胺改性及药物强化亲和膜去除胆红素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胆红素是体内血红素的代谢产物,体内浓度较高时可对大脑和神经系统造成不可逆损害,甚至危及生命。临床多通过血液体外循环去除胆红素,然而血液中的白蛋白严重干扰胆红素的吸附与洗脱,导致胆红素吸附剂存在吸附量低、再生困难等问题。本论文以醋酸纤维素/聚乙烯基亚胺共混微孔膜(CA/PEI膜)为研究体系,提出了添加药物(去氧胆酸钠)辅助亲和膜,以及接枝长链有机胺或β-环糊精的疏水空腔改性亲和膜的方法,增加胆红素吸附量,同时提高胆红素的吸附选择性,还建立了低浓度碱液复配重氮促进剂的胆红素洗脱方法,加快吸附材料CA/PEI微孔膜的再生。
     首先,采用生物相容性较好的CA/PEI膜进行胆红素的吸附研究,胆红素的静态吸附实验显示:较佳的吸附实验条件为37℃、2h,在此条件下最大的游离胆红素吸附量达到41.2mg/g干膜,与文献报道的亲和膜的胆红素吸附量(25.0-63.4mg/g干膜)相当。在胆红素缓冲溶液中,吸附游离胆红素的推动力主要为静电力。在模拟血清溶液中,胆红素和白蛋白以等摩尔比复合物形式在膜上吸附,这不但导致胆红素吸附量的明显降低,仅为2.9mg/g干膜,而且降低了胆红素对白蛋白吸附选择性。此外,复合物的吸附还增加了CA/PEI膜的再生难度,常规碱液再生方法的洗脱率仅63%。
     为减少空间位阻大的胆红素白蛋白复合物对吸附的不利影响,选择了治疗黄疸的胆盐类药物作为吸附促进剂,研发了去氧胆酸钠等胆盐与CA/PEI膜耦合吸附血清中胆红素的新方法,在添加量较少时,效果明显优于文献报道的效果最好的促进剂苯甲酸钠。当模拟血清中人血白蛋白和胆红素的浓度同为0.163mM时,添加去氧胆酸钠的CA/PEI膜的胆红素最大吸附量提高到16.5mg/g干膜,相对于无添加情况提高了100%。血清胆红素吸附结果显示,添加去氧胆酸钠后,胆红素和白蛋白的去除率均有提高,但是胆红素的去除率提高得更加显著,因此胆红素对白蛋白的吸附选择性也略有提高。可见吸收光谱、圆二色光谱及zeta电位结果显示,在实验浓度范围内去氧胆酸钠与胆红素、白蛋白形成了三元复合物。静态实验表明去氧胆酸钠在膜上的吸附能力强于白蛋白和胆红素,并能形成多层吸附。动态实验显示预先吸附多层去氧胆酸钠的促进效果最好。基于以上研究,提出了去氧胆酸钠与CA/PEI膜耦合吸附胆红素的机理:胆红素、白蛋白、去氧胆酸钠形成的三元复合物,与PEI中胺基的相互作用更强,更容易被吸附;预先吸附在CA/PEI膜上的多层去氧胆酸钠,形成了可重排的柔性表面,延伸了亲和配基的作用距离,降低了复合物吸附的位阻效用,提高了复合物在膜上的吸附量。
     为了降低了胆红素白蛋白复合物在膜上吸附的位阻效应,本文进一步提出了在CA/PEI膜和聚丙烯微孔膜(PP膜)不同基膜上,接枝长链氨基酸、有机胺或引入β-环糊精的疏水空腔的方法,提高血清中胆红素的吸附量,同时提高胆红素的吸附选择性。采用戊二醛法在CA/PEI膜上接枝了具有代表性的8种氨基酸和5种有机胺,采用高碘酸钠氧化法在CA/PEI膜上接枝了疏水的环糊精空腔结构,采用紫外辐射法在PP膜上两步接枝带支链和不带支链的4种有机胺,制备出一系列具有特异性配基的改性亲和膜。其中,己二胺、三甲基己二胺、间苯二甲胺、赖氨酸改性CA/PEI膜提高了血清胆红素的吸附量和选择性:虽然改性膜的胺基含量降为原始含量的1/3,但是胆红素吸附量却提高了100%,而且白蛋白的吸附量无显著变化,因此胆红素对白蛋白的吸附选择性提高了一倍以上。基于15种改性配基的分析对比,得出以下规律:增加胺基或疏水结构有利于胆红素吸附,而羧基不利于胆红素的吸附;配基密度、空间位阻协同影响胆红素的吸附,含苯环、支链等大位阻结构的亲和配基使得胆红素白蛋白复合物难以接近膜表面,即使提高配基密度也难以提高吸附量;而具有长碳链的亲和配基,’间隔臂较长,位阻小,克服了胆红素白蛋白复合物中胆红素吸附的空间位阻,不但提高亲和膜的胆红素吸附量,而且提高了胆红素的吸附选择性。
     胆红素白蛋白复合物在膜上的吸附,不但导致胆红素吸附量的明显降低,还增加了胆红素洗脱的困难,限制了CA/PEI膜的重复利用。针对胆红素洗脱的问题,提出复合物拆分/洗脱的再生路线,建立了低浓度碱液复配重氮促进剂的再生体系,利用重氮促进剂(如咖啡因试剂和二羟丙茶碱)与胆红素发生相互作用,破坏胆红素与白蛋白以及膜中亲和配基的相互作用,提高胆红素的洗脱速率和洗脱程度。通过分析咖啡因试剂、胆红素、白蛋白混合溶液的吸收光谱,以及两种胆红素吸附膜的洗脱液的光谱扫描分析,证实了咖啡因试剂的拆分作用。动态洗脱实验表明,0.025M NaOH溶液复配咖啡因试剂可洗脱90%以上白蛋白结合胆红素;静态吸附洗脱循环实验显示,平均洗脱率达到85%,效果优于同浓度下常规洗脱剂NaOH。低浓度碱液复配重氮促进剂的另一优势在于不损伤膜结构,膜的机械性能基本保持不变。而且,咖啡因复配碱液对改性CA/PEI膜和添加了去氧胆酸钠的三元体系中吸附的膜也具有较好的洗脱效果。
     胺基改性及药物添加强化亲和膜吸附和洗脱胆红素的过程,解决了血清实验中胆红素与白蛋白形成复合物、胆红素在亲和膜上吸附容量低、洗脱困难等问题,为亲和膜去除血清胆红素临床应用提供了重要理论指导。
High concentration of bilirubin (BR) in the blood results in neurotoxicity, permanent brain damage, and even death. Therefore, it is necessary to lower the amount of BR in the serum of hyperbilirubinemia patients to a normal level. Hemoperfusion is commonly used in the clinic to treat severe hyperbilirubinemia because of its biocompatibility and high efficiency. However, the particle and membrane adsorbents used in hemoperfusion demonstrated decreased BR removal and elution efficiencies due to the high affinity between BR and human albumin (HA) in the blood. In this thesis, the following experiments were conducted to explore new conditions for the improvement of BR adsorption capacity and elution efficiency. Sodium deoxycholate (SDC), a common bile salt, was used as an adsorption promoter to improve the BR adsorption capacity of the cellulose acetate/polyethyleneimine blend microporous membrane (CA/PEI membrane), and the facilitated adsorption mechanism of BR with SDC was proposed. Amino acids, β-cyclodextrin, and amines as ligands were immobilized on CA/PEI membrane or polypropylene (PP) membrane via glutaraldehyde activation, periodate oxidation, and UV induced radiation grafting to investigate the effects of chemical composition of ligand, ligand density, and steric hindrance on BR adsorption capacity. Caffeine reagent was introduced and combined with a low concentration of NaOH to enhance BR elution efficiency of CA/PEI membrane.
