牙鲆和大黄鱼染色体组操作研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以牙鲆Paralichthys olivaceus为研究对象,进行了雌核发育牙鲆子二代雌核发育诱导和正常牙鲆同质雌核发育诱导研究;同时在分析福建和浙江大黄鱼Pseudoscieana crocea养殖群体生化遗传结构的基础上,进行了其三倍体诱导及其相关倍性效应研究。主要结果如下:
     对牙鲆精子进行紫外照射,灭活其遗传物质,在一定照射时间范围(0-180s,剂量0-3770ergs/mm2)内,精子超微结构、存活率和活力无太大变化,但长时间照射(240s,剂量约为4660ergs/mm2)后则会造成精子膜相系统、线粒体和尾部鞭毛的结构的损伤以及精子存活率和活力的下降。精子经紫外照射后与正常卵子受精表现出明显的Hertwig效应,综合囊胚期存活率和孵化率以及初孵仔鱼单倍体率,牙鲆精子遗传灭活的最适紫外照射剂量约为3770ergs/mm2(即照射时间为180 s)。
     将紫外灭活的牙鲆精子与正常牙鲆卵受精,受精后适当时刻采用温度休克法和静水压法都可成功抑制受精卵的第一次有丝分裂,诱导出同质雌核发育二倍体。15±0.2℃培育水温条件下,冷休克法诱导牙鲆同质雌核发育的最适条件为受精后85min,1-2℃水温下处理45 min;静水压法诱导牙鲆同质雌核发育最适处理参数为受精后85min,600 kg/cm2压力下处理6min。最适合条件下,冷休克组同质雌核发育二倍体诱导率小于1%,而静水压组诱导率最高可达13.01%,表明静水压法较冷休克法更适合牙鲆同质雌核发育的诱导。开口前同质雌核发育仔鱼较异质雌核发育仔鱼存活率低,但二者全长生长无显著差异(P<0.05)。将紫外灭活的牙鲆精子与雌核发育牙鲆卵受精,受精后适当时刻采用冷休克法和静水压法可成功抑制雌核发育牙鲆卵第二极体排放,诱导出雌核发育牙鲆子二代雌核发育。15℃±0.2℃培育水温条件下,冷休克法抑制雌核发育牙鲆卵子第二极体排放的最适条件为受精后5min,0-1℃水温下处理45 min;静水压法抑制雌核发育牙鲆卵子第二极体排放的最适条件为受精后5min,480 kg/cm2压力水平处理5min。冷休克法在最适条件下处理大批量雌核发育牙鲆卵后,各组受精后6h胚胎相对存活率、孵化后6h仔鱼相对存活率和畸型率分别为84.34±1.7%、53.32±5.57%、15.42±1.79%;静水压法处理大批量卵后处理组三者值分别为86.32±5.07%、79.14±2.11%、8±1.43%。表明静水压法较冷休克法更适合雌核牙鲆子二代雌核发育的诱导。诱导组开口前仔鱼存活率明显低于相同阶段的对照组,而同阶段仔鱼全长二者间却无显著差异(P<0.05)。
     在大黄鱼福建和浙江两养殖群体中筛选出12种同工酶(AAT、AK、ACP、CK、EST、GPI、IDH、LDH、MDH、MEP、PGM、SDH),共记录了34个基因座位,以此进行了群体遗传变异分析。各同工酶的表达在大黄鱼养殖群体中具有明显的组织特异性。浙江养殖群体的多态基因座位比例(P)、等位基因平均数(A)和群体平均杂合度(H)分别为29.41%、1.32、0.06534,都明显高于福建养殖群体对应值(20.58%,1.24,0.03366)。其中,福建养殖群体检测到7个多态基因座位(Aat-1、Aat-2、Acp-1、Mdh-3、Mdh-4、Mep-1、Mep-4),浙江群体检测到10个多态基因座位(Aat-1、Aat-2、Acp-1、Gpi-2、Gpi-3、Mdh-3、Mdh-4、Mep-1、Mep-4、Sdh)。大黄鱼养殖群体存在明显的杂合子缺失现象。除浙江养殖群体中的Acp-1、Gpi-2和Gpi-3符合Hardy-Weinberg遗传平衡定律外,其它多态座位都偏离Hardy-Weinberg遗传平衡定律,表明经累代养殖后,大黄鱼养殖群体中已经存在严重的近交现象。两养殖群体的遗传相似性系数(I)为0.9984,遗传距离(D)是0.0016,遗传分化系数Gst为0.0564。Dm为0.007,显示了福建和浙江大黄鱼养殖群体较近的亲缘关系。
     诱导实验结果表明,冷休克法和静水压法都可成功诱导出大黄鱼三倍体。冷休克法适合诱导条件为20℃培育水温下,授精后3min,在3-4℃海水中处理8-10min;静水压法适合诱导条件为同样培育水温下授精后3min,在静水压450kg/cm2下处理3min。综合比较各诱导组和对照组胚胎存活率,孵化率和初孵仔鱼畸型率,静水压法诱导效率明显高于冷休克法。同样培育水温条件下,诱导组胚胎发育开始时较对照组滞后,随着进一步发育,其滞后程度逐渐减弱最终消失,其中静水压法诱导组发育至多细胞期后即与对照组发育同步,而冷休克法诱导组则到原肠早期后才与对照组发育同步。大黄鱼三倍体诱导组和对照组孵化后120d的鱼种,全长的增长上没有明显差异;体重在90d前无明显差异,但120d时三倍体诱导组鱼种明显大于对照组(p<0.05)。
Chromosome manipulations in left-eyed flounder and large yellow crocker were carried out by temperature or hydrostatic pressure shock after fertilization. Allozyme analysis was used to investigate the genetic structure and variation in cultivated stocks of P. crocea. The main results were shown as follows:
     Under the intensity of 3770ergs/mm2, UV light irradiation had slight effects on the ultra-structure, survival and mobility of sperm, while over this intensity, UV light irradiation would cause the damage of sperm ultra-structure and mobility. Therefore the optimal UV dosage for genetic inactivation of sperm of P olivaceus was determined as 3770ergs/mm2 in terms of survival, haploid percentage after irradiation.
