单脉冲雷达目标三维成像与识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达成像在精密制导、目标识别、民航管制等领域有着广泛的应用。逆合成孔径雷达(ISAR)可以得到目标的距离-多普勒像,但是在目标姿态变化时,ISAR像不能够反映目标的真实形状。对回波的各个分辨单元进行单脉冲测角,将方位、俯仰和距离信息结合起来就得到目标的三维像,此像与目标的物理尺寸一致,并且受目标的机动影响较小,十分有利于改善识别性能,但是单脉冲三维成像存在三维运动补偿、角闪烁等问题。本文主要论述单脉冲三维成像与目标识别方法,对抑制角闪烁的单脉冲测角方法、海杂波背景下的目标三维成像和目标三维像自动识别方法作了深入地研究。具体工作概括如下:
     1.当单脉冲雷达与目标距离很近时,角闪烁将成为主要测角误差源,其大小可能使测角结果指向目标尺寸以外。因此必须对角闪烁进行有效抑制,以提高测角精度。我们首先分析了由于目标切向运动引起的差波束方向图调制问题,推导出在对差通道回波信号进行高分辨处理后,谱展宽程度与目标运动参数之间存在某种关系,从而提出一种新的拉伸体制下的角估计方法。该方法通过搜索高分辨距离像波形熵的全局最大值得到目标角度估计,可以很好地抑制测角闪烁的发生。结合该测角方法,我们还给出了基于差波束ISAR像的角运动参数估计与补偿方法。
     2.无论是对目标的检测、成像或者识别,杂波均会造成严重地影响。以雷达对海面目标进行观测为例,当擦海角(入射余角)接近90°时,海面的散射系数σ_0会增大到+10dB左右,此时回波距离像中目标将被杂波完全淹没。我们对这种情况下的海杂波抑制方法进行了探索性地研究。首先利用ISAR技术,对海面和目标同时成像。然后利用新提出的基于Radon变换的目标杂波分离算法将ISAR像中的海杂波抑制掉,再对目标散射点进行单脉冲测角。这样就使得雷达能够在高擦海角时获得目标的三维像。
     3.本文针对如何利用雷达三维成像技术实现自动目标识别的问题进行了探索。我们首先通过CAD(计算机辅助设计)技术建立目标模板库。在得到目标的三维像之后,估计出目标的姿态,修正已经建立好的目标模板库,通过与形态滤波相结合的最大融合度分类器完成目标的识别。最后仿真了三维目标识别方法,并对结果进行了分析。
     本论文各章节安排如下:
     第一章介绍了雷达成像与目标识别的研究背景及意义,回顾了前人的研究成果,并简要介绍了本文的研究重点。
     第二章分别介绍了距离高分辨技术、ISAR成像技术以及基于ISAR的单脉冲三维成像技术的基本原理与方法。
     第三章重点研究了能够有效抑制角闪烁的单脉冲测角方法。提出了拉伸体制下的最大熵测角方法,同时给出了基于差波束ISAR像的角运动参数估计与补偿方法。
     第四章针对高擦海角观测条件下的海杂波抑制方法进行了研究,提出了基于Radon变换的杂波与目标分离方法,可以在ISAR像中将海杂波抑制掉,最终获得目标的三维像。
     第五章主要讨论的是如何利用基于拉伸处理的数字波束形成技术在宽带相控阵上实现三维成像功能。仿真对比了步进跟踪与连续跟踪两种情况下宽带相控阵对空中目标的单脉冲三维成像。
     第六章重点讨论目标三维像的识别方法。对模板库的建立、目标三维像的姿态估计以及基于形态滤波的最大融合度分类方法均作了详细论述。
     第七章对全文作了总结,展望了雷达目标三维成像与识别技术的发展方向及存在的一些问题。
Radar imaging is widely applied in the fields of precision guidance, target recognition and air traffic control. But the range-Doppler image of Inverse Synthetic Aperture Radar (ISAR) cannot capture the true shape of maneuvering target. Monopulse three-dimensional imaging, reconstructed from three-dimensional spatial coordinates (range, pitch, azimuth) of scatter points of the target measured by monopulse radar, is consistent with the real size of target and less sensitive to maneuvering motion and very useful in improving the quality of recognition. However, problems such as three-dimensional motion compensation and angle glint still exist. This thesis addresses monopulse three-dimensional imaging technique and target recognition methods. The research highlights method of angle glint suppression in monopulse angular measurement, target three-dimensional imaging in the background of sea clutter and automatic target recognition based on radar three-dimensional imaging.
