ACFM缺陷检测系统工业样机研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合山东省科技发展计划项目:ACFM缺陷智能可视化检测系统开发及工业应用(2007GG10005004),建立ACFM缺陷定量分析的数学模型并开发出ACFM检测系统工业样机。在电磁-电路耦合仿真分析、ACFM缺陷智能可视化探头系列化设计与优化、磁场信号软硬件处理技术、ACFM工业样机开发及应用和工业参数测试等方面均取得较大进展。主要内容及研究成果如下:
     (1) ACFM缺陷识别与数值仿真分析
     结合ACFM检测原理和数值计算理论,提出ACFM缺陷识别的数学模型以及裂纹深度的计算方法,并且引入电磁-电路耦合分析方法,对进行线性电路模拟的通用电路单元进行了分析,应用ANSYS对二维电磁-电路耦合进行仿真分析,更为准确地模拟了检测时感应电磁场的分布规律以及不同参数对检测结果影响,为以后的实验研究提供了理论依据。
     (2) ACFM探头的系列化设计
     对激励线圈的各个参数进行了数值仿真,得出参数及结构的变化对工件表面感应电磁场分布的影响规律,为探头的设计和优化提供理论依据。对探头总体结构进行设计,选择矩形激励线圈并合理设计检测线圈的尺寸。针对应用场合的不同,制作了标准单探头、曲面检测探头、笔式探头和阵列探头等多种类型的探头。标准单探头灵敏度较高,曲面检测探头用于检测具有一定曲率的工件,笔式探头主要用于空间狭窄的区域,而阵列探头其检测面积增大,提高了检测速率,降低了漏检率。利用各类探头对工件进行检测,实验结果表明探头具有较高的灵敏度。
     (3) ACFM检测系统工业样机开发
     以工业应用为目的,采用软硬件相结合的方法对交流电磁场检测系统进行设计和搭建。硬件方面设计了信号发生和信号调理电路,对信号进行初处理;然后采用数据采集卡进行A/D转换后输入由Labview软件编制的数字信号采集与处理模块。该系统可放大采集到的微弱信号并抑制噪声的干扰,简化了硬件电路,节约系统开发的成本,能够实现缺陷的实时判别和可视化检测,为工业应用和试验提供支持。
     (4) ACFM检测系统样机的工业应用
     对影响ACFM检测系统样机技术指标的一些重要参数进行了实验研究,结果表明该系统的不失真提离高度和不失真检测速度都较高,而且电缆长度在一定范围内对Bx影响较小但对Bz影响较大。利用该样机对无裂纹和含有轴向裂纹、径向裂纹和表面下裂纹的在役设备进行了检测,结果表明系统能够实现缺陷的实时判别和自动量化,准确的反演出缺陷的形状,具有较高的检测精度。
This thesis focuses on the theoretical analysis of ACFM and the prototype development, including simulation analysis of magnetic-circuit couple, design and optimization for intelligent recognition and visualization probe, electromagnetic signals processing based on hardware and software, development and industrial application of ACFM prototype and so on, which is sponsored by Scientific and Technological Development Projects in shandong province (No.2007GG10005004). The main research progress is summarized as follows:
     (1) Theoretical research and numerical simulation analysis of ACFM
     Combined with principle of ACFM and theory of numerical calculation, mathematical model of ACFM defect recognition and calculation method of crack depth are presented. In order to analyze the distribution of electromagnetic field and the impact of various parameters on the results, simulation analysis of two-dimensional electromagnetic–circuit coupled is introduced and the common circuit elements that can be used for linear circuit simulation provided by ANSYS are introduced. All of this can provide theoretical basis for the future experimental research.