     First, CA/PEI membrane was employed to adsorb BR in BR-buffered solution, BR-HA mock solution, and the human serum. Static adsorption experiments showed, under optimized adsorption temperature and duration (37℃,2h), that the CA/PEI membrane could reach a maximum free BR adsorption capacity of70.5μmol/g dry membrane (41.2mg/g dry membrane), which was comparable to that of other affinity membranes (25.0-63.4mg/g dry membrane) investigated by other labs. The mechanism for this free BR adsorption was attributed to the electrostatic interaction between the negatively charged carboxyl groups of BR molecule and the positively charged amine groups of PEI. However, although BR could still be indirectly adsorbed by the CA/PEI membrane through the binding between the membrane and the HA-BR (1:1) complex formed in BR-HA mock solution, the high steric hindrance caused by large molecular volume of the complex decreased not only the BR adsorption capacity of the membrane to2.9mg/g dry membrane but also the adsorption selectivity of BR to HA. In addition, the BR elution efficiency of CA/PEI membrane using alkaline solution decreased to63%because of the adsorption of BR-HA complex.
     Second, SDC was selected as an adsorption promoter to improve the BR adsorption capacity of the CA/PEI membrane because of its biocompatibility. Static adsorption experiments demonstrated that, at the molar ratio of SDC to HA ranging from8to12in the BR-HA mock solution, the maximum BR adsorption capacity was100-200%, higher than that without SDC. For example, When the concentrations of BR and HA equalled to0.163mM (RHA/BR=1), the BR adsorption capacity reached the maximum of28.2μmol/g dry membrane (16.5mg/g dry membrane), which was100%higher than that without SDC. It was also found that BR removal efficiency and adsorption selectivity of BR to HA were improved via the addition of SDC in serum. The results also indicated that SDC was more efficiently adsorbed by the membrane than BR and HA. Absorption, circular dichroism, and zeta potential studies demonstrated that SDC could form a ternary BR-HA-SDCm complex with the BR-HA complex. Based on these results, a facilitated BR adsorption mechanism for the membrane with SDC was proposed that SDC aggregates or micelles form a quasi-multilayer on the membrane, thus increasing the approachable binding sites and elongating the distance between the BR-HA complex and the membrane. Therefore, SDC, acting as a spacer, reduced the steric hindrance of HA, which led to an improvement in the BR adsorption capacity. Results from dynamic adsorption experiments further proved the proposed facilitated adsorption mechanism.
     Third, amine modification was also explored on CA/PEI and PP membranes in order to enhance their serum BR adsorption capacity and adsorption selectivity of BR to HA. Amino acids, P-cyclodextrin, and amines were immobilized via glutaraldehyde activation, periodate oxidation, and UV induced radiation grafting to prepare a series of amine-modified affinity membranes. In these membranes, the BR adsorption capacity of hexamethylene diamine-,2,2,5-trimethyl hexamethylenediamine-, m-xylylenediamine-, and lysine-modified CA/PEI membrane was increased by more than100%, although the primary amine content of the modified membrane reduced to1/3of that of CA/PEI membrane. The modified membrane owned comparable HA adsorption capacity to CA/PEI membrane, and thus the adsorption selectivity of BR to HA was doubled. The experimental results also revealed that the ligand composition played a significant role in the BR adsorption. Briefly, ligands containing hydrophobic and primary amino groups enhanced the BR adsorption capacity, and ligands with acid radicals reduced the BR adsorption capacity of the modified membrane. Moreover, ligand density, ligand steric hindrance, and other factors also had great effects on the BR adsorption capacity. For example, ligands containing high steric hindrance groups, such as phenyl groups, had a negative effect on the BR adsorption capacity of the modified membrane, and naturally, the higher the ligand density was, the lower the BR adsorption capacity couldnot be. On the contrary, the BR adsorption capacity of the membrane modified with low steric hindrance ligand, like hexamethylenediamine-modified membrane, increased along with the increasing ligand density.
     Last, caffeine reagent was introduced and combined with a low-concentration NaOH solution (0.025M) to increase the BR elution efficiency of the CA/PEI membrane. The visible absorption spectra revealed that the caffeine reagent, as an unbinding agent in the combination eluent, could displace BR from HA and desorb the BR-HA complex from the membrane. Static adsorption-desorption cycle experiments using the combination eluent demonstrated that the average BR elution efficiency was85%, and the CA/PEI membrane maintained its mechanical properties and porous membrane structure after three cycles without any weight loss. The combination eluent could efficiently desorb BR from BR-preadsorbed membrane prepared in BR-HA mock solution with a high HA concentration or the addition of SDC. The modified CA/PEI membrane could also be efficiently regenerated using the combination eluent.
     In summary, this work focused on exploring various modifications of the affinity membrane to improve the BR adsorption and elution efficiency. The results could lay experimental and theoretical foundations for treatment of hyperbilirubinemia using affinity membrane in future clinical application.
引文
[1]STLCKER R, GLAZER A N, AMES B N. Antioxidant activity of albumin-bound bilirubin [J]. Proc. Natl. Acad. Sci., USA 1987,84:5918-5922.
    [2]COHEN R S, WONG R J, STEVENSON D K. Understanding neonatal jaundice:A perspective on causation [J]. Pediatr. Neonatol.,2010,51:143-148.
    [3]HOULIHAN D D, ARMSTRONG M J, NEWSOME P N. Investigation of jaundice [J]. Medicine, 2011,39:518-522.
    [4]KATHEMANN S, LAINKA E, BABA HA, et al. Gilbert's syndrome-a frequent cause of unconjugated hyperbilirubinemia in children after orthotopic liver transplantation [J]. Pediatr. Transplant.,2012,16:201-204.
    [5]SLUSHER T M, ZIPURSKY A, BHUTANI V K. A global need for affordable neonatal jaundice technologies [J]. Semin. Perinatol.,2011,35:185-191.
    [6]MCDONAGH A F. Controversies in bilirubin biochemistry and their clinical relevance [J]. Semin. Fetal Neon. Med.,2010,15:141-147.