     A brief description of the thesis is given as follows:
     1 .In monopulse angular measurement of short-range targets, angle glint will be the primary error source. The magnitude of errors may exceed the size of the target. Therefore, effective methods of angle glint suppression must be developed to improve the precision of angular measurement. Pattern modulation of difference beam echoes due to the tangential motion of target is investigated firstly. Relations between the spectrum width of high-range-resolution profile of difference beam echoes and angle motion parameter of target are analyzed then. A novel method of angle motion parameters estimation is presented. It can suppress the angle glint effectively since the angle motion parameter of target is obtained through searching the global maximum entropy of the high-range-resolution profile. An extended method of angle motion estimation and compensation based on the ISAR imaging for difference beam echoes is presented subsequently.
     2.Clutter is a serious problem in target detection, imaging and recognition. As airborne radar observes targets on the sea surface at high grazing angle approaching 90°, scatter coefficientσ_0 becomes so great (around +10dB) that targets will be completely submerged by sea clutter in the range profiles of echoes. This paper reports an exploratory development on sea clutter suppression in such condition. Firstly, ISAR imaging is applied to get the image of target in the sea clutter background. Secondly, the sea clutter in ISAR image plane is suppressed by the proposed method based on Radon transform. Finally, the monopulse three-dimension imaging method is applied. In this way, the effects of sea clutter at high grazing angle are eliminated and the monopulse three-dimension image of target on the sea surface can be obtained.
     3.This thesis presents an exploratory development on the automatic radar target recognition method utilizing monopulse three-dimension imaging technique. Computer Aided Design (CAD) technique is used for constructing the template of target firstly. Templates are then modified depending on the target's attitude estimated from monopulse three-dimension image. Target recognition is accomplished by a maximal degree of fusion classifier with morphological filter. The process of three-dimension target recognition is simulated in the end.
     The dissertation is organized as follows:
     Chapter 1 provides the background, scientific significance of radar target imaging and recognition, a literature review of previous work and an overview of this research.
     Chapter 2 describes methods of high-range-resolution processing, ISAR technique and principle of ISAR based monopulse three-dimensional imaging.
     Chapter 3 in particular presents an effective method for angle glint suppression using monopulse angular measurement. It also provides a novel method of high-range-resolution profile based on maximum entropy, together with an extended method of angle motion estimation and compensation based on the ISAR imaging for difference beam echoes.
     Chapter 4 describes research methods about sea clutter suppression in target three-dimension imaging at high grazing angle. A novel method based on Radon transform to eliminate the effects of sea clutter is presented.
     Chapter 5 provides methods of three-dimensional imaging in wide-band phased array radar. Simulations of dechirping and DBF (digital beam forming) technique based monopulse three-dimensional imaging in two tracking modes ( step and continuous mode) in wide-band phased array radar are conducted.
     Chapter 6 describes research methods about target recognition utilizing monopulse three-dimension imaging technique. Methods of template modification, attitude estimation and target classification are detailed.
     Chapter 7 provides a summary of the dissertation, unsolved problem and development of monopulse target three-dimensional imaging and recognition for future research.
