DC, Hemisphere Publishing Corp.
    [14] Miyamotoa M., Kuehnb T.H., Goldsteinb R.J. and Katoha Y. Two-dimensionallaminar natural convection heat transfer from a fully or partially open square cavity.Numerical Heat Transfer, Part A: Applications,1989,15(4):411-430.
    [15] Cao Y. and Faghri A. Heat transfer in liquid metals by natural convection.International Journal of Heat and Mass Transfer,1990,33(6):1367-1370.
    [16] Mohamad A.A. Natural convection in open cavities and slots. Numerical HeatTransfer, Part A: Applications,1995,27(6):705-716.
    [17] Bejan A. and Kimura S. Penetration of free convection into a lateral cavity. Journalof Fluid Mechanics,1981,103:465-478.
    [18] Cha S.S. and Choi K.J. An interferometric investigation of open-cavitynatural-convection heat transfer. Experimental Heat Transfer,1989,2(1):27-40.
    [19] Chakroun W., Elsayed M.M. and Al-Fahed S.F. Experimental Measurements ofHeat Transfer Coefficient in a Partially/Fully Opened Tilted Cavity. Journal of SolarEnergy Engineering,1997,119(4):298-303.
    [20] Chakroun W. Effect of Boundary Wall Conditions on Heat Transfer for FullyOpened Tilted Cavity. Journal of Heat Transfer,2004,126(6):915-923.
    [21] Müftüo lua A. and Bilgen E. Conjugate heat transfer in open cavities with adiscrete heater at its optimized position. International Journal of Heat and MassTransfer,2008,51(3-4):779-788.
    [22] Müftüo lua A. and Bilgen E. Natural convection in an open square cavity withdiscrete heaters at their optimized positions. International Journal of ThermalSciences,2008,47(4):369-377.
    [23] Polat O. and Bilgen E. Laminar natural convection in inclined open shallow cavities.International Journal of Thermal Science,2002,41(4):360-368.
    [24] Sezai I. and Mohamad A.A. Three-dimensional simulation of natural convection incavities with side opening. International Journal of Numerical Methods for Heat&Fluid Flow,1998,8(7):800-813.
    [25] Khanafer K. and Vafai K. Buoyancy-driven flow and heat transfer in open-endedenclosures: elimination of the extended boundaries. International Journal of Heatand Mass Transfer,2000,43(22):4087-4100.
    [26] Showole R.A. and Tarasuk J.D. Experimental and numerical studies of naturalconvection with flow separation in upward-facing inclined open cavities. Journal ofheat transfer,1993,115(3):592-605.
    [27] Skok H., Ramadhyani S. and Schoenhals R.J. Natural convection in a side-facingopen cavity. International Journal of Heat and Fluid Flow,1991,12(7):36-45.
    [28] Chen K.S., Humphrey J.A.C. and Sherman F.S. Free and Mixed Convective Flowof Air in a Heated Cavity of Variable rectangular Cross Section and Orientation.Philosophical Transactions of the Royal Society of London. Series A, Mathematicaland Physical Sciences,1985, A316:57-84.
    [29] Humphrey J.A.C., Sherman F.S. and Chen K.S. Experimental study of free andmixed convective flow of air in a heated cavity, Contract Report No.SAND84-8192.1985, Sandia National Laboratories, Livermore, CA.
    [30] Humphrey J.A.C., Sherman F.S. and To W.M. Numreical simulation of buoyantturbulent flow, in Contract Report No. SAND84-8180.1985, Sandia NationalLaboratories, Livermore, CA.
    [31] Hess C.F. and Henze R.H. Experimental investigation of natural convection lossesfrom open cavities. Journal of Heat Transfer1984,106(2):333-368.
    [32] Kraabel J.S. The effect of variable fluid properties on scale modeling. inASME-JSME Thermal Engineering Joint Conference.1983. Honolulu, Hawai.
    [33]林成先,辛明道.开口空腔中非稳态自然对流的传热问题.重庆大学学报,1994,17(2):67-71.
    [34]林成先,辛明道,张洪济.开口空腔内湍流自然对流与表面辐射的耦合传热.重庆大学学报,1991,14(6):1-7.
    [35] Angirasa D., PourquiM.J.B.M.é and Nieuwstadt F.T.M. Numerical study oftransient and steady laminar buoyancy-driven flows and heat transfer in a squareopen cavity. Numerical Heat Transfer, Part A: Applications,1992,22(2):223-239.
