新型共轭高分子的合成及其光电性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭有机高分子材料在分子传感,非线性光学,有机场效应晶体管,光致发光和电致发光材料中具有广泛的应用,本论文中,我们合成了一些新颖的含蒽或三聚芴的共轭高分子,并研究了它们的双光子吸收、电致发光及热学性质。这些工作包括:
     1具有热和光稳定性的空穴与电子传输平衡性的新型蓝光聚合物具有重要的研究和实际意义,聚芴是典型的蓝光发射材料,我们的目标是在聚芴的主链或侧链引入不同的功能单元,研究这种多功能基团集成在同一分子链上是否可以提高该聚合物的综合光电性质。我们以三聚芴与苯并呋喃交替共聚物为主链,苯基噁二唑为侧链合成了一种新的蓝光聚合物(PBF-OXD),结果表明,PBF-OXD具有良好的热稳定性,光学稳定性和较高玻璃化转变温度及荧光量子产率。以PBF-OXD为发光层的结构为ITO/PEDOT:PSS/PBF-OXD/Ba/Al器件发出稳定的蓝光(λmax = 434 nm),发光亮度为1400 cd?m-2,最大发光效率为0.95 cd?A-1。这些结果表明,我们设计合成了一个可溶的多功能集成的性能优良的电致蓝光发射材料。
     2设计并合成具有大的双光子吸收截面的共轭聚合物具有重要的研究和实际意义。聚2,6-蒽基乙烯和含2,6-蒽基乙烯的聚合物的合成是比较困难的,所以对这方面的文献报道较少。我们利用了9,10-二(3,4-二(2-乙基己氧基)苯基)-2,6-二磷脂基蒽和N-辛基-3,6/2,7-二醛基咔唑通过Wittig–Homer反应,成功的合成了两种含有电子给体的聚合物P1和P2。结果表明P1与P2具有较高的荧光量子效率(Φf = 0.85,0.78),每个重复单元的双光子吸收截面分别为840 GM和490 GM,它们的双光子吸收截面明显的高于PAV(210GM),这表明了将供电子基团引入聚合物骨架中,形成D–π–D重复单元,比增加主链的共轭长度对双光子吸收截面的影响更大。
     3蒽是一种大的芳香环,可以通过空间位阻提高聚合物的刚性以及玻璃化转变温度,蒽同时也是一种功能基团,可以通过聚合以及氧化形成交联聚合物。我们用9,10-二(4-羟基苯基)蒽,双酚A和4,4'-二氯对苯砜进行缩聚,合成了新型的含蒽单元的聚芳醚砜。研究结果显示当双酚A完全被9,10-二(4-羟基苯基)蒽取代时,该聚合物具有较大的玻璃化转变温度(265℃)。该系列聚合物是可溶的,并且可以旋转涂膜。当该聚合物经紫外灯照射并在空气中加热后,可以得到交联聚合物,该聚合物热稳定性得到了提高。
Conjugated organic polymeric molecules have potential applications in molecular sensors, non-linear optical materials, organic field effect transistors, photoluminescence, and electroluminescence. In this thesis, some novel anthracene- containing and terfluorene-containing polymers have been synthesized and their Two-photon absorption(TPA)、electroluminescent and thermal properties have been investigated. These include:
     1. The synthesis of new blue-emitting polymers with thermal- and photo- stability and with an improved imbalance of the hole and electron transport are needed. Poly-fluorene is an important blue-light emitting material, here our goal is to investigate whether the integration of different segments, each having respective functions, endow a copolymer with improved optoelectronic properties. Thus a novel blue-emitting alternating benzofuran/ter-?uorene copolymer with pendent oxadiazole groups (PBF-OXD) has been synthesized. The results showed that PBF-OXD shows good thermal and optical stability, a high glass transition temperature, and high ?uorescence quantum yield. A simple EL device with the configuration of ITO/PEDOT:PSS/PBF-OXD/Ba/Al displays a stable blue emission (λmax = 434 nm),, a maximum brightness of 1400 cd?m-2, and a maximum luminance efficiency of 0.95 cd?A-1. These results show that this solution processable alternating benzofuran/ ter?uorene copolymer is a good candidate for a stable blue-emitting material.