    [7]HANSEN TW. The role of phototherapy in the crash-cart approach to extreme neonatal jaundice [J]. Semin. Perinatol.,2011,35:171-174.
    [8]MURKI S, KUMAR P. Blood exchange transfusion for infants with severe neonatal hyperbilirubinemia [J]. Semin. Perinatol.,2011,35:175-184.
    [9]IKEGAMI T, SHIRABE K, YOSHIZUMI T, et al. Primary graft dysfunction after living donor liver transplantation is characterized by delayed functional hyperbilirubinemia [J]. Am. J. Transplant., 2012,12:1886-1897. (Abstract)
    [10]ROCHON C, KARDASHIAN A, MAHADEVAPPA B, et al. Liver graft failure and hyperbilirubinemia in liver transplantation recipients after Clostridium difficile infection [J]. Transplant. Proc,2011,43:3819-3823.
    [11]LEDEBO I. Development of hemodiafiltration therapy-a historical perspective [J]. Blood purif.,2013, 35 (Suppl.1):6-10.
    [12]STEGMAYR B, RAMLOW W, BALOGUN R A. Beyond Dialysis:Current and Emerging Blood Purification Techniques [J]. Semin. Dial.,2012,25:207-213.
    [13]KLAMMT S, STANGE J, MITZNER S R, et al. Extracorporeal liver support by recirculating albumin dialysis:analysing the effect of the first clinically used generation of the MAR System [J]. Liver, 2002,22 (Suppl.2):30-34.
    [14]TURIEL E, MARTIN-ESTEBAN A. Molecularly imprinted polymers for sample preparation:A review [J]. Anal. Chim. Acta,2010,668:87-99.
    [15]CHEN L, XU S, LI J. Recent advances in molecular imprinting technology:current status, challenges and highlighted applications [J]. Chem. Soc. Rev.,2011,40:2922-2942.
    [16]SYU M-J, DENG J-H, NIAN Y-M. Towards bilirubin imprinted poly (methacrylic acid-co-ethylene glycol dimethylacrylate) for the specific binding of a-bilirubin [J]. Anal. Chim. Acta,2004,504: 167-177.
    [17]SYU M-J, NIAN Y-M, CHANG Y-S, et al. Ionic effect on the binding of bilirubin to the imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate) [J]. J. Chromatogr. A,2006,1122:54-62.
    [18]SYU M-J, NIAN Y-M. An allosteric model for the binding of bilirubin to the bilirubin imprinted poly (methacrylic acid-co-ethylene glycol dimethylacrylate) [J]. Anal. Chim. Acta,2005,539:97-106.
    [19]SYU M-J, CHIU T-C, LAI C-Y, et al. Amperometric detection of bilirubin from a micro-sensing electrode with a synthetic bilirubin imprinted poly (MAA-co-EGDMA) film [J]. Biosens. Bioelectron.,2006,22:550-557.
    [20]HUANG C-Y, SYU M-J, CHANG Y-S, et al. A portable potentiostat for the bilirubin-specific sensor prepared from molecular imprinting [J]. Biosens. Bioelectron.,2007,22:1694-1699.
    [21]BAYDEMIR G, ANDAC M, BERELI N, et al. Selective removal of bilirubin from human plasma with bilirubin-imprinted particles [J]. Ind. Eng. Chem. Res.,2007,46:2843-2852.
    [22]BAYDEMIR G, BERELI N, ANDAC M, et al. Bilirubin recognition via molecularly imprinted supermacroporous cryogels [J]. Colloids Surf. B,2009,68:33-38.
    [23]BAYDEMIR G, BERELI N, ANDAC M, et al. Supermacroporous poly(hydroxyethyl methacrylate) based cryogel with embedded bilirubin imprinted particles [J]. React. Funct. Polym.2009,69:36-42.
    [24]YANG Z, YAN J, ZHANG C, et al. Enhanced removal of bilirubin on molecularly imprinted titania film [J]. Colloids Surf. B,2011,87:187-191.
    [25]YANG Z, ZHANG C. Molecularly imprinted hydroxyapatite thin film for bilirubin recognition [J]. Biosens Bioelectron.,2011,29:167-171.
    [26]MULLER B R. Effect of particle size and surface area on the adsorption of albumin-bonded bilirubin on activated carbon [J]. Carbon,2010,48:3607-3615.
    [27]GUO L, ZHANG L, ZHANG J, et al. Hollow mesoporous carbon spheres-an excellent bilirubin adsorbent [J]. Chem. Comm.,2009,40:6071-6073.
    [28]SHINKE K, ANDO K, KOYAMA T, et al. Properties of various carbon nanomaterial surfaces in bilirubin adsorption [J]. Colloids Surf. B,2010,77:18-21.
    [29]ANDO K, SHINKE K, YAMADA S, et al. Fabrication of carbon nanotube sheets and their bilirubin adsorption capacity [J]. Colloids Surf. B,2009,71:255-259.
    [30]YANG Z, SI S, FUNG Y. Bilirubin adsorption on nanocrystalline titania films [J]. Thin Solid Films, 2007,515:3344-3351.
    [31]ASANO T, TSURU K, HAYAKAWA S, et al. Bilirubin adsorption property of sol-gel-derived titania particles for blood purification therapy [J]. Acta Biomater.,2008,4:1067-1072.
    [32]YANG Z, ZHANG C. Adsorption and photocatalytic degradation of bilirubin on hydroxyapatite coatings with nanostructural surface [J]. J. Mol. Catal., A 2009,302:107-111.
    [33]SHI W, CAO H, SONG C, et al. Poly(pyrrole-3-carboxylicacid)-alumina composite membrane for affinity adsorption of bilirubin [J]. J. Membr. Sci.,2010,353:151-158.
    [34]XUE M, LING Y, WU G, et al. Surface-modified anodic aluminum oxide membrane with hydroxyethyl celluloses as a matrix for bilirubin removal [J]. J. Chromatogr. B,2013,912:1-7.
    [35]SONG C, ZHANG A, SHI W, et al. Functionalized silica nanotubes as affinity matrices for bilirubin removal [J]. IEEE Trans. Nanotechnol.,2011,10:626-631.
    [36]TANG T, LI X, XU Y, et al. Bilirubin adsorption on amine/methyl bifunctionalized SBA-15 with platelet morphology [J]. Colloids Surf. B,2011,84:571-578.
    [37]TANG T, ZHAO Y, XU Y, et al. Functionalized SBA-15 materials for bilirubin adsorption [J]. Appl. Surf. Sci.,2011,257:6004-6009.
    [38]CUATRECASAS P, WILCHEK M, ANFINSEN C B. Selective enzyme purification by affinity chromatography [J]. Proc. Natl. Acad. Sci. USA,1968,61:636-643.
    [39]TURKOVA J. Bioaffinity chromatography [M].//Journal of chromatography library, vol.55. Amsterdam:Elsevier,1993:31-103.