    [36] Angirasa D., Eggels J.G.M. and Nieuwstadt F.T.M., Numerical simulation oftransient natural convection from an isothermal cavity open on a side. NumericalHeat Transfer, Part A: Applications,1995,28(6):755-767.
    [37] Morini G.L. and Spiga M. Transient laminar natural convection along rectangularducts. International Journal of Heat and Mass Transfer,2001,44(24):4703-4710.
    [38] Vafai K. and Ettefagh J. Thermal and fluid flow instabilities in buoyancy-drivenflows in open-ended cavities. International Journal of Heat and Mass Transfer,1990,33(10):2329-2344.
    [39] Hasnaoui M., Bilgen E. and Vasseur P. Natural convection above an array of opencavities heated from below. Numerical Heat Transfer, Part A: Applications,1990,18(4):463-482.
    [40] Desrayaud G. and Lauriat G. A Numerical Study of Natural Convection in PartiallyOpen Enclosures with a Conducting Side-Wall. Journal of Heat Transfer,2004,126(1):76-83.
    [41] Polat O. and Bilgen E. Conjugate heat transfer in inclined open shallow cavities.International Journal of Heat and Mass Transfer,2003,46(9):1563-1573.
    [42] Balaji C. and Venkateshan S.P. Interaction of radiation with free convection in anopen cavity. International Journal of Heat and Fluid Flow,1994,15(4): p.317-324.
    [43] Dehghan A.A. and Behnia M. Combined Natural Convection–Conduction andRadiation Heat Transfer in a Discretely Heated Open Cavity. Journal of HeatTransfer,1996,118(1):56-64.
    [44] Hinojosaa J.F., Estradaa C.A., Cabanillasb R.E. and Alvarezc G. Numerical Studyof Transient and Steady-State Natural Convection and Surface Thermal Radiationin a Horizontal Square Open Cavity. Numerical Heat Transfer, Part A: Applications,2005,48(8):755-767.
    [45] Ramesh N. and Merzkirch W. Combined convective and radiative heat transfer inside-vented open cavities. International Journal of Heat and Fluid Flow,2001,22(2):180-187.
    [46] Singh S.N. and Venkateshan S.P. Numerical study of natural convection withsurface radiation in side-vented open cavities. International Journal of ThermalSciences,2004,43(9):865-876.
    [47] Lage J.L., Lim J.S. and Bejan A. Natural convection with radiation in a cavity withopen top end. Journal of heat transfer,1992,114(2):479-486.
    [48] Lauriat G. and Desrayaud G. Effect of surface radiation on conjugate naturalconvection in partially open enclosures. International Journal of Thermal Sciences,2006,45(4):335-346.
    [49] Abib A.H. and Jaluria Y. Numerical simulation of the buoyancy-induced flow in apartially open enclosure. Numerical Heat Transfer, Part A: Applications,1988,14(2):235-254.
    [50]夏吉良,辛明道,张洪济.部分开口空腔内自然对流传热的数值研究.重庆大学学报,1989,12(5):20-26.
    [51]夏吉良,辛明道,张洪济.局部内热源和外部加热同时作用时部分开口空腔内自然对流的数值研究.工程热物理学报,1991,12(1):69-73.
    [52] Elsayed M.M. and Chakroun W. Effect of Aperture Geometry on Heat Transfer inTilted Partially Open Cavities. Journal of Heat Transfer,1999,121(4):819-827.
    [53] Bilgen E. and Oztop H. Natural convection heat transfer in partially open inclinedsquare cavities International Journal of Heat and Mass Transfer,2005,48(8):1470-1479.
    [54]陶文铨.数值传热学.西安:西安交通大学出版社,1988.
    [55] S.V. Patankar著,张政译.传热与流体流动的数值计算,北京:科学出版社,1984.
    [56] Hayase T., Humphrey J.A.C. and Greif R. A consistently formulated QUICKscheme for fast and stable convergence using finite-volume iterative calculationprocedures. Journal of Computational Physics,1992,93:108-118
    [57]杨茉,李学恒,陶文铨. QUICK与多种差分方案的比较.工程热物理学报,1999,20(5):593-597.
    [58]谈和平.红外辐射特性与传输的数值计算:计算热辐射学.哈尔滨:哈尔滨工业大学出版社,2006.
    [59]刘林华,谈和平.梯度折射率介质内热辐射传递的数值模拟.北京:科学出版社,2006.
    [60]杨世铭,陶文铨.传热学(第四版).北京:高等教育出版社,2006.
    [61]黄润生,黄浩.混沌及其应用(第二版).武汉:武汉大学出版社,2005.