引文
[1]P.K.Huang,H.C.Yin,"Angular glint of extended targets",Journal of Systems Engineering and Electronics,Vol.12,No.12,Dec.1990,pp1-17
    [2]Alexander I.Leonov,"History of Monopulse Radar in the USSR",IEEE AES System Magazine,May.1998,pp7-13
    [3]赵宏钟,何松华,″基于高分辨距离像的单脉冲角跟踪技术″,电子学报,Vol.28,No.4,2000,pp142-144
    [4]张涛,张群,马长征,″基于高分辨距离像的角闪烁抑制方法″,西安电子科技大学学报(自然科学版),Vol.28,No.3,Jun.2001,pp296-300
    [5]刘宏伟,杜兰,袁莉,″雷达高分辨距离像目标识别研究进展″,电子与信息学报,Vol.27,No.8,Aug.2005,pp1328-1334
    [6]S.MUSMAN,D.KERR,C.BACHMANN," Automaic Recognition of ISAR Ship Images",IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS,VOL.32,NO.4,OCT.1996,pp1392-1404
    [7]许人灿,刘朝军,黄小红,″基于超分辨ISAR成像的空中目标自动识别″,系统工程与电子技术,Vol.28,No.1,Jan.2006,pp46-48
    [8]王勇,姜义成,″一种估计ISAR成像转角的新方法″,电子与信息学报,Vol.29,No.3,Mar.2007,pp521-523
    [9]刘烽,许家栋,″雷达目标三维特征的提取与识别研究″,现代雷达,Vol.27,No.1,Jan.2005,pp18-21
    [10]Kyung-Tae Kim,Dong-Kyu Seo,Hyo-Tae Kim," Efficient Classification of ISAR Images",IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,VOL.53,NO.5,MAY 2005,pp1611-1621
    [11]戴征坚,郁文贤,胡卫东,″空间目标的雷达识别技术″,系统工程与电子技术,Vol.122,No.13 Mar.2000,pp19-22
    [12]马长征:″雷达目标三维成像技术研究″,西安电子科技大学博士论文,1999
    [13]叶炜,″逆合成孔径雷达运动补偿与成像研究″,西安电子科技大学博士论文,1996
    [14]叶炜,保铮,″逆合成孔径雷达自聚焦的新方法-局域特显点综合法″,中国科学(E辑),Vol.27,No.5,1997,pp424-429
    [15]刘宏伟,王俊,张守宏,″运动目标环境下步进频率信号的设计及处理″,西安电子科技大学学报(雷达信号处理专集),Vol.24,1997,pp75-81
    [16]雷文,龙腾,韩月秋,”调频步进雷达运动目标信号处理新方法”,电子学报,Vol.28,No.12,Dec.2000,pp34-37
    [17]J.S.Son,B.C.Flores,S.Tariq,"An efficient target motion compensation method for stepped frequency ISAR signatures",SPIE,Vol.3161,1997,pp20-28
    [18]D.R.Wehner,"High Resolution Radar",Artech House,1987
    [19]郑学合,″高分辨率雷达导引头多维信息提取技术研究″,航天部二院博士论文,1998
    [20]L.C.Graham,"Synthetic Interferometer Radar for Topographic Mapping,"Proceedings of the IEEE,Vol.62,No.6,1974,pp763-768
    [21]R.Bamler,P.Hartl,"Synthetic aperture radar interferometry,"Inverse Problems,14,1998,R1-R54
    [22]G.Fornaro,G.Franceschetti,R.Lanari,"Interferometric SAR Phase Unwrapping Using Green's Formulation,"IEEE Trans.GRS,Vol.34,No.3,1996,pp720-727
    [23]Q.Lin,J.F.Vesecky,H.A.Zebker,"New Approaches in Interferometric SAR Data Processing,"IEEE Trans.GRS,Vol.30,No.3,,1992,pp560-567
    [24]M.D.Pritt,J.S.Shipman,"Least-Squares Two-Dimensional Phase Unwrapping Using FFT's,"IEEE Trans.GRS,Vol.32,No.3,1994,pp706-708
    [25]G.fornaro,G.Franceschetti,R.Lanari,D.Rossi,M.Tesauro,"Interfer ometric SAR phase unwrapping using the finite element method,"IEE Proc.Radar,Sonar,Navig.,Vol.144,No.5,1997,pp266-274
    [26]M.D.Pritt,"Phase Unwrapping by Means of Multigrid Techniques for Interferometric SAR,"IEE Trans.GRS,Vol.34,No.3,1996,pp728-738
    [27]H.A.Zebker,J.Villasenor,"Decorrelation in Interferometric Radar Echoes,"IEEE Trans.GRS,Vol.30,No.5,1992,pp950-959
    [28]U.Spagnolini,"2-D Phase Unwrapping and Instantaneous Frequency Estimation,"IEEE Trans.GRS,Vol.33,No.3,1995,pp579-589
    [29]F.K.Li,R.M.Goldstein,"Studies of Multibaseline Spaceborne Interferometric synthetic Aperture Radars,"IEEE Trans.GRS,Vol.28,No.1,1990,pp88-97.