     (2) Series design of probe
     The induced simulation model of inducer with different parameters is built based on ANSYS, and then discussed the relationship between parameters of the inducer and the induced electromagnetic field distribution. This provides the theoretical foundation to design and optimize the probe. To achieve better effect, overall structure of every kinds of sensor is designed including standard single probe, surface detection probe, pen probe and array probe that with reasonable size and shape of inducer coil. The application situation and environment of every kinds of probe are different. Standard single probe has high sensitivity which can be used in any situation, and surface inspection probe is mainly used for surface detection and pen probe can be used in the narrow zone. The array probe can increase the detection area and improve the detection rate. The results show that the probes have a high sensitivity when they are used to detect the workpiece.
     (3) Study on prototype for ACFM
     ACFM system is set up for the purpose of industrial application, including design of hardware and software parts. Firstly, the primary signal process is realized by designing signal producing and processing circuits. Then, the analog signal is acquired by data acquisition card, which processed by digital signal acquisition and processing software modules compiled by Labview language. Considering the methods of combining hardware and software, system can amplify weak signals and suppress noise, this method simplifies hardware circuit and economizes the cost of system development. This system can achieve the visualization of the defect intelligent and visual recognition, which provides the foundation for industrial application and industrial test.
     (4) Industrial application of ACFM prototype
     Some important industrial parameters that affect the technical index of ACFM prototype are tested, the results show that the system has a high detection speed and lift-off height without distortionless, and influence of cable length to Bx is small but greater than Bz in certain extent. Moreover, in-line equipment having crack-free, axial cracks, radial cracks and sub-surface cracks can also be detected by this system, the results show that system have a high detection accuracy, they can achieve real-time discrimination and intelligent quantifying recognition. In addition, the system can be more accurate in discription of defect shape.
引文
[1] Erling ostby. Fracture Control-Offshore Pipelines JIP Proposal for strain-based fracture assessment procedure[C]. Proceedings of the Seventeenth (2007) International Offshore and Polar Engineering Conference, Lisbon, Portugal, July1-6, 2007.
    [2] A.Stacey, J.V.Sharp. Safety factor requirements for the offshore industry[J]. Engineering Failure Analysis, 2007, 14(26): 442-458.
    [3]陆玲,陈国明,林红.水下结构物点蚀缺陷的识别与定量分析[J].中国石油大学学报(自然科学版), 2005, 29(3): 85-88.
    [4]陈德智,王彬,邵可然,盛剑霓.裂纹检测中的涡流场计算[J].无损检测, 2000, 22(3): 99-105, 115.
    [5]耿荣生.新千年的无损检测技术-从罗马会议看无损检测技术的发展方向[J].无损检测, 2001, 23(1): 2-5, 12.
    [6] Yoseph Bar-Cohen. Emerging NDE Technologies and Challenges at the Beginning of the 3rd Millennium-Part I[EB/OL].(2000-01)[2010-05] http://www.ndt.net/.
    [7] Yoseph Bar-Cohen. Emerging NDE Technologies and Challenges at the beginning of the 3rd Millennium-Part II[EB/OL].(2000-02)[2010-05] http://www.ndt.net/.
    [8] K.Chen, F.P.Brennan, W.D.Dover. Thin-skin AC field in anisotropic tectangular bar and ACPD stress measurement[J]. NDT & E International, 2000, 33(5): 317-323.
    [9] Gangzhu Chen, Ataunori Yamaguchi, Kenzo Miya. A novel signal processing technique for eddy-current testing of steam generator tubes[J]. IEEE Transactions on Magnetics, 1998, 34(3): 1271-1274.
    [10]杨宾峰,罗飞路.脉冲涡流无损检测技术应用研究[J].仪表技术与传感器, 2004 (8): 44-45.
    [11]张立东,张光沛.涡流检测与远场涡流检测的对比[J].兵工自动化, 2003, 22(5): 52-53.
    [12] H.Hoshikawa, K.Koyama. Basic study of a new ECT Probe using uniform rotating direction eddy current[J]. Review of Progress in Quantitative Nondestructive Evaluation, 1997, 16, 1067-1074.
    [13] Chen Guoming, Li Wei, Wang Zexin. Structural optimization of 2-D array probe for ACFM[J]. NDT & E International, 2007, 40(6): 455-461.