    [40]SCOUTEN W H. Affinity chromatography. Bioselective adsorption on inert matrices [M].//Chemical Analysis Series, vol.59. New York:Wiley,1981:7-9.
    [41]MATEJTSCHUK P. Affinity separations:A practical approach [M]. Oxford:IRL Press,1997: 123-139.
    [42]DEUTSCHER M P. Guide to protein purification [M].//ABELSON J N, SIMON M I. Methods in enzymology, vol.182. San Diego:Academic Press,1990:38-40.
    [43]陈兆安.CA/PEI微孔亲和膜的制备及性能与应用的研究[D].大连:大连化学物理研究所,2004.
    [44]FIRER M A. Efficient elution of functional proteins in affinity chromatography [J]. J. Biochem. Biophys. Methods,2001,49:433-442.
    [45]ARNOLD F H, BLANCH H W, WILKE C R. Analysis of affinity separations I:Predicting the performance of affinity adsorbers [J]. Chem. Eng. J.,1985,30:B9-B23.
    [46]程明,李爽,张凤宝,等.色谱分离动力学的理论模型及其应用[J].化学工业与工程,2006,23:355-360.
    [47]HAO W, CHEN Z, WANG J, et al. Modeling of protein adsorption in membrane affinity chromatography [J]. Anal. Lett.,2004,37:1319-1338.
    [48]HAO W, WANG J, LI J. Modeling, by frontal analysis, of the adsorption of bovine serum albumin on cibacron blue-modified cellulose membranes [J]. Chromatographia,2004,60:449-454.
    [49]SUEN S Y, ETZEL M R. A mathematical analysis of affinity membrane bioseparations [J]. Chem. Eng. Sci.,1992,47:1355-1364.
    [50]SERAFICA G C, BELFORT G, PIMBLEY J. Protein fractionation using fast flow immobilized metal chelate affinity membranes [J]. Biotechnol. Bioeng.,1994,43:21-36.
    [51]SUEN SY, CARACOTSIOS M, ETZEL M R. Sorption kinetics and axial diffusion in binary solute affinity membrane bioseparation [J]. Chem. Eng. Sci.,1994,48:1801-1812.
    [52]YANG H, ETZEL M R. Evaluation of three kinetic equations in models of protein purification using ion-exchange membranes [J]. Ind. Eng. Chem. Res.,2003,42:890-896.
    [53]BOI C, DIMARTINO S, SARTIG C. Modelling and simulation of affinity membrane adsorption [J]. J. Chromatogr. A,2007,1162:24-33.
    [54]BOI C. Membrane adsorbers as purification tools for monoclonal antibody purification [J]. J. Chromatogr. B,2007,848:19-27.
    [55]YANG H, BITZER M, ETZEL M R. Analysis of protein purification using ion-exchange membranes [J]. Ind. Eng. Chem. Res.,1999,38:4044-4050.
    [56]SHI W, ZHANG F, ZHANG G. Mathematical analysis of affinity membrane chromatography [J]. J. Chromatogr. A,2005,1081:156-162.
    [57]GE D, SHI W, REN L, et al. Variation analysis of affinity-membrane mode based on Freundlich adsorption [J]. J. Chromatogr. A,2006,1114:40-44.
    [58]HAO W, WANG J, ZHANG X. Mass transfer kinetics and breakthrough and elution curves for bovine serum albumin using cibacron blue cellulose membranes [J]. J. Chromatogr. A,2006,1114:123-131.
    [59]王湛.膜分离技术基础[M].北京:化学工业出版社,2000.
    [60]ZENG X, RUCKENSTEIN E. Membrane chromatography:Preparation and applications to protein separation [J]. Biotechnol. Progr.,1999,15:1003-1019.
    [61]ZENG X, RUCKENSTEIN E. Control of pore sizes in macroporous chitosan and chitin membranes [J]. Ind. Eng. Chem. Res.,1996,35:4169-4175.
    [62]时钧,袁权,高从增.膜技术手册[M].北京:化学工业出版社,2001.
    [63]GUO W, RUCKENSTEIN E. Modified glass fiber membrane and its application to membrane affinity chromatography [J]. J. Membr. Sci.,2003,215:141-155.
    [64]TSAI C-C, CHANG Y, SUNG H-W, et al. Effects of heparin immobilization on the surface characteristics of a biological tissue fixed with a naturally occurring crosslinking agent (genipin):an in vitro study [J]. Biomaterials,2001,22:523-533.
    [65]WANG Z, JIN G. Covalent immobilization of proteins for the biosensor based on imaging ellipsometry [J]. J. Immunol. Methods,2004,285:237-243.
    [66]NAKAMURA M, KIYOHARA S, SAITO K, et al. Chiral separation of DL-tryptophan using porous membranes containing multilayered bovine serum albumin crosslinked with glutaraldehyde [J]. J. Chromatogr. A,1998,822:53-58.
    [67]张克胜,孙君坦,何炳林.交联聚乙烯醇水凝胶对胆红素的吸附性能研究[J].离子交换与吸附,1998,14:204-209.
    [68]WU L, WU W, LI Q, et al. The preparation of functionalized crosslinked macroporous chitosan microspheres and their adsorption properties for bilirubin [J]. Polym. Org. Chem. Macromol. Symposia,2010,297:179-187.
    [69]GUO W, RUCKENSTEIN E. A new matrix for membrane affinity chromatography and its application to the purification of concanavalin A [J]. J. Membr. Sci.,2001,182:227-234.
    [70]GUO W, RUCKENSTEIN E. Crosslinked mercerized cellulose membranes for the affinity chromatography of papain inhibitors [J]. J. Membr. Sci.,2002,197:53-62.
    [71]SHI W, ZHANG F, ZHANG G. Adsorption of bilirubin with polylysine carrying chitosan-coated nylon affinity membranes [J]. J. Chromatogr. B,2005,819:301-306.
    [72]WU C-Y, SUEN S-Y, CHEN S-C, et al. Analysis of protein adsorption on regenerated cellulose-based 'immobilized copper ion affinity membranes [J]. J. Chromatogr. A,2003,996:53-70.
    [73]SANDERSAN C J, WILSON D V. A simple method for coupling proteins to insoluble polysaccharides [J]. Immunology,1971,20:1061-1065.
    [74]WANG Z, CAO Y, WEI H, et al. Bilirubin adsorption properties of water-soluble adsorbents with different cyclodextrin cavities in plasma dialysis system [J]. Colloids Surf. B,2012,90:248-253.
    [75]SALEHI E, MADAENI S S, RAJABI L, et al. Static and dynamic adsorption of copper ions on chitosan/polyvinyl alcohol thin adsorptive membranes:Combined effect of polyethylene glycol and aminated multi-walled carbon nanotubes [J]. Chem. Eng. J.,2013,215:791-801.
    [76]NAIM M M, RAZEK H E M A. Chelation and permeation of heavy metals using affinity membranes from cellulose acetate-chitosan blends [J]. Desalin. Water Treat.,2013,51:644-657.