    [62] Eckmann J.P. and Ruelle D. Ergodic theory of chaos and strange attractors.Reviews of Modern Physics,1985,57(3):617-656.
    [63] Farmer J.D. and Sidorowich J.J. Predicting chaotic time series, Physical ReviewLetters,1987,59:845.
    [64] Sano M. and Sawada Y. Measurement of the Lyapunov spectrum from a chaotictime series. Physical Review Letters,1985,55:1082-1085.
    [65] Wolf A., Swift J.B., Swinney H.L. and Vastano J.A. Determining Lyapunovexponents from a time series. Physica D,1985,16(3):285-317.
    [66] Grassberger P. and Procaccia I. Characterization of strange attractors. PhysicalReview Letters,1983,50(5):346-349.
    [67] Grassberger P. and Procaccia I. Estimation of the Kolmogorov entropy from achaotic signal. Physical review A (General physics),1983,28(4):2591-2593.
    [68]吕金虎,陆君安,陈世华.混沌时间序列分析及其应用.武汉:武汉大学出版社,2002.
    [69] Benettin G., Froeschle C. and Scheidecker J.P. Kolmogorov entropy of a dynamicalsystem with increasing number of degrees of freedom. Physical review A (Generalphysics),1979,19(6):2454-2460.
    [70] Shimada I. and Nagashima T. A numerical approach to ergodic problem ofdissipative dynamical systems. Progress of Theoretical Physics,1979,61(6):1605-1616.
    [71] Sato S., Sano M. and Sawada Y. Practical methods of measuring the generalizeddimension and the largest Lyapunov exponent in high dimensional chaotic systems.Progress of Theoretical Physics,1987,77(1):1-5.
    [72] Abarbanel H.D.I., Brown R. and Kadtke J.B. Prediction in chaotic nonlinearsystems: methods for time series with broadband Fourier spectra. Physical ReviewA (Statistical Physics),1990,41:1782-180.
    [73] Casdagli M. Nonlinear prediction of chaotic time series. Physica D (NonlinearPhenomena),1989,35(3):335-356.
    [74] Deppisch J., Bauer H.U. and Geisel T. Hierarchical training of neural networks andprediction of chaotic time series. Physics Letters A,1991,158(1-2):57-62.
    [75] Ellner S., Gallant A.R., McCaffrey D. and Nychka D. Convergence rates and datarequirements for Jacobian-based estimates of Lyapunov exponents from data.Physics Letters A,1991,153(6-7):357-363.
    [76] Rauf F. and Ahmed H.M. Calculation of Lyapunov exponents through nonlinearadaptive filters. Proceedings IEEE International Symposium on Circuits andSystems, Singapore,1991,1:568–571.
    [77] Wales D.J. Calculating the rate loss of information from chaotic time seriesbyforecasting. Nature,1991,350:485-488.
    [78] Wright J. Method for calculating a Lyapunov exponent. Physical Review A(General Physics),1984,29(5):2924-2927.
    [79] Briggs K. An improved method for estimating Liapunov exponents of chaotic timeseries. Physics Letters A,1990,151(1-2):27-32.
    [80] Brown R., Bryant P. and Abarbanel H.D.I. Computing the Lyapunov spectrum of adynamical system from observed time series. Physical Review A,1991,43:2787-2806.
    [81] Eckmann J.P., Kamphorst S.O., Ruelle D. and Ciliberto S. Liapunov exponentsfrom time series. Physical Review A,1986,34(6):4971-4979.
    [82] Stoop R. and Parisi J. Calculation of Lyapunov exponents avoiding spuriouselements. Physica D: Nonlinear Phenomena,1991,50(1):89-94.
    [83] Zeng X., Eykholt R. and Pielke R.A. Estimating the Lyapunov-exponent spectrumfrom short time series of low precision. Physical Review Letters,1991,66(25):3229-3232.
    [84] Rosenstein M.T., Collins J.J. and DeLuca C.J. A practical method for calculatinglargest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena,1993,65(1-2):117-134.
    [85] Packard N.H., Crutchfield J.P., Farmer J.D. and Shaw R.S. Geometry from a TimeSeries. Physical Review Letters,1980,45(9):712-716.
    [86] Takens F. Detecting strange attractors in turbulence. Lecture Notes in Mathematics,1981,898:366-381
    [87]张筑生.微分动力系统原理.北京:科学出版社,1987.
    [88]陈士华,陆君安.混沌动力学初步.武汉:武汉水利电力大学出版社,1998.