    [14] Reza K.Amineh, Maryam Ravan, S.H.Hesamedin Sadeghi. Removal of Probe Liftoff Effects on Crack Detection and Sizing in Metals by the ACFM Technique[J]. IEEE TRANSACTIONS ON MAGNETICS, 2008, 44(8): 2066-2073.
    [15] M.Ravan, S.H.H.Sadeghi, R.Moini. Neural network approach for determination of fatigue crack depth profile in a metal, using ACFM data[J]. IET Sci. Meas. Technol, 2008, 2(1):32-38.
    [16] Dariush Mirshekar-Syahkal. 1-D Probe Array for ACFM Inspection of Large Metal Plates[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2002, 51(2):274-382.
    [17] A.H.Salemi, S.H.H.Sadeghi, R.Moini. Thin-skin analysis technique for interaction of arbitrary-shape inducer field with long cracks in ferromagnetic metals[J]. NDT & E International, 2004, 37(6): 471-479.
    [18] Reza F, Mostafavi, Dariush, Mirshekar-Syahkal. AC Fields Around Short Cracks in Metals Induced by Rectangular Coils[J]. IEEE Transactions on Magnetics, 1999, 35(3): 2001-2006.
    [19]李伟,陈国明,郑贤斌.基于GRNN的交流电磁场裂纹量化研究[J].中国石油大学学报(自然科学版), 2007, 31(2): 105-109.
    [20]李伟.基于交流电磁场的缺陷智能可视化检测技术研究[D].东营:中国石油大学(华东), 2007.
    [21]倪春生,陈国明,张彦廷.交流电磁场检测探头激励线圈的数值仿真及优化[J].中国石油大学学报(自然科学版), 2007, 31(2): 100-104.
    [22]齐玉良. ACFM的数值模拟及反演初探[D].东营:中国石油大学(华东), 2003.
    [23]王泽新.阵列交流电磁场检测的探头设计与试验研究[D].东营:中国石油大学(华东), 2006.
    [24] Kang Zhongwei. The quantitative measurement model of ACFM based on swept frequency method[C]. Asian Pacific Conference on Fracture and Strength, Sanya(CN), Jan 1-1, 2006.
    [25]赵海涛.基于交变磁场测量技术的金属表面缺陷检测系统的研究与实现[D].长沙:国防科学技术大学, 2004.
    [26] Lombardo Joseph S, Mihalak Edward, Osborne Scott R. Collaborative virtual prototyping. Johns Hopkins Apl. Technical Digest, 17 (3): 295-303.
    [27] David. T. Operational Experience with the ACFM Inspection Technique for subsea Weld Inspection. Environmental Engineering, 7 (1): 9-13.
    [28] Topp, David A., Lugg, et al. Invention, 5574376, the United States, 1996.
    [29] Roy, George. Invention, 6400146, the United State, 2002.
    [30] K.Chen, F.P.Brennan, W.D.Dover. Thin-skin AC field in anisotropic tectangular bar and ACPD stress measurement[J]. NDT & E International, 2000, 33(5): 317-323.
    [31]曲利岩.电磁场有限元分析技术的研究和实现[D].浙江:浙江大学, 2002.
    [32]曲民行,司家屯.电磁无损检测与数值计算[J].无损检测, 1994, 16(4): 109-110.
    [33] Jianwei Zhou, William D. Dover. Electromagnetic induction in anisotropic half-space and electromagnetic stress model[J]. Journal of Applied Physics, 1998, 83(3): 1694-1700.
    [34]倪光正,杨仕友,钱秀英,等.工程电磁场数值计算[M].北京:机械工业出版社, 2004.
    [35] Jianwei Zhou, Martin C.Lugg, Roy Collins. A non-uniform model for alternating current field measurement of fatigue cracks in metals[J]. International Journal of Applied Electromagnetics and Mechanics, 1999, 10(3): 221-235.