    [30]M.R.Palsetia,J.Li,"Using APES for Interferometric SAR Imaging,"IEEE Trans Image Processing,Vol.7,No.9,1998,pp1340-1353.
    [31]Qun Zhang,Tat Soon Ye,"Three-Dimensional SAR Imaging of a Ground Moving Target Using the InISAR Technique",IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.42,NO.9,SEPTEMBER 2004,pp1818-1828
    [32]K.Knaell,"Advances in three-dimensional SAR from practical apertures" SPIE Vol.2845,1996,pp183-193
    [33]Brenner,A.R.,Ender," First experimental results achieved with the new very wideband SAR system PAMIR" Proc.EUSAR 2002,pp81-86
    [34]吴佩伦,″精确制导武器的关键技术和战略发展方向″,现代防御技术,1994(5),pp52-59
    [35]Zyweck A,Sogner R E." Radar target classification of commercial aircraft" IEEE Trans.on AES,vol.32 no.2,1996,pp598-606
    [36]Mitchell R A."Robust high range resolution radar target identification using a statistic feature based classifier with feature level fusion",Ph.D Dissertation],Dayton,University of Dayton,1997
    [37]Jacobs S P.,"Automatic target recognition using high-resolution radar range profiles",Ph.D Dissertation],Washington,Washington University,1999
    [38]Jacobs S P,O'sollivan J A.," Automatic target recognition using sequences of high resolution radar range-profiles",IEEE Trans.on AES,Vol.36 No.2,2000,pp364-380
    [39]Mitchell R A,Westerkamp J J.," Robust statistical feature based aircraft identification",IEEE Trans.on AES,Vol.35,No.3,1999,pp1077-1094
    [40]廖学军,″基于高分辨距离像的雷达目标识别″,博士论文,西安:西安电子科技大学,1999
    [41]Liao X,Bao Z.,"Circularly integrated bispectra:novel shift invariant feature for high-resolution radar target recognition",IEE Electronics Letters,Vol.34,No.19,1999,pp1879-1880
    [42]Zhang X,Shi Y,Bao Z.," A new feature vector using selected bispectra for signal classification with application in radar target recognition",IEEE Trans.on Signal Processing,Vol.49,No.9,2001,pp1875-1885
    [43]Li J,Stoica P.,"Efficient mixed-spectrum estimation with application to feature extraction",IEEE Trans.on Signal Processing,Vol.42,No.2,1996,pp281-295
    [44]Chandran V,Elgar S L.,"Pattern recognition using invariants defined from higher order spectra one-dimensional inputs",IEEE Trans.on Signal Processing,Vol.41,No.1,1993,pp205-212
    [45]Tugnait J K." Detection of non-Gaussian signals using integrated polyspeeteum",IEEE Trans.on Signal Processing,Vol.42,No.11,1994,pp3137-3149
    [46]Fukunaga K.,"Introduction to Statistical Pattern Recognition",SanDiego:Academic Press,1990,pp104-106
    [47]Potter L,Chiang D M.,"A GTD-based parametric model for radar scattering",IEEE Trans.on AP,Vol.42,No.10,1995,pp1058-1067
    [48]Liao X,Runkle P,Carin L.,"Identification of ground targets from sequential high-range-resolution radar signatures",IEEE Trans.on AES,Vol.38,No.4,2002,pp1230-1242
    [49]Gerry M J,Potter L C,Gupta I J,"A parametric model for synthetic aperture radar measurements",IEEE Trans.on AP,Vol.47,No.7,1999,pp1179-1188
    [50]Bharadwaj P,Runkle P,Carin L,"Multiaspect classification of airborne targets via physics-based HMMs and matching pursuits",IEEE Trans.on AES,Vol.37,No.2,2001,pp595-606