    [89]张锁春.现代振荡反应的数学理论和数值方法.郑州:河南科学技术出版社,1991.
    [90] Kim H.S., Eykholt R. and Salas J.D. Nonlinear dynamics, delay times, andembedding windows. Physica D: Nonlinear Phenomena,1999,127:48–60.
    [91] Rosenstein M.T., Collins J.J. and De Luca C.J. Reconstruction expansion as ageometry-based framework for choosing proper delay times. Physica D,1994,73(1-2):82-98.
    [92] Martinerie J.M., Albano A.M., Mees A.I. and Rapp P.E. Mutual information,strange attractors, and the optimal estimation of dimension. Physical Review A,1992,45(10):7058-7064.
    [93] Broomhead D.S. and King G.P. Extracting qualitative dynamics from experimentaldata. Physica D,1986,20(2-3):217-236.
    [94] Mees A.I., Rapp P.E. and Jennings L.S. Singular-value decomposition andembedding dimension. Physical Review A (General Physics),1987,36(1):340-346.
    [95] Albano A.M., Muench J., Schwartz C., Mees A.I. and Rapp P.E. Singular-valuedecomposition and the Grassberger-Procaccia algorithm. Physical Review A(General Physics),1988,38(6):3017-3026.
    [96] Kugiumtzis D. State space reconstruction parameters in the analysis of chaotic timeseries—the role of the time window length. Physica D,1996,95(1):13-28.
    [97] Brock W.A., Hsieh D.A. and LeBaron B. Nonlinear Dynamics, Chaos, andInstability: Statistical Theory and Economic Evidence, MIT Press, Cambridge, MA,1991.
    [98] Brock W.A., Dechert W.D., Scheinkman J.A. and LeBaron B. EconometricReviews,1996,15(3):197-235.
    [99]陆振波,蔡志明,姜可宇.基于改进的C-C方法的相空间重构参数选择.系统仿真学报,2007,19(11):2527-2529.
    [100]Schlaigh J. The Solar Chimney. Edition Axel Menges: Stuttgart. Germany.1995.
    [101]Haaf W., Friedrich K., Mayr G. and Schlaich J. Solar Chimneys, Part I: Principleand Construction of the Pilot Plant in Manzanares. International Journal ofSustainable Energy,1983,2(1):3–20.
    [102]Haaf W. Solar Chimneys, Part II: Preliminary Test Results From the ManzanaresPilot Plant. International Journal of Sustainable Energy,1984,2(2):141–161.
    [103]Pasumarthi N. and Sherif S.A. Experimental and Theoretical Performance of aDemonstration Solar Chimney Model—Part I: Mathematical Model Development.International Journal of Energy Research,1998,22(3):277–288.
    [104]Pasumarthi N. and Sherif S.A. Experimental and Theoretical Performance of aDemonstration Solar Chimney Model—Part II: Experimental and TheoreticalResults and Economic Analysis. International Journal of Energy Research,1998,22(3):443–461.
    [105]Padki M.M. and Sherif S.A. On a simple analytical model for solar chimneys.International Journal of Energy Research,1999,23(4):345-349.
    [106]dos Santos Bernardes M.A., Valle R.M. and Cortez M.F.B. Numerical analysis ofnatural laminar convection in a radial solar heater. International Journal of ThermalScience,1999,38(1):42-50.
    [107]dos Santos Bernardes M.A., Vo A. and Weinrebe G. Thermal and technicalanalyses of solar chimneys. Solar Energy,2003,75(6):511-524.
    [108]Gannon A.J. and von Backstrom T.W. Solar chimney cycle analysis with systemloss and solar collecter performance. Journal of Solar Energy Engineering,2000,1229(3):133-137.
    [109]Gannon A.J. and von Backstrom T.W. Solar chimney turbine performance. Journalof Solar Energy Engineering,2003,125(2):101-106.
    [110]Kirstein C.F. and von Backstrom T.W. Flow through a solar chimney power plantcollector-to-chimney transition section. Journal of Solar Energy Engineering,2006,128(3):312-317.
    [111]Pastohr H., Konnadt O. and Gurlebeck K. Numerical and analytical calculations ofthe temperature and flow field in the upwind power plant. International Journal ofEnergy Research,2004,28(6):495-510.
    [112]Pretorius J.P. and Kroger D G. Solar chimney power plant performance. Journal ofSolar Energy Engineering,2006,128(3):302-311.
    [113]Ming T., Liu W. and Xu G. Analytical and numerical investigation of the solarchimney power plant systems. International Journal of Energy Research,2006,30(11):861-873.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700