    [77]ZHOU W, HE J, CUI S, et al. Preparation of electrospun silk fibroin/cellulose acetate blend nanofibers and their applications to heavy metal ions adsorption [J]. Fibers Polym.,2011,12:431-437.
    [78]KHATRI Z, WEI K, KIM B S, et al. Effect of deacetylation on wicking behavior of co-electrospun cellulose acetate/polyvinyl alcohol nanofibers blend [J]. Carbohydr. Polym.,2012,87:2183-2188.
    [79]LIU C X, BAI R B. Preparation of chitosan/cellulose acetate blend hollow fibers for adsorptive performance [J]. J. Membr. Sci.,2005,267:68-77.
    [80]LIU C X, BAI R B. Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blend hollow fiber membranes [J]. J. Membr. Sci.,2006,284:313-322.
    [81]KLEIN E. Affinity membrane:A 10-year review [J]. J. Membr. Sci.,2000,179:1-27.
    [82]ZHANG L, JIN G. Bilirubin removal from human plasma by Cibacron Blue F3GA using immobilized microporous affinity membranous capillary method [J]. J. Chromatogr. B,2005,821:112-121.
    [83]NASEF M M, GUVEN O. Radiation-grafted copolymers for separation and purification purposes: Status, challenges and future directions [J]. Process Polym. Sci.,2012,37:1597-1656.
    [84]MA G, LIU B, LI C, et al. Plasma modification of polypropylene surfaces and its alloying with styrene in situ [J]. Appl. Surf. Sci.,2012,258:2424-2432.
    [85]CHOI Y-J, KANG M-S, KIM S-H, et al. Characterization of LDPE/polystyrene cation exchange membranes prepared by monomer sorption and UV radiation polymerization [J]. J. Membr. Sci., 2003,223:201-215.
    [86]XU Z, WANG J, SHEN L, et al. Microporous polypropylene hollow fiber membrane:Part I. Surface modification by the graft polymerization of acrylic acid [J]. J. Membr. Sci.,2002,196:221-229.
    [87]JALALI-ARANI A, KATBAB A A, NAZOCKDAST H. Preparation of thermoplastic elastomers based on silicone rubber and polyethylene by thermomechanical reactive blending:effects of polyethylene structural parameters [J]. J. Appl. Polym. Sci.,2003,90:3402-3408.
    [88]NASEF M M, SAIDI H, DAHLAN K Z M. Kinetic investigations of graft copolymerization of sodium styrene sulfonate onto electron beam irradiated poly(vinylidene fluoride) films [J]. Radiat. Phys.Chem.,2011,80:66-75.
    [89]ESTRADA-BILLEGAS G. M., BUCIO E. Temperature-and pH-responsive behavior of a novel copolymer of (PP-g-DMAEMA)-g-Aac [J]. J. Radioanal. Nucl. Chem.,2012,292:1-6.
    [90]CHEN R, SUN H, LI A, et al. UV-induced Self-initiated Graft Polymerization of Acrylamide onto Poly(ether ether ketone) [J]. Chem. Res. Chin. Univ.,2012,28:162-165.
    [91]ABU SEMAN M N, KHAYET M, HILAL N. Comparison of two different UV-grafted nanofiltration membranes prepared for reduction of humic acid fouling using acrylic acid and N-vinylpyrrolidone [J]. Desalination,2012,287:19-29.
    [92]HEGAZY E-S, EL-ASSY N, DESSOUKI A, et al. Ion-containing reverse osmosis membranes obtained by radiation grafting method [J]. Radiat. Phys. Chem.,1989,33:13-18.
    [93]NASEF M M, SAIDI H, DAHLAN K Z M. Single-step radiation induced grafting for preparation of proton exchange membranes for fuel cell [J]. J. Membr. Sci.,2009,339:115-119.
    [94]SONG L, ZHAO J, YANG H, et al. Biocompatibility of polypropylene non-woven fabric membrane via UV-induced graft polymerization of 2-acrylamido-2-methylpropane sulfonic acid [J]. Appl. Surf. Sci.,2011,258:425-430.
    [95]SEKO N, BASUKI F, TAMADA M, et al. Rapid removal of arsenic (Ⅴ) by zirconium (Ⅳ) loaded phosphoric chelate adsorbent synthesizedby radiation induced graft polymerization [J]. React. Funct. Polym.,2004,59:235-241.
    [96]YUNE P S, KILDUFF J E, BELFORT G. Searching for novel membrane chemistries:Producing a large library from a single graft monomer at high throughput [J]. J. Membr. Sci.,2012,390-391: 1-11.
    [97]BALART J, FOMBUENA V, BORONAT T, et al. Surface modification of polypropylene substrates by UV photografting of methyl methacrylate (MMA) for improved surface wettability [J]. J. Mater. Sci.,2012,47:2375-2383.
    [98]LUAN S, ZHAO J, YANG H, et al. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone [J]. Colloids.Surf. B,2012,93:127-134.
    [99]CELLET T S P, GUIHERME M R, SILVA R, et al. Synthesis of a thermosensitive surface by construction of a thin layer of poly(N-isopropylacrylamide) on maleimide-immobilized polypropylene [J]. J. Colloid Interf. Sci.,2012,367:494-501.
    [100]YANG H, HOU Z, HU J. Surface modification of ultra-flat polydimethylsiloxane by UV-grafted poly(acrylic acid)brushes [J]. J. Appl. Polym. Sci.,2012,123:2266-2271.
    [101]DENIZLI A, PISKIN E. Dye-ligand affinity systems [J]. J. Biochem. Biophys. Methods,2001,49: 391-416.
    [102]KASSAB A, YAVUZ H, ODABASI M, et al. Human serum albumin chromatography by cibacron blue F3GA-derived microporous polyamide hollow fibre membranes [J]. J. Chromatogr. B,2000, 746:123-132.
    [103]DENIZLI A, KOCAKULAK M, PISKIN E. Specific sorbents for bilirubin removal from human plasma:congo red modified poly(EGDMA-HEMA) beads [J]. J. Appl. Polym. Sci.,1998,68: 373-380.
    [104]DENIZLI A, KOCAKULAK M, PISKIN E. Alkali blue 6B-derivatized poly(EGDMA-HEMA) beads for bilirubin removal from human plasma [J]. J. Macromol. Sci. A,1998,35:137-149 (Abstract).
    [105]KOCAKULAK M, DENIZLI A, RAD AY, et al. New sorbent for bilirubin removal from human plasma:Cibacron blue-immobilized poly(EGDMA-HEMA) beads [J]. J. Chromatogr. B,1997,693: 271-276.
    [106]SENEL S, DENIZLI F, YAVUZ H. et al. Bilirubin removal from human plasma by dye affinity microporous hollow fibers [J]. Sep. Sci. Technol.,2002,37:1989-2006.