    [51]Zwart J P,Heiden R,Gelsema S,"Fast translation invariant classification of HRR range profiles in a zero phase representation"IEE Proc.Radar Sonar Navig.Vol.150,No.6,2003,pp411-418
    [52]V.C.C hen and W.J.Miceli,"Simulation of ISAR imaging of moving targets",IEE Proc.Radar,Sonar Navig,Vol.148,No.3,June 2001,pp160-166
    [53]倪晓军,″动态雷达目标识别方法研究″,长沙:国防科技大学博士论文,1997
    [54]Wallace T P,Wintz P A,"An efficient 3-D aircraft recognition algorithm using normalized Fourier Descriptors",Computer Graphics and Image Processing,Vol.13,No.3,1980,pp99-126
    [55]Sadjadi F A,Hall E L.,"Three-dimensional moments invariants",IEEE Transactions on Pattern Analysis and Machine Intelligence,PAMI-2(2),1980,pp127-136
    [56]Funkhouser T.,Min P.,Kazhdan M.,"A search engine for 3d models",ACM Transactions on Graphics,Vol.22,No.1,2003,pp83-105
    [57]丁鹭飞,张平,″雷达系统″,西北电讯工程学院出版社,1984
    [58]C.C.Chen,H.C.Andrews,"Target motion induced radar imaging",IEEE Trans.AES,Vol.16,No.1,1980,pp2-14
    [59]邢孟道,保铮,郑义明,″用整体最优准则实现ISAR成像的包络对齐″,电子学报,Vol.29,No.12A,2001,pp1807-1811
    [60]Steinberg B.D.,"Microwave imaging of aircraft.Proceedings of IEEE",Vol.76,No.12,1988,pp1578-1592
    [61]Waiter G.Carrara,Ron S.Goodman,Ronald M.Majewski,"Spotlight Synthetic Aperture Radar Signal Processing Algorithms",Artech House Boston.London,1995,pp423-424
    [62]Itoh T.,Sueda H.,Watanabe Y.,"Motion compensation for ISAR via centroid tracking",IEEE Trans.on AES,Vol.32,No.3,July 1996,pp1191-1197
    [63]张庆文,保铮,″采用窄Stretch信号的ISAR成像与运动补偿″,西安电子科技大学学报,Vol.19,No.1,1992,pp8-15
    [64]张群,张涛,张守宏,″基于拉伸信号的ISAR成像运动补偿新方法″,西安电子科技大学学报,Vol.28 No.1,2001.2,pp83-87
    [65]张守宏,马长征,张涛,″步进频率逆合成孔径雷达成像的一种运动补偿方法″,西安电子科技大学学报,Vol.27,No.03,2000,pp270-272
    [66]Zheng Bao,Changyin Sun,Mengdao Xing,"Time-frequency approaches to ISAR imaging of maneuvering targets and their limitations".IEEE Trans.AES,Vol.37,No.3,pp1091-1099,Jul 2001.
    [67]Genyuan wang,Zheng Bao and Xiaobing Sun,"Inverse synthetic aperture radar imaging of nonuniformly rotating targets",Optical Engineering,Vol.35,No.10,Oct.1996,pp3007-3011
    [68]Trintinalia,L.C.,Hao Ling,"Joint time-frequency ISAR using adaptive processing",IEEE Transactions on Antennas and Propagation,Vol.45 Issue:2,Feb.1997,pp221-227
    [69]V.C.Chen.,S.Qian,"Joint time-frequency analysis for radar range-Doppler imaging",IEEE Transaction on Aerospace and Electronic System,Vol.34,No.2,1998,pp486-499
    [70]Bao Zheng,Wang Genyuan,Luo Lin,"Inverse Synthetic Aperture Radar Imaging of Maneuvering Targets",Optical Engineering,Vol.37,No.5,May 1998,pp1582-1588
    [71]Mann Steve,Haykin Simon.,"The Chirplet transform:physical considerations",IEEE Trans.on Signal Processing,Vol.43,No.11,1995,pp2745-2761
    [72]Zheng-She Liu,Renbiao Wu,Jian Li,"Complex ISAR imaging of maneuvering targets via the Capon estimator",IEEE Transactions on Signal Processing,Vol.47,Issue'5,May 1999,pp1262-1271
    [73]k.B.YU,"Recursive super-resolution algorithm for low-elevation target angle tracking in multipath",IEE Proc.Radar,Sonar Ravig.,Vol.141,No.4,Aug.1994,pp223-229