     2. The design and synthesis the conjugated polymers with large Two-photon absorption cross section are very important. To the best of our knowledge, poly(2,6-anthracenevinylene)s (PAV) and 2,6-anthracenevinylene- containing polymers are very scarce at present because of their synthetic inaccessibility before. Here we design and synthesize two novel donor-containing poly(2,6-anthracene- vinylene)-based derivatives (P1 and P2) by Wittig–Homer reaction between 9,10-bis(3,4-bis(2-ethylhexyloxy)phenyl)-2,6-bis (diethylphosphory lmethyl) anthrax- cene and N-octyl-3,6/2,7-diformylcarbazole. The results showed that P1 and P2 have high-fluorescence quantum yields (Φf = 0.85–0.78). The maximalδof P1 and P2 are 840 GM and 490 GM per repeating unit, respectively. Theseδvalues are obviously higher than that (210 GM) of their reference polymer, PAV, indicating that the incorporation of strong electron-donating moieties into the polymer backbone to form D–π–D repeating unit is more effective in enhancingδthan the extension of conjugation length.
     3. Anthracene is a large and planner aromatic ring, which improves the rigidity and glass transition temperature of the resulting polymers through its steric hindrance. Anthracene is also a functionalized moiety, which may perform dimerization or endo-peroxidation to form a crosslinking polymer. Here we incorporate a new bisphenol monomer containing anthracene, 9,10-bis(4-hydroxyphenyl)anthracene to the polycondensation of bisphenol A and 4,4'-dichlorodiphenyl sulfone, to synthesize novel anthracene-containing poly(arylene ether sulfone)s.These polymers showed increased glass transition temperature with the content of the 9,10-diphenylanthracene and reached up to 265℃when the bisphenol A was substituted by bis(4- hydroxyphenol)anthracene. These polymers are soluble and can be film-formed through spin-coating. Moreover, upon irradiating with UV-vis light and then heating in air, the resulting film was a cosslinked polymer, which offers the possibility of enhanced thermal.
引文
[1]黄春辉,李富友,黄维,有机电致发光材料与器件导论,复旦大学出版社, 2005, 2-5
    [2] Bernanose A, Vouaux P, Sur un nouveaumode demission lumineuse chez certains composes organiques Chim Physique, 1953, 50: 64-68
    [3] Peop M, Kallmann H P, Magnate P, Electroluminescence in organic crystals, J Chem Phys, 1963, 38: 2042
    [4] Vincett P S, Barlow W A, Hann R A, et al, Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films, Thin solid film, 1982, 94: 171
    [5] Chiang C K, Fincher C R, Park Y W, et al, Electrical Conductivity in Doped Polyacetylene, Phys Rev Lett, 1977, 39: 1098
    [6] Partridge R H, Electroluminescence from polyvinylcarbazole films: Electroluminescence using higher work function cathodes, Polymer, 1983, 24: 755
    [7] Tang C W, Vanslyke S A, Organic electroluminescent diodes, Appl Phys Lett, 1987, 51: 913
    [8] Adachi C, Tokito S, Tsutsui T, et al, Electroluminescence in organic films with three-layer structure, Jpn J Appl Phys, 1988, 27(2): 269-271
    [9] Adachi C, Tolito S, Tsutsui T, et al, Organic electroluminescent device with a three-layer structure, Jpn J Appl Phys 1988, 27: 713-715
    [10] Burroughes J H, Bradley D D C, Broen A R, et al, Light emitting diodes based on conjugated polymers, Nature, 1900, 347: 539
    [11] Gu G, Shen Z, Burrows P E,et al, Vacuum-deposited nonpolymeric flexible organic light-emitting devices, Optics Lett, 1997, 22: 172
    [12] Muller C D, Falcou A, Reckefuss N, et al, Multi-colour organic light-emitting displays by solution processing, Nature, 2003,421: 829
    [13]李青,基于silole分子的有机电致发光器件的性能研究,成都电子科技大学硕士学位论文, 2007
    [14]黄春辉,李富友,黄岩宜,光电功能超薄膜,北京,北京大学出版社, 2001
    [15] Reng Peihua, Zhang Yanli, Zhang Haichang, et al, Synthesis and characterization of highly soluble 9,10-dihenyl-sustituted poly(2,6-anthracenevinylene), Polymer, 2009,50(4): 4801-4806
    [16] Adachi C, Tsutsui T, Saito S, Blue lightemittingorganic electroluminescent devices, Appl Phys Lett, 1990, 56: 799-801