    [36] S.H.H.Sadeghi, A.H.Salemi. Electromagnetic field distributions around conducting slabs, produced by eddy-current probes with arbitrary shape current-carrying excitation loops[J]. IEE Proceedings. Part A, 2001, 148(4):187-92.
    [37] S.H.H.Sadeghi, D.Mirshekar-Syahkal. Surface potential distributions due to eddy currents around long cracks in metals, induced by U-shaped current-carrying wires[J]. IEEE transactions on magnetics, 1991, 27(1): 674-9.
    [38] D.Mirshekar-Syahkal, Mostafavi RF. Analysis technique for inter-action of high-frequency rhombic inducer field with cracks in metals[J]. IEEE transactions on magnetics, 1997, 33(3): 2291-8.
    [39] J.Kevorkian. Partial differential equations analytical solution techniques[M]. California: Wadsworth and Brooks/Cole, 1990, ISBN: 0-534-98180-1.
    [40]罗成汉,解源,张雪技,等.钢杆裂纹定量检测的研究[J].传感器技术, 2003, 22(5): 10-12.
    [41]康中尉,罗飞路,潘孟春,等.基于频率扫描技术的缺陷深度测量方法研究[J].仪表技术与传感器,2005, (3): 46-48.
    [42]阎照文,等. ANSYS10.0工程电磁分析技术与实例详解[M].北京:中国水利水电出版社, 2006.
    [43]李伟,陈国明,倪春生.基于ANSYS的结构裂纹交流电磁场仿真研究[J].中国造船, 2004, 45(S): 262-266.
    [44] H.Hoshikawa, K.Koyama. Non-destructive testing of weld zone with a uniform eddy current probe[J]. Insight, 1998, 40(4): 269-271.
    [45] H.Hoshikawa, K.Koyama. A New Eddy Current Probe Using Uniform Rotating Eddy Currents[J]. Materials Evaluation(USA), 1998, 56(1): 85-89.
    [46]康中尉,罗飞路.矩形线圈的磁场分析[J].传感器世界, 2003, 9(2): 7-12.
    [47] H.Hoshikawa, K.Koyama. Basic study of a new ECT using uniform rotating direction eddy current[J]. 23rd Review of Progress in Qnantitative Nondestuctive Evaluation, 1997, 16A: 1067-1074.
    [48] B.A.Auld, J.C.Moulder. Review of Advances in Quantitative Eddy Current Nondestructive Evaluation[J]. Journal of Nondestructive Evalution, 1999, 18(1): 3-36.
    [49]齐玉良,陈国明,张彦廷.交流电磁场检测数值仿真及其信号敏感性分析[J].石油大学学报(自然科学版), 2004, 28(3): 65-68.
    [50]冯慈璋,马西奎.工程电磁场导论[M].北京:高等教育出版社, 2000.
    [51] Gangzhu Chen, Astumori Yamaguchi, Kenzo Miya. A novel signal processing technique for eddy-current testing of steam generator tubes[J]. IEEE Transactions on Magnetics, 1998, 34(3): 1271-1274.
    [52]刘阳.精密波形发生器ICL8038[J].国外电子元器件, 1995, (11): 10-14.
    [53]赵艳丽.交流电磁场检测信号处理方法及应用研究[D].东营:中国石油大学(华东), 2009.
    [54]冯泽虎.浅谈多类型信号发生器的设计[J].中国高新技术企业, 2009, 116(5): 14-16.
    [55]王泽新,陈国明.基于Labview的交流电磁场检测信号处理方法[J].石油工程建设, 2008, 34(2):1-4.
    [56]张勇,李睿,刘君华.锁相方法器的软件实现与仿真分析[J].电测与仪表, 1998, 35(6): 30-32.
    [57]张若青,谢富春.一种实用的相位测量方法[J].北方工业大学学报, 1999, 11(3): 51-54.
    [58]李伟,陈国明,齐玉良.交流电磁场裂纹检测反演算法研究[J].中国机械工程, 2007, 18(1): 13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700