    [74]乔晓林,肖渺,金铭,”基于频率捷变和RCS加权抑制雷达角闪烁的研究”,系统工程与电子技术,Vol.23,No.4,2001,pp54-57
    [75]李保国,肖怀铁,付强,″基于ABA处理和幅度加权的频率捷变单脉冲雷达角闪烁抑制技术″,国防科技大学学报,Vol.27,No.6,2005,pp57-60
    [76]李燕,郭立,朱嘉,″一种精确跟踪目标的非线性滤波算法″,中国科学技术大学学报,Vol.3l,No.4,2001,pp488-494
    [77]王铁军,张明廉,″一种二维耦合模型机动目标跟踪算法″,航空学报,Vol.127,No.13,2006,pp481-485
    [78]Li X R,Jilkov V P,"Survey of maneuvering target tracking-part Ⅰ:dynamic models",IEEE Trans.on AES,Vol.39,Vol.4,2003,pp1333-1364
    [79]张群,”干涉式目标三维成像及其三维运动补偿技术”,西安电子科技大学博士论文,2001
    [80]Skolnik M I,Wetzel L B.,"Radar Handbook(SE)",The McGraw-Hill Companies Inc.,1990,pp511
    [81]Pidgeon V W.,"The Doppler dependence of radar sea return",J.Geophysical Research,1968,Vol.73,No.2,pp1333-1341
    [82]Kong Young-Kyun,Cho Byung-Lae,Kim Young-Soo,"Ambiguity-free doppler centroid estimation technique for airborne SAR using the Radon transform",IEEE Trans.on Geoscience and Remote Sensing,Vol.43,No.4,2005,pp715-721
    [83]贾云得,″机器视觉″,北京:科学出版社,2000,6.2-6.8
    [84]张光义,″相控雷达系统″,北京:国防工业出版社,1997
    [85]J.Corbin,R.L.Howard,"TDU quantization error impact on wideband phased -array performance",IEEE International Conference on Phased Array Systems and Technology Proceedings,2000,pp457-460
    [86]J.A.Torres,R.M.Davis,J.D.R.Kramer,et al.,"Efficient wideband jammer nulling when using stretch processing",IEEE trans.AES,Vol.36,No.4,2000,pp1167-1178
    [87][14]W.T.Lin and K.B.Yu,"Adaptive beamforming for wideband jamming cancellation",Proc.IEEE Nat.Radar Conf.,Syracuse,New York,1997,pp82-87
    [88][15]C.T.Lin and H.Ly,"Sidelobe reduction through subarray overlapping for wideband arrays",Proceedings of the 2001 IEEE Radar Conference,2001,pp228-233
    [89]M.Y.Frankel,P.J.Matthews,R.D.Esman,"Wideband array transmitter with two-dimensional fiber-optic beam steering",IEEE International Symposium on Phased Array Systems and Technology,1996,pp425-428
    [90]W.Ng,A.Walston,G.Tangonan,et al.,"Wideband fibre-optic delay network for phased array antenna steering",Electronics Letters,Vol.25,No.21),1989,pp1456-1457
    [91]Jianping Vao,Jianliang Yang,Yunqi Liu,"Continuous true-time-delay beamforming employing a multiwavelength tunable fiber laser source",IEEE Photonics Technology Letters,Vol.14,No.5,2002,pp687-689
    [92]I.Frigyes,A.J.Seeds,"Optically generated true-time delay in phased-array antennas",IEEE Trans.Microwave Theory and Techniques,Vol.43,No.9,1995,pp2378-2386
    [93]K.H.Wagner,S.Weaver,S.Kraut,et al.,"Broadband efficient adaptive method for true-time-delay array processing",Proc.IEEE Aerospace Conference,1998,pp289-298
    [94]D.Dolfi,O.Mongardien,S.Tonda,"Photonics for airborne phased array radars",Proc.IEEE International Conference on Phased Array Systems and Technology,2000,pp379-382
    [95]T.Takahashi,Y.Konishi,K.Hariu,et al.,"Beam Pointing Error Analysis for Phased Array Antennas with True Time Delay Modules",IEEE Antennas and Propagation Society International Symposium,2002,pp606-609