    [107]XIA B, ZHANG G, ZHANG F. Bilirubin removal by Cibacron Blue F3GA attached nylon-based hydrophilic affinity membrane [J]. J. Membr. Sci.,2003,226:9-20.
    [108]MA Z, KOTAKI M, RAMAKRISHNA S. Electrospun cellulese nanofiber as affinity membrane [J]. J. Membr. Sci.,2004,265:115-123.
    [109]童林荟,环糊精化学-基础与应用[M].北京:科学出版社,2001.
    [110]BENDER M L, KOMIYAMA M. Cyclodextrin Chemistry [M]. New York:Springer-Verlag,1978.
    [111]赵晓斌,何炳林.环状低聚糖-β-环糊精与胆红素包络作用的研究[J].高等学校化学学报,1994,15:1250-1252.
    [112]何炳林,赵晓斌.新型β-环糊精固载化高分子合成研究[J].中国科学,B 1992,22:1240-1247.
    [113]WANG H, MA J, ZHANG Y, et al. Adsorption of bilirubin on the polymeric P-cyclodextrin supported by partially aminated polyacrylamide gel [J]. React. Funct. Polym.,1997,32:1-7.
    [114]袁直,魏斌,杭德华,等.固载β-环糊精吸附剂对胆红素吸附机理的探讨[J].高等学校化学学报,2000,21:731-733.
    [115]XU W, FU C, LI J. Studies on the adsorption capacity for bilirubin of the adsorbent chitosan-beta-cyclodextrin [J]. Chin. Chem. Lett.,2001,12:359-362.
    [116]肖海军.高分子树脂型胆红素吸附剂的制备方法:中国CN1557538-A [P],2004,12,29.
    [117]郑朝俊,黄晓冬,孔亮,等.p-环糊精交联聚合物对胆红素吸附性能的研究[J].色谱,2004,22:128-130.
    [118]ARICA M Y, YALCIN E, BAYRANOLU G. Polyethylenimine-grafted and HSA-immobilized poly(GMA-MMA) affinity adsorbents for bilirubin removal [J]. Polym. Int.,2004,54:153-460.
    [119]于志远,吴仁安,邹汉法.固定化牛血清白蛋白吸附材料的制备及其对胆红素的吸附性能[J].色谱,2010,28:291-295.
    [120]MOOSAVI-MOVAHEDI Z, BAHRAMI H, ZAHWDI M, et al. A theoretical elucidation of bilirubin interaction with HSA's lysines:First electrostatic binding site in IIA subdomain [J]. Biophys. Chem., 2007,125:375-387.
    [121]徐堃,黄曼,吴礼光,等.丝氨酸配基PVDF亲和膜脱除人血浆中内毒素的研究[J].膜科学与技术,2011,31:28-34.
    [122]CHANDY T, SHARMA C P. Polylysine-immobilized chitosan beads as adsorbents for bilirubin [J]. Artif. Organs,1992,16:568-576.
    [123]SUN H, ZHANG L, CHAI H, et al. A study of human γ-globulin adsorption capacity of PVDF hollow fiber affinity membranes containing different amino acid ligands [J]. Sep. Purif. Sci.,2006, 48:215-222.
    [124]张海龙,乔昕,姚红娟,等.多肽配基亲和吸附介质的配基控制规律[J].化学反应工程与工艺,2007,23:289-295.
    [125]LANDGREBE M E, WU D, WALTERS R R. Preparation of chromatographic supports of variable ligand density [J]. Anal. Chem.,1986,58:1607-1611.
    [126]GEBAUER K H, THOMMES J, KULA M R. Breakthrough performance of high-capacity membrane adsorbers in protein chromatography [J]. Chem. Eng. Sci.,1997,52:405-419.
    [127]ZHANG S, SUN Y. Study on protein adsorption kinetics to a dye-ligand adsorbent by the pore diffusion model [J]. J. Chromatogr. A,2002,964:35-46.
    [128]LANGFORD J F, XU X, YAO Y, et al. Chromatography of proteins on charge-variant ion exchangers and implications for optimizing protein uptake rates [J]. J. Chromatogr. A,2007,1163: 190-202.
    [129]WU D, WALTERS R R. Effects of stationary phase ligand density on high performance ion-exchange chromatography of proteins [J]. J. Chromatogr.,1992,598:7-13.
    [130]YU L, DONG X, SUN Y. Ion-exchange resins facilitate like-charged protein refolding:Effects of porous solid phase properties [J]. J. Chromatogr. A,2012,1225:168-173.
    [131]ZHANG L, ZHAO G, SUN Y. Effects of ligand density on hydrophobic charge induction chromatography:molecular dynamics simulation [J]. J. Phys. Chem. B,2010,114:2203-2211.
    [132]LU H, LIN D, GAO D, et al. Evaluation of immunoglobulin adsorption on the hydrophobic charge-induction resins with different ligand densities and pore sizes [J]. J. Chromatogr. A,2013, 1278:61-68.
    [133]FRANKE A, FORRER N, BUTTE A, et al. Role of the ligand density in cation exchange materials for the purification of proteins [J]. J. Chromatogr. A,2010,1217:2216-2225.
    [134]SUEN S-Y, TSAI Y-D. Comparison of ligand density and protein adsorption on dye-affinity membranes using different spacer arms [J]. Sep. Sci. Technol.,2000,35:69-87.
    [135]YU Y, HE B, GU H. Adsorption of bilirubin by amine-containing crosslinked chitsan resins [J]. Artif. Cells Blood Substit. Immobil. Biotechnol.,2000,28:307-320.
    [136]JIA L, GUO R, ZHANG X, et al. Synthesis and characterization of novel adsorbents with different ligand composition for bilirubin conjugated with albumin [J]. Sep. Sci. Technol.,2005,40: 1387-1399.
    [137]Ma Z, MASAYA K, RAMAKRISHNA S. Immobilization of Cibacron blue F3GA on electrospun polysulphone ultra-fine fiber surfaces towards developing an affinity membrane for albumin adsorption [J]. J. Membr. Sci.,2006,282:237-244.
    [138]DENIZLI A, KOCAKULAK M, PISKIN E. Bilirubin removal from human plasma in a packed bed column system with dye-affinity beads [J]. J. Chromatogr. B,1998,707:25-31.
    [139]ALTINTAS E B, TURKMEN D, KARAKOC V, et al. Efficient removal of bilirubin from human serum by monosize dye-affinity beads [J]. J. Biomater. Sci. Polym. Ed.,2011,22:957-971.
    [140]JIN G, YAO J. Affinity adsorption of bilirubin on Cibacron Blue F3GA-modified microporous polytetrafluoroethylene capillary [J]. Chem. Res. Chin. Univ.,2010,26:323-330.
    [141]From Wikipedia, the free encyclopedia [M]. http://en.wikipedia.org/wiki/Human_serum_albumin.