    [17] Kang G W, Ahn Y J, Park D Y, et al, Efficientblue electroluminescence from 9,10-dipheny lanthracene, Proc of SPIE, 2003,4800: 208-215
    [18] Shi J, Chen C H, Klubek K P, Organic electroluminescent elements for s table blueelectroluminescent devices [P]. US: 5 972247, 1999- 10-26
    [19] J iang X Y, Zhang Z L, Wu Y Z, et al, A blue organic emitting diode from anthracene derivative, Thin Solid Films , 2001, 401: 251-254
    [20] Kim Y, Jeong H, Kim S, et.al, High purity blue and high efficiency electroluminescent devices based on anthracene , Adv Funct Mater, 2005, 15: 1799-1805
    [21] Nagao K, Murase S, Tominaga T, Light emitting device[P]. JP: 2006 245 172A. 2006-09-14
    [22] Wen S W, Lee M T, Chen C H, Recent development of blue fluorescent OLED materials and devices, J Display Tech, 2005, 1(1): 90-99
    [23]徐礼玲,赵立群,耿延候等,新型蒽衍生物蓝光材料的合成及其光电性能,应用化学, 2005, 22(1): 114-116
    [24] Gebeyehu D, Walzer K, Ves tweber H, et al, Highly efficient deep blue organic light emitting diodes with doped transport layers. Synth Met, 2005, 148: 205-211
    [25] Sehoon Kim, Tymish Y. Ohulchanskyy, et al, Organically Modified Silica Nanoparticles Coencapsulating Photosensitizing Drug and Aggregation-Enhanced Two-Photon Absorbing Fluorescent Dye Aggregates for Two-Photon Photodynamic Therapy, J Am Chem Soc, 2007, 129: 2669-2675
    [26] He jiating, Xu Bin, Chen Feipeng, et al, Aggregation Induced Emission in the Crystals of 9,10-Distyrylanthracene Derivatives: The Essential Role of Restricted Intramolecular Torsion, J Phys Chem C, 2009, 113: 9892-9899
    [27] Lu H G, Xu B, Dong Y J, et al, Novel Fluorescent pH Sensors and a Biological Probe Based on Anthracene Derivatives with Aggregation-Induced Emission Characteristics, Langmuir article, ASAP
    [28] Zhang H C, Guo E Q, Zhang Y L, et al, Donor Acceptor Substituted Anthrancene Centered Cruciforms: Synthesis, Enhanced Two Photon Absorptions and Spatially Separated Frontier Molecular Orbitals, Chemistry Materials, 2009, 21: 5125-5135
    [29]Jeffrey R J, Charles L L, David M C, et al, Photochemical Cross-Linking of Poly(ethylene terephthalate-co-2,6-anthracenedicarboxylate), Macromolecules 2000, 33:1640-1645
    [30] Julian M. Steven W, Kooi E, Timothy M.Synthesis of Stair-Stepped Polymers Containing Dibenz[a,h]anthracene Subunits, Macromolecules, 2010, 43: 2789–2793
    [31] Scherf U, List E J W, Semiconducting Polyfluorenes - Towards Reliable Structure- Property Relationships, Adv Mater, 2002, 14: 477-487
    [32] Li J ,Bo Z S, AB(2)+AB" approach to hyperbranched polymers used as polymer blue light emitting materials, Macromolecules, 2004, 37: 2013-2015
    [33] Sun M H, Li J, Li B S, et al, Toward high molecular weight triphenylamine-based hyperbranched polymers, Macromolecules, 2005, 38: 2651-2658
    [34] Schenning A P H, Martin R E, Iho M,et al, Dendritic rods with a poly(triacetylene) vackbone: insulated molecular molecular wries, Chem Commun, 1998, 9: 1013-1014
    [35] Kaneko T, Horie T, Asano M, et a1, Polydendron: polymerization of polymerization of dendritic phenylacetylene monomers, Maeromolecules, 1997, 30: 3118-3121
    [36] SehlUter A D, Rabe J P, Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces and Manipulation, Angew. Chem. Int. Ed, 2000, 39: 864-883
    [37] Lupton J M, Sehouv I P, Keivanidis P E, et al, Influence of Dendronization on Spectral Diffusion and Aggregation in Conjugated Polymers, Adv. Funet. Mater, 2003, 13: 154-l58
    [38] Jean M L著,沈兴海等译,超分子化学概念和展望,北京.北京大学出版社, 2002, 225
    [39] Lupton J M, Schouwink P, Keivanidis P E, et al, Influence of dendronization on the spectral diffusion and aggregation in conjugated polymers, Adv Funct Mater, 2003, 13(2): 154-158
    [40]吴义室,黎静,艾希成等,树枝化对聚芴分子发光行为的影响,高等学校化学报, 2007, 28: 1925-1928
    [41] Simmons H E, Fukunaga T, Spirarens, J Am Chem Soc, 1967, 89: 5208
    [42] Yu W L, Pei J, Heeger A J, Spiro-functionalized polyfluorene perivativs as blue light-emitting materials, Adv Mater, 2000, 12(11): 828-831