    
     The optimal conditions for mitogynogenesis induction in P. olivaceus were tested by varying the treatment timing, intensity and duration of application of pressure or cold shocks. Treatment optima for cold shocks were 1-2℃for 45 min at 85 min after fertilization (AF) and 600 kg/cm2 for 6 min at 85 min AF for pressure shocks (water temperature, 15±0.2℃). Ploidy determination was carried out by chromosome counting, flow-cytometry and larvae morphological observation. Under the optimal treatment, survival rate of mitogynogenetic diploid larvae in pressure treatment group at hatching stage was 13.01% , which was much higher than those in cold shock group (less than 1%), indicating that pressure shock was more effective than cold shock for inhibiting the first cleavage of eggs of P. olivaceus. Survival rates of mitogynogenetic diploid larvae at 1-4d post-hatching (PH) were markedly lower than those of their diploid control and meiogynogenetic counterparts at the same stage even though no significant differences were observed in total length of their larvae between them before first feeding.
     The optimal conditions for meiogynogenesis induction in the second generation of gynogentic P. olivaceus were carried out by changing the treatment timing, intensity and duration of application of pressure or cold shocks. Treatment optima for cold shocks were 0–1℃for 45 min at 5 min after fertilization (AF) and 480 kg/cm2 for 5 min at 5 min AF for pressure shocks. G2 meiogynogenetic diploids were obtained by fertilizing gynogentic eggs with UV-irradiated homologous normal sperm (UV intensity, 3770 erg/mm2) and pressure or cold shocking eggs as above. Ploidy investigations were also performed on experimental groups by chromosome counting, flow-cytometry and larvae morphological observation. Under the optimal treatment, survival of embryo 12h AF and larvae at 6h PH and deformed hatchling rate in cold shock group were 84.34±1.7%,53.32±5.57%,15.42±1.79%; while those indices in pressure group were 86.32±5.07%,79.14±2.11%,8±1.43%, respectively, which showed that pressure treatment was more effective than cold shock for retention of the second polar body of eggs from gynogenetic P. olivaceus under either small batch or large volume scale and had less harm to the subsequent embryonic development and larval survival. Survival of G2 gynogenic larvae at 1-4d PH induced by either cold or pressure shock was not different significantly, but markedly lower than that of their diploid control at the same stage. No significance (P<0.05) was observed in total length of larvae between G2 meiogynogens and their control before first feeding.
     Horizontal starch gel electrophoresis of allozymes was used to investigate genetic variation and stock structure of Fujian and Zhejiang cultivated stocks of P. crocea. 34 loci of 12 allozymes and their expression patterns in 4 tissues (eye, muscle, heart and liver) were examined and recorded, respectively. The results showed that allozyme expression patterns in cultivated stocks of P. crocea were tissue- specific. At the 95% confidence level, 7 Polymorphic loci (Aat-1, Aat-2Acp-1, Mdh-3, Mdh-4, Mep-1, Mep-4) in Fujian stock and 10 Polymorphic loci (Aat-1, Aat-2, Acp-1, Gpi-2, Gpi-3, Mdh-3, Mdh-4, Mep-1, Mep-4, Sdh) in Zhejiang stock were detected. The proportion of polymorphic loci (P, 29.41%), average alleles (A, 1.32) and average heterozygosity (H, 0.06534) in Zhejiang stock were higher than those in Fujian stock (P, 20.58%; A, 1.24 and H, 0.03366). The genetic deviation index (d) indicated that a deficit of heterozygosity existed in both stocks and 7 of 10 polymorphic loci except for Acp-1, Gpi-2 and Gpi-2 in Zhejiang were significant depart from Hardy-Weinberg equilibrium by X2-test (p<0.05) stock. This result showed that severe inbreeding might have existed in P. crocea cultivated stocks due to generations of intensive culture without addition of wild broodstock. The genetic similarity (I) and genetic distance (D) between these two stocks were 0.9984 and 0.0016, respectively, indicating a close genetic affinity of two stocks.
     The optimal conditions for triploid induction in P. crocea were performed by pressure and cold shocks. The treatment optima for cold shock were 3-4℃for 10min at 3min AF or 450kg/cm2 for 3min at 3 min AF for pressure shock. In terms of survival, deformed hatchling and triploidy rates, pressure treatment was more efficient and suitable than cold shock in triploidy induction of P. crocea. Cold and pressure treatments had effects on embryonic development of P. crocea and embryonic development of both shock groups were suppressed and the first cleavage were delayed 27min in cold shock groups while 17 min in pressure shock groups compared to their control. But the difference was decreased with embryonic development and disappeared before early blastula stage in pressure group and early gastrula stage in cold group. Putative triploid group had a similar growth performance compared to their diploid counterparts during 20-90 d after hatching even though diploids were smaller in body weight and total length (differences not significant). But 90 -120d after hatching, weight gain in putative triploid group was significant higher than that in control group while difference in length gain at the same stage was not distinct (P<0.05).