    [142]LIGHTER D A, DONALD WIJEKOON W M, ZHANG M-H. Understanding bilirubin conformation and binding [J]. J. Biol. Chem.,1988,263:16669-16676.
    [143]BEAVEN G H, D'ALBIS A, GRATZER W B. The interaction of bilirubin with human serum albumin [J]. Eur. J. Biochem.,1973,33:500-509.
    [144]GRAY R D, STROUPE S D. Kinetics and mechanism of bilirubin binding to human serum albumin [J]. J. Biol. Chem.,1978,253:4370-4377.
    [145]KUENZLE C C, GITZELMANN-CUMARASAMY N, WILSON K J. Affinity labeling of the primary bilirubin binding site of human serum albumin [J]. J. Biol. Chem.,1976,251:801-807.
    [146]JACOBSEN J, BRODERSEN R. Albumin-Bilirubin Binding Mechanism [J]. J. Biol. Chem.,1983, 258:6319-6326.
    [147]ROOSDORP N, WANN B, SJOHOLM I. Correlation between arginyl residue modification and benzodiazepine binding to human serum albumin [J]. J Biol. Chem.,1977,252:3876-3880.
    [148]MOOSAVI-MOVAHEDI Z, BAHRAMI H, ZAHEDI M, et al. A theoretical elucidation of bilirubin interaction with HSA's lysines:First electrostatic binding site in IIA subdomain [J]. Biophys. Chem., 2007,125:375-87.
    [149]FINK S, KARP W, ROBERTSON A. Ceftriaxone effect on bilirubin-albumin binding [J]. Pediatrics, 1987,80:873-875.
    [150]ROYER R E, VANDER JAGT D L. Gossypol binds to a high-affinity binding site on human serum albumin [J]. FEBS Lett.,1983,157:28-30.
    [151]LA VIE E, BLAUER G. Circular dichroism and hydrodynamic measurements of ternary protein-two ligand systems:serum albumin-bilirubin-drug or alcohol [J]. Arch. Biochem. Biophys.,1979,193: 191-203.
    [152]SCHIFF D, CHAN G125, STERN L. Fixed drug combinations and the displacement of bilirubin from albumin [J]. Pediatrics,1971,48:139-41.
    [153]FRANZINI C, CATTOZZO G. Caffeine-splitting of bilirubin/albumin complex:Its relevance to the spectrophotometry of bilirubin in serum [J]. Clin. Chem.,1987,33:597-599.
    [154]TAYYAB S, ALI M K. A comparative study on the extraction of membrane-bound bilirubin from erythrocyte membranes using various methods [J]. J. Biochem. Biophys. Methods,1999,39:39-45.
    [155]BURNETT J R, LIM C W, MAHONEY G N, et al. A method for the separation of delta bilirubin using cibacron blue affinity chromatography [J]. Clin. Chim. Acta,1995,239:37-46.
    [156]DORSON W J, PIZZICONI V B, SIZIO C N, et al. Solutizers as an adjunct to artificial organ treatment for bound chemicals [J]. ASAIO Trans.,1980,26:116-119.
    [157]BRIAN B F, DORSON W J, PIZZICONI V B, et al. Augmented hemoperfusion for hyperbilirubinemia [J]. ASAIO Trans.,1988,34:585-589.
    [158]MILES D R, DORSON W J, BRANDON T A, et al. An efficient method for removing bilirubin [J]. ASAIO Trans.,1990,36:611-615.
    [159]JIANG L, WANG K, DENG M, et al. Bile Salt-induced vesicle-to-micelle transition in catanionic surfactant systems:Steric and electrostatic interactions [J]. Langmuir,2008,24:4600-4606.
    [160]SMALL D M, PENKETT S A, CHAPMAN D. Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectrosopy [J]. Biochim. Biophys. Acta,1969,176,178-189.
    [161]MUKHOPADHYAY S, MAITRA U. Chemistry and biology of bile acids [J]. Curr. Sci.,2004, 87:1666-1683.
    [162]RUI L, ERIC C, Edward D, et al. Effect of the structure of bile salt aggregates on the binding of aromatic guests and the accessibility of anions [J]. Langmuir,2009,25:13800-13808.
    [163]PERRIN J H, WILSEY M. The induced optical activity of bilirubin in the presence of sodium deoxycholate [J]. J. Chem. Soc. D:Chem. Commun.,1971,14:769-770.
    [164]BLACK K D, KOTHARI S, SHARP P A, et al. Micellar electrokinetic chromatography of bilirubin and related compounds in unconjugated and glycol-conjugated bile salt solutions [J]. J. Liquid Chromatogr. Related Technol.,2000,23:113-125.
    [165]TAKIKAWA H, SUGIYAMA Y, HANANO M, et al. A novel binding site for bile acids on human serum albumin [J]. Biochim. Biophys. Acta,1987,926:145-153.
    [166]CERYAK S, BOUSCAREL B, FROMM H. Comparative binding of bile acids to serum lipoproteins and albumin [J]. J. Lipid Res.,1993,34:1661-1674.
    [167]RODA A, CAPPELLERI G, ALDINI R, et al. Quantitative aspects of the interaction of bile acids with human serum albumin [J]. J. Lipid Res.,1982,23:490-495.
    [168]ROPER D K, LIGHTFOOT E N. Separation of biomolecules using adsorptive membranes [J]. J. Chromatogr. A,1995,702:3-36.
    [169]KO Y-M, CHEN C-I, SHIEH C-J, et al. Simultaneous purification and immobilization of D-hydantoinase on the immobilized metal affinity membrane via coordination bonds [J]. Biochem. Eng. J.,2012,61:20-27.
    [170]ROPER D K, LIGHTFOOT E N. Separation of biomolecules using adsorptive membranes [J]. J. Chromatogr. A,1995,702:3-26.
    [171]CHEN Z, DENG M, CHEN Y, et al. Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications [J]. J. Membr. Sci., 2004,235:73-86.
    [172]费凤英,祝新华.三种直接胆红素检测系统的性能评价[J].检验医学,2010,25:429-432.
    [173]TAKASHI E. Enzymatic cycling method (Part 3):High, sensitivity assay of body fluid constituents [J]. Enzyme,1999,3:8-12.
    [174]DENHAM E, MOHN B, TUCKER L, et al. Evaluation of immunoturbidimetric specific protein methods using the Architect ci8200:Comparison with immunonephelometry [J]. Ann. Clin. Biochem.,2007,44:529-36.
    [175]BRADLEY-STEWART A, JOLLY L, ADAMSON W, et al. Cytokine responses in patients with mild or severe influenza A(H1N1) pdm09 [J]. J. Clin. Vorol.,2013, in press.
    [176]DA VIES C R, MALCHESKY P S, SAIDEL G M. Temperature and albumin effects on adsorption of bilirubin from standard solution using anion-exchange resin [J]. Artif. Organs,1990,14:14-19.