    [43] Zeng G, Yu W L, Chua S J, et al, Spectral and thermal spectral stability study for fluorine-based conjugated polymers, Macromolecules, 2002, 35(18): 6907-6914
    [44] Luo J, Zhou Y, Niu Z Q, et al, Three-dimensional architectures for highly stable pure blue emission. J Am Chem Soc, 2007, 129(37): 11314-11315
    [45] Xie L H, Hou X Y, Tang C, et al, Novel H-shaped persistent architecture based on a dispiro building block system, Org Lett, 2006, 8(7): 1363-1367
    [46]姜鸿基,万俊华,黄维,芴类蓝光材料的长波发射问题研究进展,中国科学B辑:化学, 2008, 38(3): 183-204
    [47] Jiang H J, Wang H Y, Zhu R, et al, Two novel oligomers based on fluorene and pyridine: correlation between the structures and optoelectronic properties, J Polym Sci Part A: Polym Chem, 2008, 46(5): 1548-1558
    [48] Li B, Li J, Fu Y, Bo Z S, Porhyrins with four monodisperse oligofluorene arms as efficient red light emtitting materials, J Am Chem Soc, 2004, 126(11): 3430-3431
    [49] Liu Feng, Lai Wen Yong, Tang Chao, et al, Synthesis and Characterization of Pyrene-Center ed Starburst Oligofluorenes, Macromolecules Raid Communications, 2008, 29: 659-664
    [50] Wu F Y, Shih P I, Shu C F, et al, Diodes Based on Fluorene Copolymer Consisting of Triarylamine Units in the Main Chain and Oxadiazole Pendent Groups, Macromolecules, 2005, 38: 9028-9036
    [51] Anderson S, Taylor P N, Verschoor G L B, Benzofuran Trimers for OrganicElectroluminescence, Chem Eur J, 2004, 10: 518-527
    [52] Cumpston B H, Ananthavel S P S, Barlow D L, et al, Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Nature, 1999, 398: 51-54
    [53] Zhou W, Kuebler S M, Brau K L, et al, An Efficient Two Photon Generated Photoacid Applied to Positive Tone 3D Microfabrication, Science, 2002, 296: 1106-1109
    [54]. Frederiksen P K, J?rgensen M, Ogilby P R, Two photon photosensitized production of singlet oxygen, J Am Chem Soc, 2001, 123:1215
    [55] Oliveira S L, Correa D S, Misoguti L, et al, Perylene Derivatives with Large Two Photon Absorption Cross Sections for Application in Optical Limiting and Upconversion Lasing, Adv Mater, 2005, 17: 1890-1893
    [56] He G S, Tan L S, Zheng Q, et al, Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications, Chem Rev, 2008, 108: 1245-1330
    [57] Strehmel B, Sarker A M, Detert H, The Influence ofσandπAcceptors on Two Photon Absorption and Solvatochromism of Dipolar and Quadrupolar Unsaturated Organic Compounds, ChemPhysChem, 2003, 4: 249-259
    [58] Jordan G, Kobayash T, Blau W J, et al, Frequency Upconversion of 800 nm Ultrashort Pulses by two photon absorption in a stilbenoid compound doped polymer optical fiber, Adv Funct Mater, 2003, 13: 751-754
    [59] Chung S J, Maciel G S, Pudavar H E, et al, Two Photon Properties and Excitation Dynamics of Poly(p-phenylenevinylene) Derivatives Carrying Phenylanthracene and Branched Alkoxy Pendents, J Phys Chem A, 2002, 106: 7512-7520
    [60] Jiang Y, Wang Y, Hua J, Qu S, et al, Synthesis and two-photon absorption properties of hyperbranched diketo-pyrrolo-pyrrole polymer with triphenylamine as the core, J Polym Sci: Part A: Polym Chem, 2009, 47: 4400-4408
    [61] Drobizhev M, Karotki A, Dzeni Y, et al, Strong cooperative enhancement of two photon absorption in dendrimers, J Phys Chem B, 2003, 107: 7540-7543
    [62] Xu C,Webb W W, Measurement of two-photon excitation cross section of molecular fluorophores with data from 69 to 1050nm, J Opt Soc Am B, 1996, 13: 481
    [63] Albota M, Xu A C, Webb W W, Two-Photon Fluorescence Excitation Cross Sections of Biomolecular Probes from 690 to 960 nm, Appl Opt, 1998, 37: 7352
    [64] Tie W W, Zhong Z X, Wen P S, et al, Synthesis and characterization of a novel photocrosslinkable fluorinated poly(arylene ether) for optical waveguide, Mater Lett, 2009, 63: 1381-1383
    [65] Jones J R, Liotta C L, Collard D M, et al, Photochemical cross-linking of poly(ethylene terephthalate-co-2,6-anthracenedicarboxylate), Macromolecules, 2000, 33: 1640-1645

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700