引文
1. 蔡国雄,1997。真鲷三倍体诱导初步研究.热带海洋。16(4):95-97。
    2. 根井正利著,王家玉译,1975。分子群体遗传学与进化论。农业出版社,北京(第一版): 121-203。
    3 李思发,吴力钊,王强等,1990。长江、珠江、黑龙江鲢、鳙、草鱼种质资源研究。上海科学技术出版社,上海(第一版),p 51-101。
    4. 连建华,2004。 性别控制技术和选择标记在牙鲆育种中的应用。博士论文,1-44。
    5. 林琪,吴建绍,曾志南,2001。静水压休克诱导大黄鱼三倍体。海洋科学, 25(9):6-9。
    6. 楼允冬,1989。应用自身免疫控制鲤鱼性腺发育。中国农业生物技术,183-186。
    7. 楼允冬,1999。 鱼类育种学,农业出版社。
    8. 王军,王德祥,尤颖等,2001。大黄鱼三倍体诱导的初步研究.厦门大学学报(自然科学版), 40(4):927-928。
    9. 王军等,2001。官井洋野生和养殖大黄鱼同工酶研究,海洋科学,25(6): 39-41。
    10. 王可玲,张培军,刘兰英等,1994。 中国近海带鱼种群生化遗传结构及其鉴别的研究,海洋学报,16(1):93-104。
    11. 吴清江,桂建芳,1999。鱼类遗传育种工程。上海科学技术出版社。
    12. 吴谡琦,1997。中国近海真鲷、黑鲷生化遗传结构及其种群中蛋白质多态保持机制的研究,博士论文,33-47。
    13. 尤锋,1993。黑鲷三倍体的人工诱导初步研究.海洋与湖沼,22(5):489-491。
    14. 尤锋,2001。牙鲆群体遗传多样性及鲽形目鱼类分子系统学初步研究,博士论文,1-56。
    15. 朱兰菲,1982。几种鲤科鱼类及杂种的乳酸脱氢酶同工酶的比较,水生生物学集刊,7(4): 539-545。
    16. 藤尾芳久, 1985。 ァイソザイム分析手法よる魚介類の遺伝的特性の解明に関する研究,农林水产业特别实验研究费辅助金による研究报告书, 1-58。
    17. 田火田和男,五利江重昭,谷口顺彦,1986。アイソサイムマ―カ―遺伝子によろヒうメ雌性发生 2 倍体および 3 倍体诱导の确认。 水产育种, 11:35-41。
    18. 田火田和男,五利江重昭,1987。ヒうメ亲鱼のアイソサイム遺伝子型の生体检查法どIDH遺伝 子座-动原体间の组换率について。 水产育种, 12:51-56。
    19. 田明诚,徐恭昭,余日秀,1962。大黄鱼形态特征的地理变异和地理种群问题。海洋科学集刊,2:79-97.
    20. Alarcón, J.A. and M.C. Alvarez, 1999. Genetic identification of sparid species by isozyme markers: application to interspecific hybrids, Aquaculture, 173:95-103.
    21. Allen, S.K. Jr.and J.G. Stanley, 1979. Polyploid mosaics induced by cytochalasin B in landlocked Atlantic salmon Salmo salar. Trans. Am. Fish. Soc. 108: 462–466.
    22. Allen, S.K. Jr., 1983. Flow cytometry: assaying experimental polyploidy fish and shellfish. Aquaculture 33: 317–328.
    23. Arai,et al, 1991a. Karyotype and erythrocyte size of spontaneous tetraploidy and triploidy in the loach Misgumus anguillicaudatus. Nippon Suisan Gakkaishi 57: 2167–2172.
    24. Arai,et al.,1991b. Chromosomes anddevelopmental potential of progeny of spontaneous tetraploidloach Misgumus anguillicaudatus. Nippon Suisan Gakkaishi 57: 2173–2178.
    25. Arai,et al.,1993. Production of polypioids and viable gynogens using spontaneously occurring tetraploid loach, Misgumus anguillicaudatus. Aquaculture 117: 227–235.
    26. Arai, K., and Inamori, Y., 1999. Viable hyperdiploid progeny between diploid female and induced triploid male in the loach, Misgurnus anguillicaudatus. Suisan Zoshoku 47, 489–495.
    27. Arai,K., 2000. Chromsome manipulation in aquaculture : recent progress and perspective,Suisan ZouShoKu,48(2):295-303.
    28. Arai, K., 2001. Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture 197: 205–228.
    29. Arakawa, et al., 1987. An examination of the condition for triploid induction by cold shock in red and black sea breams. Bull. Nagasaki Pref. Inst. Fish. 13: 25–30.
    30. Bartley, D.M., 1997. Genetics and breeding in aquaculture: current status and trends. Cahiers Opt. Méditerran. 34: 13–30.
    31. Benfey, T.J. and A.M. Sutterlin, 1984. Growth and gonadal development in triploid landlocked Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 41: 1387–1392.
    32. Benfey, et al., 1989. The growth and reproductive endocrinology of adult triploid pacific salmonids. Fish Physiol. Biochem. 6: 113–120.
    33. Benfey, T.J., 1995. Ovarian development in triploid brook trout (Salvelinus fontinalis), p. 357. in roceedings of the Fifth International Symposium on the Reproductive Physiology of Fish, edited by F. W. Goetz & P. Thomas. Austin, Texas, USA.
    34. Benfey T. J., 1996. Use of all-female and tripoid salmonids for aquaculture in Canada . Bull. Aquacul. Assoc.Canada, 2:6~8.
    35. Benfey T J. 1999.The physiology and behavior of triploid fishes.Review of Fisheries Science, 7:39-67.
    36. Bertotto,et al.,2005. Production of clonal founders in the European sea bass,Dicentrarchus labrax L., by mitotic gynogenesis,Aquaculture, 244:532-542.
    37. Bongers, et al., 1997. Origin of variation in isogenic, gynogenetic andandrogenetic strains of common carp, Cyprinus carpio. J. exp.Zool. 277: 72–79.
    38. Br?mick,et al., 1995. Testing of triploid tilapia (Oreochromis niloticus) under tropical pond conditions. Aquaculture 137: 343–353.
    39. Breton, B. and E. Sambroni, 1996. Steroid activation of the brainpituitary complex gonadotropic function in the triploid rainbow trout Oncorhynchus mykiss. Gen. Comp. Endocrinol. 101: 155–164.
    40. Burns, et al.,1986. Effect of fixation with formalin on flow cytometric measurement of DNA in nucleated blood cells. Aquaculture,55: 149–155.
    41. Carole, et al., 2003. Induce triploidy by heat shock in Eurasian perch, Perca fluviatilis. Aquatic Living Resources, 16:90–94.
    42. Carrasco,et al., 1998. Long term, quantitative analysis of gametogenesis in autotriploid rainbow trout, Oncorhynchus mykiss. J. Reprod. Fertility,113: 197–210.
    43. Carrillo, et al., 1993. Sex control and ploidy manipulation in sea bass, p. 512. in International Conference of Aquaculture
    44. Carrillo, et al., 2000. Some criteria of the quality of the progeny as indicators of physiological broodstock fitness. Cahiers Opt. Méditerran. 47: 61–73.