    [177]BAYRAMOGLU G., YALC1N E, ARICA M Y. Characterization of polyethylenimine grafted and Cibacron Blue F3GA immobilized poly(hydroxyethylmethacrylate-co-glycidylmethacrylate) membranes and application to bilirubin removal from human serum [J]. Colloids Surf. A,2005,264: 195-202.
    [178]AVRAMESCU M E, SAGER W F C, BORNEMAN Z, et al. Adsorptive membranes for bilirubin removal [J]. J Chromatogr. B,2004,803:215-223.
    [179]傅玉普.多媒体CAI·物理化学[M].大连:大连理工大学出版社,2004:453-454.
    [180]WANWIMOLRUK S, BIRKETT D J. The effect of N-B transition of human serum albumin on the specific drug-binding sites [J]. Biochim. Biophys. Acta,1982,709:247-255.
    [181]TIRIBELLI C, OSTROW J D. New concepts in bilirubin and jaundice:reports of the Third International Bilirubin Workshop, April 6-8,1995, Trieste, Italy [J]. Hepatology,1996,24: 1296-1311.
    [182]ARNOLD F H, BLANCH H W, WILKE C R. Analysis of affinity separations I:Predicting the performance of affinity adsorbers [J]. Chem. Eng. J.,1985,30:B9-B23.
    [183]MUNOZ L E, D E VILLIERS D, MARKHAM D, et al. Complement activation in chronic liver disease [J]. Clin Exp. Immunol.,1982,47:548-554.
    [184]谢风,李辉,刘铁梅,等.肝脏疾病患者血清中不同的变化[J].中国实验诊断学,1998,2:207-208.
    [185]From Wikipedia, the free encyclopedia [M]. http://en.wikipedia.org/wiki/Cytokine.
    [186]RETERSO T C, LSBRUCHER R A. Fibroproliferation in liver disease:Role of monocyte factor[J]. Hepatology,1992,15:191-197.
    [187]CZAJA M J, WEINER F R, FLANDERS K C, et al. In vitro and in vivo association of transforming growth factor-beta 1 with hepatic fibrosis [J]. J. Cell. Biol.,1989,108:2477-2482.
    [188]YOSHIDOME H, KATO A, EDWARDS M J, et al. Interleukin-10 suppresses hepatic ischemia/reperfusion injury in mice:implications of a central role for nuclear factor kappa B [J]. Hepatology,1999,30:203-208.
    [189]NAGAKI M, TANAKA M, SUGIYAMA A, et al. Interleukin-10 inhibits hepatic injury and tumor necrosis factor-alpha and interferon-gamma mRNA expression induced by staphylococcal enterotoxin B or lipopolysaccharide in galactosamine-sensitized mice [J]. J. Hepatol.,1999,31: 815-824.
    [190]ILONENI I, KOIVUSALO AM, HOCKERSTEDT K, et al. Albumin dialysis has no clear effect on cytokine levels in patients with life-threatening liver insufficiency [J]. Transplant. Proc.,2006,38: 3540-3543.
    [191]D'ALAGNI M, D'ARCHIVIO A A, Giglio E. On the interaction of polypeptides with bile salts or bilirubin-IXa [J]. Biopolymers,1993,33:1553-1565.
    [192]GEIGER H, KLEPPER J, LUX P, et al. Biochemical assessment and clinical evaluation of a bilirubin adsorbent column (BR-350) in critically ill patients with intractable jaundice [J]. Int. J. Artif. Organs, 1992,15:35-39.
    [193]XU Z, WAN J, LIANG S, et al. Separation of ursodeoxycholic acid from its isomeric mixture using core-shell molecular imprinting polymer [J]. Biochem. Eng. J.,2008,41:280-287.
    [194]MORI L. Modified Jendrassik-Grof method for bilirubins adapted to the Abbott Bichromatic Analyzer [J]. Clin. Chem.,1978,24:1841-1845.
    [195]SINGER E J, FITSCHEN W H. The determination of di-and trihydroxycholanic acids in bile [J]. Anal. Biochem.,1961,2:292-302.
    [196]BLAUER G, BLONDLHEIM S H, HARMATZ D, et al. Optical activity of human serum in the visible region compared with that of the complex bilirubin-serum albumin [J]. FEBS Lett.,1973,33: 320-322.
    [197]HOSAINZADEH A, GHARANFOLI M, SABERI M R, et al. Probing the interaction of human serum albumin with bilirubin in the presence of aspirin by multi-Spectroscopic, molecular modeling and zeta potential techniques:Insight on binary and ternary systems [J]. J. Biomol. Struct. Dyn.,2012, 29:1031-1050.
    [198]MARSICH L, BONIFACIA A, MANDAL S, et al. Poly-1-lysine-coated silver nanoparticles as positively charged substrates for surface-enhanced Raman scattering [J]. Langmuir,2012,28: 13166-13171.
    [199]SUGIHARA G, HIRASHIMA T, LEE S, et al. The adsorption behavior of four bile salt species on cholesterol crystals in water-in connection with cholesterol solubilization [J]. Colloids Surf. B,1995, 5:63-73.
    [200]De S, DAS S, GIRIGOSWAMI A. Spectroscopic probing of bile salt-albumin interaction [J]. Colloids Surf. B,2007,54:74-81.
    [201]BHATNAGAR A, MONOCHA A K, SILANPAA M. Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent [J]. Biochem. Eng. J.,2010,48:181-186.
    [202]MATHEW M K, BALARAM P. Unmasking of tyrosyl fluorescence in serum albumins on bilirubin binding [J]. FEBS Lett.,1980,115:91-94.
    [203]HENNING D S, CLAS S D, BROWN G R, et al. Polymer resins with amino acid containing pendants for sorption of bilirubin. III. Adsorption and desorption in the presence of albumin [J]. Biomat. Artif. Cells Artif. Organs,1987-1988,15:677-686.
    [204]卢慧丽,林东强,姚善泾.琼脂糖-DEAE离子交换介质的配基密度和孔径对BSA吸附的影响[J].化工学报,2011,62:3164-3170.
    [205]SCHERZER T, LANGGUTH H. The effect of temperature on the induction period in the photoinitiated polymerization of tripropylene glycol diacrylate [J]. Nucl. Instrum. Methods Phys. Res. B,2001,185:276-282.
    [206]YE Q, GE X, ZHANG Z. Formation of monodisperse PMMA particles by radiation-induced dispersion polymerization-I. Sythesis and polymerization kinetics [J]. Radiat. Phys. Chem.,2003,66: 11-16.
    [207]BURNETT J R, LIM C W, MAHONEY G N, et al. A method for the separation of delta bilirubin using cibacron blue affinity chromatography [J]. Clin. Chim. Acta,1995,239:37-46.
    [208]蔡玉兰.二醋酸纤维的碱处理与酶降解研究[J].中原工学院学报,2009,20:32-37.
    [209]THOMPSON R P. Modification of Michaelssons method for measurement of plasma total bilirubin [J]. J. Clin. Path.,1969,22:439-441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700