    45. Carter, et al., 1994. Food consumption, feeding behaviour, and growth of triploid and diploid Atlantic salmon, Salmo salar L parr. Can. J. Zool, 72: 609–617.
    46. Cherfas, et al., 1994. Assessment of triploid common carp (Cyprinus carpio L.) for culture. Aquaculture, 127: 11–18.
    47. Chourrout, D and E. Quillet, 1982. Induced gynogenesis in the rainbowtrout: sex and survival of progenies. Production of alltriploid populations. Theor. appl. Genet, 63: 201–205.
    48. Chourrout, et al., 1986. Production of second generation triploid and tetraploid rainbow troutby mating tetraploid males and diploid females-potential of tetraploid fish. Theor. Appl. Genet, 72: 193–206.
    49. Colombo, et al., 1995. Artificial fertilization and induction of triploidy and meiogynogenesis in the European sea bass, Dicentrarchus labrax L. J. Appl. Ichthyol. 11: 118–125.
    50. Crenshaw, et al., 1996. Hydrostatic pressure has different effects on the assembly of tubulin, actin, myosin II, vinculin, talin, vimentin and cytokeratin in mammalian tissue cells. Experimental Cell Research 227, 285–297.
    51. Lima, et al., 2005.Genetic detection of cryptic species in the frillfin goby Bathygobius soporator. Journal of Experimental Marine Biology and Ecology, 337–344.
    52. Devlin, et al., 1994. A rapid PCR-based test for Y-chromosomal DNA allows simple production of all-female strains of chinook salmon. Aquaculture, 128: 211–220.
    53. Fast, et al., 1995. Comparative growth of diploid and triploid Asian catfish Clarias macrocephalus in Thailand. J. World Aquacult. Soc. 26: 390–395.
    54. Felip, et al., 1997. Optimal conditions for the induction of triploidy in the sea bass (Dicentrarchus labrax L.). Aquaculture 152: 287–298.
    55. Felip, et al., 1999. The relationship between the effects of UV light and thermal shock on gametes and the viability of early developmental stages in a marine teleost fish, the sea bass (Dicentrarchus labrax L.). Heredity 83: 387–397.
    56. Felip, et al., 2001. Comparative growth performance of diploid and triploid European sea bass over the first four spawning seasons . Journal of Fish Biology,58:76-88.
    57. Fitzhugh, et al., 1996. Mechanisms contributing to variable growth in juvenile southern flounder (Paralichthys lethostigma). Canadian Journal of Fish and Aquatic Science 53, 1964–1973.
    58. Flajshans, et al., 1992. Frequency analyses of active NORs in nuclei of artificially induced triploid fishes. Theor. Appl. Genet. 85: 68–72.
    59. Francescon.et.al., 2004.Shock timing in mitogynogenesis and tetraploidization of the European sea bass Dicentrarchus labrax,Aquaculture,236:201-209.
    60. Freund, et al., 1995. Plasma steroid hormones in adult triploid tilapia (Oreochromis niloticus), p. 35 in Proc. 5th Intern. Symp. Reproductive Physiology of Fish, Van Eenennaam, J.P., R.K. Stocker, et al., 1990. Egg fertility, early development and survival from crosses of diploidfemale x triploid male grass carp (Ctenopharyngodon idella). Aquaculture 86: 111–125.
    61. Friars, et al., 2001. Family differences in relative growth of diploid and triploid Atlantic salmon (Salmo salar L.). Aquacultutre 192: 23–29.
    62. Fujioka, K. 1998. Survival, growth and sex ratios of gynogenetic diploid honmoroko. Journal of Fish Biology 52, 430–442
    63. Galbreath P.F and G.H. Thorgaard, 1994. Viability and freshwater performance of Atlantic salmon (Salmo salar) x brown trout (Salmo trutta) triploid hybrids. Can. J. Fish. Aquat. Sci. 51 (1): 16–24.
    64. Galbreath, P.F and Thorgaard, G.H., 1997. Saltwater performance of triploid Atlantic salmon Salmo salar and brown trout Salmo trutta hybrids. Aquacult. Res. 28, 1–8.
    65. Galbusera, et al., 2000. Gynogenesis in the African catfish Clarias gariepinus (Burchell, 1822). III. Induction of endomitosis and the presence of residual genetic variation. Aquaculture 185: 25–42.
    66. Gao, T.X. and S. Watanabe, 1998. Genetic variation among local populations of the Japanese mitten crab Eriocheir japonica de haan, Fisheries Science, 64(2):198-205.
    67. Garrido-Ramos, et al.,1996. Induction of triploidy in offspring of gilthead seabream (Sparus aurata) by mean of heat, Aqua. Res. 26: 135–140.
    68. Gervai, et al., 1980. Induced triploidy in carp, Cyprinus carpio L. J. Fish Biol. 17: 667–671.
    69. Gomelsky, et al., 1998. Induced diploid gynogenesis in white bass. Prog. Fish Cult. 60: 288–292.
    70. Gorshkova, et al., 1995. Chromosome set manipulation in marine fish. Aquaculture 137: 157–15.
    71. Gorshkov, et al., 1998. Chromosome set manipulations and hybridization experiments in gilthead seabream (Sparus aurata). Isr. J. Aqua. Bamidgeh 50 (3): 99–110.
    72. Goudie, et al., 1995. Production of gynogenetic and polyploid catfish by pressureinduced chromosome set manipulation. Aquaculture, 133: 185– 198.
    73. Han, et al., 1991. Production of clonal ayu by chromosome manipulation and confirmation by isozyme marker and tissue grafting. Nippon Suisan Gakkaishi 575: 825–832.
    74. Han, et al., 1992. Application of DNA fingerprinting to confirmation of clone in ayu. Nippon Suisan Gakkaishi 58 (11): 2027–2031.
    75. Harris,H. and D.A. Hopkinson, 1976. Handbook of Enzyme Electrophoresis in Human Genetics, North-Holland Publishing Company, Amsterdam (Oxford), Chapter 4.
    76. Hildebrandt, et al., 2002. The cellular and molecular basis of hyperthermia. Critical Reviews in oncology and Hematology, 43, 33–56.
    77. Holmefjord, I and T. Refstie, 1997. Induction of triploidy in Atlantic halibut by temperature shocks. Aqua. Intern. 5: 169–173.
    77. Hong W and Zhang Q. Review of captive bred species and fry production of marinefish in China, Aquaculture, 2003,227:1-14.
    78. Howell, B.R., Baynes, S.M., Thompson, D., 1995. Progress towards the identification of the sex-determining mechanism of the sole, Solea solea (L.), by the induction of diploid gynogenesis. Aquac. Res. 26, 135– 140.
    79. Hussain, et al., 1995. Comparative performance of growth, biochemical composition and endocrine profiles in diploid and triploid tilapia Oreochromis niloticus L. Aquaculture 138: 87–97
    80. Hyndeman, et al., 2003. Physiology and survival of triploid brook trout following exhaustive exercise in warm water. Aquaculture, 222, 629– 643.
    81. Ihssen, P.E., McKay, L.R., McMillan, I., Phillips, R.B., 1990. Ploidy manipulation and gynogenesis in fishes: cytogenetic and fisheries applications. Trans. Am. Fish. Soc. 119, 698– 717.
    82. John, G., P.V. G. K. Reddy &R. K. Jana, 1988. Induced gynogenesis in the Indian major carp, Cirrhinus mrigala (Ham.). InM.Mohan Joseph (ed.), The First Indian Fish. Forum Proc., Asian Fish. Soc., Indian Branch, Mangalore: 107–109.
    83. Johnson R.M. Shrimpton M. J., Heath J.W., 2004. Family induction methodology and interaction effects on the performance of diploid and triploid chinook salmon Oncorhynchus tshawytscha . Aquaculture,234:123-142.
    84. Johnstone, R., R. M. Knott, A. G. MacDonald, & V. Walsingham, 1988. Triploidy induction in recently fertilized Atlantic salmon ova using anaesthetics. Aquaculture 78: 229–236.
    85. Johnstone, R., R. M. Knott, A. G. MacDonald, & V. Walsingham, 1989. Triploidy induction in recently fertilized Atlantic salmon ova using anaesthetics. Aquaculture 78: 229–236.
    86. Kato, K., Hayashi, R., Yuasa, D., Yamamoto, S., Miyashita, S., Murata, O., Kumai, H., 2002.Production of cloned red sea bream, Pagrus major, by chromosome manipulation. Aquaculture 207, 19– 27.
    87. Kato, K., Murata, O., Yamamoto, S., Miyashita, S., Kumai, H., 2001. Viability, growth and external morphology of meiotic- and mitotic-gynogenetic diploids in red sea bream, Pagrus major. J. Appl. Ichthyol. 17, 97– 103.
    88. Kavumpurath, S. & T.J. Pandian, 1992. The development of allmale sterile triploid fighting fish (Betta splendens regan) by integrating hormonal sex reversal of broodstock and chromosome-set manipulation. Isr. J. Aquacult. Bamidgeh 44 (4): 111–119
    89. Kawamura, K., T. Ueda, K. Aoki & K. Hosoya, 1999. Spermatozoa in triploids of the rosy bitterling Rhodeus ocellatus ocellatus. J. Fish Biol. 55: 420–432.
    90. Kim, D. S., J. H. Kim, J. Y. Jo, Y. B. Moon & K. C. Cho, 1993a. Induction of gynogenetic diploid in Paratichthys olivaceus. Kor. J. Genet. 15–3: 179–186.
    91. Kim, D. S., C. H. Jeong & I. B. Kim, 1993b. Induction of allfemale triploid in rainbow trout (Oncorhynchus mykiss). Kor. J. Genet. 15: 213–218.
    92. Kim, D.S., J.Y. Jo & T.Y. Lee, 1994. Induction of triploidy in mud loach (Misgurnus mizolepis) and its effect on gonadal development and growth. Aquaculture 120: 263–270.
    93. Kirpichnikov, V.S., Genetic bases of fish selection, Springer-verlag (Berlin), 1981, 143-200.
    94. Kitamura, H., O.Y. Teong & T. Arakawa, 1991. Gonadal development of artificially induced triploid red sea bream Pagrus major. Nippon Suisan Gakkaishi 57: 1657–1660.
    95. Kobayashi, T. (1997). Studies on biological characteristics and inheritance of traits in chromosomally manipulated triploid and gynogenetic diploid salmonids .PhD thesis, University of Tokyo, in Japanese with English abstract.
    96. Kobayashi, T., Ide, A., Hiasa, T., Fushiki, S., Ueno, K., 1994. Production of cloned amago salmon Oncorhynchus rhodurus. Fish. Sci. 60, 275– 281.
    97. Komen, J., Bongers, A.B.J., Richter, C.J.J., van Muiswinkel, W.B., Huisman, E.A., 1991. Gynogenesis in common carp (Cyprinus carpio): II. The production of homozygous gynogenetic clones and F1 hybrids. Aquaculture 92, 127–142.
    98. Krisfalusi, M. & J.G. Cloud, 1997. Gonadal development in triploid rainbow trout (Oncorhynchus mykiss): testicular but not ovarian development. Biol. Reprod. 56: 105.
    99. Kurita, J., T. Oshiro, F. Takashima & M. Sakaizumi, 1995. Cyto’genetic studies on diploid andtriploid oogenesis in interspecific hybrid fish between Oryzias latipes and O. curvinol. J. exp. Zool. 273: 234–241.
    100. Leclerc, G.M., B. Ely, X.L. Xu & R.M. Harrell, 1996. Gynogen production in hybrid striped bass. J. World Aqua. Soc. 27 (1): 119–125.
    101. Levanduski, M.J., J.C. Beck & J.E. Seeb, 1990. Optimal thermal shocks for induced diploid gynogenesis in chinook salmon (Oncorhynchus tshawytscha). Aquaculture 90: 239–250.
    102. Lin, F., Dabrowski, K., 1998. Androgenesis and homozygous gynogenesis in muskellunge (Esox masquinongy): evaluation using flow cytometry. Mol. Reprod. Dev. 49, 8– 10.
    103. Lincoln, R. F. & A. P. Scott, 1983. Production of all-female triploid rainbow trout. Aquaculture 30: 375–380.
    104. Lincoln, R.F., D. Aulstad & A. Grammeltvedt, 1974. Attempted triploid induction in Atlantic salmon (Salmo salar) using cold shocks. Aquaculture 4: 287–297.
    105. Lincoln, R. F., 1981a. The growth of female diploid and triploid plaice (Pleuronectes platessa) ×flounder (Platichthys flesus) hybrids over one spawning season. Aquaculture 25: 259–268.
    106. Lincoln, R. F., 1981b. Sexual maturation in triploid male plaice (Pleuronectes platessa) and plaice ×flounder (Platichthys flesus) hybrids. J. Fish Biol. 19: 415–426.
    107. Luckenbach, A., Godwin, H., Harry V. & Daniels. (2004).Induction of diploid gynogenesis in southern flounder (Paralichthys lethostigma) with homologous and heterologous sperm. Aquaculture 237, 499–516.
    108. Lush I. E, Cowey C.B, Knox D, 1977.The lactate dehydrogenase isozymes of twelve species of flatfish (Heterosomata), J. Exp. Zool., 171:105-118.
    109. Mair, G.C., A.G. Scott, D.J. Penman, J.A. Beardmore & D.O.F. Skibinski, 1991a. Sex determination in the genus Oreochromis. 1. Sex reversal, gynogenesis and triploidy in O. niloticus (L.). Theor. Appl. Genet. 82: 144–152.
    110. Mair, G.C., A.G. Scott, D.J. Penman, D.O.F. Skibinski & J.A. Beardmore, 1991b. Sex determination in the genus Oreochromis. 2. Sex reversal, hybridisation, gynogenesis and triploidy in O. aureus Steindachner. Theor. Appl. Genet. 82: 153–160.
    111. Malison, J.A., L.S. Procarione, J.A. Held, T.B. Kayes & C.H. Amundson, 1993. The influence of triploidy and heat and hydrostatic pressure shocks on the growth andreproductive development of juvenile yellow perch (Perca flavescens). Aquaculture 116: 121–133.
    112. Matsubara, K., K. Arai & R. Suzuki, 1995. Survival potential and chromosomes of progeny of triptoid and pentaploid females in the loach Misgurnus anguillicaudatus. Aquaculture 131: 37–48.
    113. McGeachy, S.A., T.J. Benfey & G.W. Friars, 1995. Freshwater performance of triploid Atlantic salmon (Salmo salar) in New Brunswick aquaculture. Aquaculture 137: 333–341.
    114. Mirza, J. A. & W. Sheiton, 1988. Induction of gynogenesis and sex reversal in silver carp. Aquaculture 68: 1–14.
    115. Mol K, Byamungu N, Yaron Z, et al. Hormonal profile of growing male and female diploid and triploid of the blue tilapia Oreochromis aureus, reared in intensive culture [J]. Fish Physiology and Biochemistry,1994,13:209-218.
    116. Murata, O., 1998. Studies on the breeding of cultivated marine fishes. Bull. Fish. Lab. Kinki Univ. 6: 1–101 (in Japaness with abstract in English).
    117. Nagy, A., K. Rajki, L. Horváth & V. Csányi, 1978. Investigation on carp, Cyprinus carpio L. gynogenesis. J. Fish Biol. 13: 215–224.
    118. Nakamura, M., Y. Nagahama, M. Iwahashi & M. Kojima, 1987. Ovarian structure and plasma steroid hormones of triploid female rainbow trout. Nippon Suisan Gakkaishi 53: 1105.
    119. Nakamura, M., F. Tsuchiya, M. Iwahashi & Y. Nagahama, 1993. Reproductive characteristics of precociously mature triploid male masu salmon, Oncorhynchus masou. Zool. Sci. 10: 117–125
    120. NaNakorn, U., W. Rangsin & S. Witchasunscul, 1993. Suitable conditions for induction of gynogenesis in the catfish, Clarias macrocephalus, using sperm of Pangasius sutchi. Aquaculture 118: 53–62.
    121. Na-Nakorn, U., 1995. Comparison of cold and heat shocks to induce diploid gynogenesis in thai walking catfish (Clarias macrocephalus) and performances of gynogens. Aquat. Living Resour. 8: 333–341.
    122. Naruse, K., Ijiri, K., Shima, A., Egami, N., 1985. The production of cloned fish in the Medaka (Oryzias latipes).J. Exp. Zool. 236, 335– 341.
    123. Nei, M. and T. Helentjaris, 1972. Genetic distance between populations, Amer Natu, 106: 283-292.
    124. Nicholas G., Elliott., Anne Reilly., 2003. Likelihood of bottleneck event in the history of the Australian population of Atlantic salmon (Salmo salar L.) Aquaculture 215,31-44
    125. O’Keefe, R.A. & T.J. Benfey, 1997. The feeding response of diploid and triploid Atlantic salmon and brook trout. J. Fish Biol. 51: 989–997.
    126. Oliva-Teles, A. & S.J. Kaushik, 1990. Growth and nutrient utilization by 0+ and 1+ triploid rainbow trout, Oncorhynchus mykiss. J. Fish Biol. 37: 125–133.
    127. Oppermann, K., 1913. Die Entwickfung von Forelloneiern nach Befruchtung mit diumbestrahiten Samenfaden. Arch. Mikrosk Anat. 83: 141–189.
    128. Oshiro, T., 1987. Sex ratios of diploid gynogenetic progeny derived from five different females of goldfish. Nippon Suisan Gakkaishi 53: 10.
    129. Otto S.P., Whitton J., 2000. Polyploid incidence and evolution. Annual Review of Genetics 34, 401–437.
    130. Pandian, T.J. & Varadaraj, K., 1990. Development of monosex female Oreochromis mossambicus broodstock by integrating gynogenetic technique with endocrine sex reversal. J. Exp. Zool. 255: 88–96.
    131. Pandian, T. J. & S. G. Sheela, 1995. Hormonal induction of sex reversal. Aquaculture 138: 1–22.
    132. Parsons, G.R. & K. Meals, 1997. Comparison of triploid hybrid crappie and diploid white crappie in experimental ponds. North Am. J. Fish. Manag. 17: 803–806.
    133. Parsons, J.E., R.A. Busch, G.H. Thorgaard & P.D. Scheerer, 1986. Increased resitence of triploid rainbow trout x coho salmon hybrids to infectious hematopoietic necrosis virus. Aquaculture 57:
    134. Paschos, I., Natsis, L., Nathanailides, C., Kagalou, I., Kolettas, E.,2001. Induction of gynogenesis and androgenesis in goldfish Carassius auratus (var. oranda). Reprod. Domest. Anim. 36,8 –19.
    135. Penman, D.J., D.O.F. Skibinski & J.A. Beardmore, 1987. Survival, growth rate and maturity in triploid tilapia, pp. 277–288 in Selection, Hybridization and Genetic Engineering in Aquaculture.
    136. Peruzzi, et al., 1993. Initiation of gynogenesis in Oreochromis niloticus following heterologous fertilization. J. Fish Biol. 43: 585–591.
    137. Peruzzi, S. & B. Chatain, 2000. Pressure and cold shock induction of meiotic gynogenesis and triploidy in the European sea bass, Dicentrarchus labrax L.: relative efficiency of methods and parental variability. Aquaculture 189: 23–37.
    138. Piferrer, F., R.M. Cal, B. álvarez-Blázquez, L. Sánchez & P. Martínez, 2000. Induction of triploidy in the turbot (Scophthalmus maximus). I. Ploidy determination and the effects of cold shocks. Aquaculture 188: 79–90.
    139. Piferrer F, Cal R M, Comez C,et al. 2003, Induction of triploidy in the turbot (Scophthalmus maximus)II. Effects of cold shock timing and induction of triploidy in a large volume of eggs .Aquaculture, 220:821–831.
    140. Piferrer, et al., 2004. Induction of gynogenesis in the turbot (Scophthalmus maximus): Effects of UV irradiation on sperm motility, the Hertwig effect and viability during the first 6 months of age. Aquaculture 238:403-419.
    141. Planas, M and I. Cunha, 1999. Larviculture of marine fish: problems and perspectives. Aquaculture 177: 171–190.
    142. Pongthana, et al., 1995. Induced gynogenesis in the silver barb (Puntius gonionotus Bleeker) and evidence for female homogamety. Aquaculture 135: 267–276.
    143. Purdom, C.E., 1972. Induced polyploidy in plaice (Pleuronectes platessa) and its hybrid with the flounder (Platichthys flesus). Heredity 29: 11–24.
    144. Quillet, E., 1994. Survival, growth and reproductive traits of mitotic gynogenetic rainbow trout females. Aquaculture, 123: 223–236.
    145. Refstie, et al., 1982. Production of all female coho salmon (Oncorhynchus kisutch) by diploid gynogenesis using irradiated sperm and cold shock. Aquaculture 29: 67–82.
    146. Romashov, D. D. and V. N. Belyaeva, 1964. Cytology of radiation gynogenesis and androgenesis in the loach. Dokl. Akad. Nauk SSSR 157: 964–1996.
    147. Rougeot,et.al.,2005. Gynogenesis induction and sex determination in the Eurasian perch, Perca fluviatilis,Aquaculture,243:4111-415.
    148. Shaklee, J.B., K.L. Kepes and G.S. Whitt, 1976. Specialized Lactate dehydrogenase isozymes:the molecular and genetic basis for the unique eye and liver LDHs of teleost fishes,J. Exp. Zool., 185:217-240.
    149. Shaklee, J.B. and J.P. Salini, 1985. Genetic variation and population subdivision in Australian Barramundi, :Lates calcarifer(Bloch), Aus. J. Mar. Fresh. Res., 36:203-218.
    150. Smith, L.T. and H.L. Lemoine, 1979. Colchicine-induced polyploidy in brook trout. Prog. Fish Cult. 41: 86–88.
    151. Smoker, et al., 1995. Second polar body retention and gynogenesis induced by thermal shock In pink salmon, Oncorhynchus gorbuscha (Walbaum). Aqua. Res. 26: 213–219.
    152. Stanley, J.G and J.B. Jones, 1976. Morphology of androgenetic and gynogenetic grass carp, Ctenopharyngodon idella (Valenciennes). J. Fish Biol. 9: 523–528.
    153. Streisinger, et al., 1981. Production of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature 291: 293–296.
    154. Sugama, et al., 1992. Survival, growth and gonadal development of triploid red sea bream, Pagrus major (Temminck Schlegel): use of allozyme markers for ploidy and family identification. Aquat. Fish. Manag. 23: 149–159.
    155. Sugama, et al., 1990. Gynogenetic diploid production in the red sea bream using UV-irradiated sperm of black sea bream and heat shock. Nippon Suisan Gakkaishi 56: 1427–1433.
    156. Sumantantindaet, al., 1990. The necessary conditions and the use of ultraviolet irradiated sperm from different species to induce gynogenesis of Indonesian common carp. Second Asian Fish. Forum, Asian Fish. Soc.,Manila, Philippines: 539–542.
    157. Suwa, et al., 1994. Suppression of the first cleavage and cytogenetic studies on the gynogenetic loach. Fish.Sci. 60, 673–681.
    158. Suzuki, et al., 1985. Survival, growth and fertility of gynogenetic diploids induced in the cyprinid loach, Misgurnus anguillicaudatus. Aquaculture 48: 45–55.
    159. Swarup, H., 1959. Effect of triploidy on the body size, general organization and cellular structure in Gasterosteus aculeatus (L.). Journal of Genetics 56, 129– 142.
    160. Tabata K and Gorie S., 1988a. Induction of gynogentic diploid in paralichthys olivaceus by suppression of the 1st cleavage ,with special reference to their survival and growth.Nippon Suisan Gakkaishi,54:1867-1872.
    161. Tabata, K. and Gorie, S. 1988b. Induction of gynogenetic diploids in Paralichthys olivaceusby suppression of the 1st cleavage with special reference to their survival and growth. Nippon Suisan Gakkaishi 54 (11), 1867– 1872 (in Japanese, with English abstract).
    162. Tabata, et al., 1989. Induction of gynogenetic diploid in hirame Paralichthys olivaceus. Nippon Suisan Gakkaishi 52 (11), 1901– 1904 (in Japanese; with English abstract).
    163. Tabata, K., 1991. Induction of gynogenetic diploid males and presumption of sex determination mechanisms in the hirame Paralichthys olivaceus. Nippon Suisan Gakkaishi 57 (5): 845–850.
    164. Tabata, T.,1992. Studies on chromosome manipulation in hirame Paralichthys oliíaceus. Fish Genetics and Breeding Science 13,9–18, in Japanese.
    165. Taniguchi, et al., 1988. Induction of two types of gynogenetic diploids by hydrostatic pressure shock and verification of genetic marker in ayu. Nippon Suisan Gakkaishi 54: 1483–1491.
    166. Teskeredzic, et al., 1993. Tiploidization of coho salmon following application of heat and electric shocks. Aquaculture 116: 287–294.
    167. Thorgaard, et al., 1979. Adult triploids in a rainbow trout family. Genetics 93: 961–973.
    168. Thorgaard, et al., 1981. Polyploidy induced by heat shock in rainbow trout. Trans. am. Fish. Soc. 110: 546–550.
    169. Thorgaard, et al., 1985. Residual paternal inheritance in gynogenetic rainbow trout: Implications for gene transfer. Theor. appl Genet. 71: 119–121.
    170. Utter, et al., 1983. Measurement and potential applications of induced triploidy in Pacific salmon. Aquaculture 35: 125–135.
    171. Varadaraj, K., 1990. Production of diploid Oreochromis mossambicus gynogens using heterologous sperm of Gyprinus carpio. Ind. J. Exp. Biol. 28: 701–705.
    172. Varadaraj, et al., 1994. Comparison of conditions for hormonal sex reversal of Mozambique tilapias. Progr. Fish Cult. 56: 81–90.
    173. Varadi, et al., 1999. Induction of diploid gynogenesis using interspecific sperm and production of tetraploids in African catfish, Clarias gariepinus Burchell (1822). Aquaculture
    173,401–411.
    174. Várkonyi, et al., 1998. Chromosomal and morphological abnormalities caused by oocyte ageing in Silurus glanis. J. Fish Biol. 52: 899–906.
    175. Volckaert, et al., 1994. Gynogenesis in the African catfish (Clarias gariepinus). I. Induction of meiogynogenesis with thermal and pressure shocks. Aquaculture 128: 221–233.
    176. Wattendorf, R. J., 1986. Rapid identification of triploid grass carp with a Coulter counter and Channalizer. Progr. Fish Cult. 48: 125–132.
    177. Wills, et al., 2000. Reduced reproductive capacity in diploid and triploid hybrid sunfish. Trans. Am. Fish. Soc. 129: 30–40.
    178. Wilson, et al., 2001. The effects of hydrostatic pressure-induced changes on the cytoskeleton and on the regulation of gene expression in pheochromocytoma cells. Cell Biology International 25, 667– 677.
    179. Wilson, et al., 2001. The effects of hydrostatic pressure-induced changes on the cytoskeleton and on the regulation of gene expression in pheochromocytoma (pc-12) cells. Cell Biology International, 25, 667– 677.
    180. Wohlfarth, G., 1990. The tools of genetics in aquaculture, pp. 213 in Mediterranean Aquaculture, edited by R. Flos, L. Tort & P. Torres. Ellis Horwood, N.Y.
    181. Wolters, et al., 1982. Effect of triploidy on growth and gonad development of channel catfish. Trans. Am. Fish. Soc. 111: 102–105.
    182. Yamamoto, E., 1992. Application of gynogenesis and triploidy in hirame Paralichthys oliíaceus breeding. Suisan ikushu Fish Genetics and Breeding. Science 18, 13–24, in Japanese.
    183. Yamamoto, E. 1995. Studies on sex-manipulation and production of cloned populations in hirame flounder, Paralichthys olivaceus (Temminck et Schlegel). Bulletin of Tottori Prefecture Fish Experiment Station 34, 1– 145 (in Japanese; with English summary).
    184. Yamamoto, E.,1999. Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus (Temminck et Schlegel). Aquaculture 173, 235–246.
    185. Yamamoto, E., Masutani, R., 1990. Spawning experiments with gynogenetically diploid sinistral flounders hirame, Paralichthys oliíaceus with corroborative evidence of large-scale all-female production . Tottori ken suisan shiken jo hokoku Bulletin of the Tottori Prefectural Fisheries Experimental Station 32, 28–38, in Japanese; with English abstract.
    186. Yamamoto, S., 1999. Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus (Temminck et Schlegel). Aquaculture 173, 235– 246.
    187. Yamazaki, F., 1983. Sex control and manipulation in fish. Aquaculture 33: 329–354.
    188. You, et al., 2001. Study on the embryonic development and early growth of triploid and gynogenetic diploid left-eyed flounder Paralichthys olivaces[J].Chinese Journal of Oceanology and Limnology, 19(2):147-151.
    189. Zanuy, et al., 1994. Production of monosex and sterile sea bass by hormonal and genetic approaches. Publ. Assoc. Devélop. Aquac. 119: 409–423.
    190. Zhang, et al., 2005. Correlation between delay in the earlier cleavage stage and the tetraploidization rate in rainbow trout Oncorhynchus mykiss embryos treated with heat or hydrostatic pressure shock during the first cell cycle. Fisheries Science 71:239-241
    191. Zohar, Y., 1989. Endocrinology and fish farming: aspects in reproduction, growth and smoltification. Fish Physiol. Biochem. 7: 395–450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700