    [96]R.J.Mailloux,"A low sidelobe network for time delayed subarrays",IEEE Antennas and Propagation Society International Symposium,2000,pp1218-1221
    [97]J.H.G.Ender,A.R.Brenner,"PAMIR - a wideband phased array SAR/MTI system",IEE Proc.- Radar,Sonar,Navigation,Vol.150,No.3,2003,pp165-172
    [98]Stegall R L."Multiple object tracking radar",Military Micorwaves'86,Brighton,England,1986,pp69-74
    [99]Xing M,Bao Z,Pei B.,"The properties of high-resolution range profiles",Optical Engineering,Vol.41,No.2,2002,pp493-504
    [100]Cristianini N,Shawe-Taylor J.,"An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods",Cambridge:Cambridge University Press,2000,Chapter 6
    [101]Burges C J.,"A tutorial on support vector machines for pattern recognition",Data Mining and Knowledge Discovery,Vol.2,No.2,1998,pp121-167
    [102]Tipping M E.,"Sparse Bayesian learning and relevance vector machine" Journal of Machine Learning Research,Vol.1,No.3,2001,pp211-244
    [103]边肇棋,张学工等,″模式识别(第二版)″,北京:清华大学出版社,2000
    [104]M.A.Turk,A.P.Pentland,"Face recognition using eigenfaces",IEEE Conf,CVPR,1991,pp586-591
    [105]P.Comon,"Independent component analysis,a new concept?",Signal Processing,Vol.36,No.3,1994,pp287-314
    [106]Trevor nastie,Rolbert Tibshirani,"Discriminant Adaptive Nearest Neighbor Classification",IEEE TRANSACTIONS ON PAITERN ANALYSIS AND MACHINE INTELLIGENCE,VOL.18,NO.6,JUNE 1996,pp607-616
    [107]N.Freidman,"Bayesian network classifiers.Machine Learning",1997,Vol.29,No.2-3,pp131-163
    [108]Li H J,Yang S H.,"Using range profiles as features vectors to identify aerospace objects",IEEE Trans.on Antennas and propagation,Vol.41,No.3,1993,261-268
    [109]Li H J,Wang Y D,Wang L H.,"Matching score properties between range profile of high-resolution radar targets",IEEE Trans.on Antennas and propagation,Vol.44,No.4,1996,pp444-452
    [110]Zhao Q,Principle J C.,"Support vector machines for SAR automatic target recognition",IEEE Trans.on AES,Vol.37,No.2,2001,pp643-654
    [111]Williams R,Westerkamp J.,"Automatic target recognition of time critical moving targets using 1D high range resolution(HRR)radar",IEEE AES Magazine,Vol.15,No.4,2000,pp37-43
    [112]Funkhouser T.,Min P.,Kazhdan M.,et al."A search engine for 3d models",ACM Transactions on Graphics,Vol.22,No.1,2003,pp83-105
    [113]Reeves A.,Prokop J.,Andrews S.,Kuhl F.,"Three-dimensional shape analysis using moments and Fourier descriptors".IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.10,No.6,1998,pp937-943
    [114]崔晨阳,石教英,″三维模型检索中的特征提取技术综述″,计算机辅助设计与图形学学报,Vol.16,No.7,July,2004,pp882-889
    [115]Osada R.,Funkhouser T.,Chazelle B,et al.,"Shape distributions",ACM Transactions on Graphics,Vol.21,No.4,2002,pp807-832
    [116]Paquet E.,Murching A.,Naveen T.,et al.,"Description of shape information for 2-D and 3-D objects",Signal Processing:Image Communication,Vol.16,No.1,2000,103-122
    [117]Reeves A P.,Prokop R J.,Susan E.,et al.,"Three-dimensional shape analysis using moments and Fourier descriptors",IEEE Trans.on Pattern Analysis and Machine Intelligence,Vol.10,No.6,1988,pp937-943
    [118]Chen C C.,"Improved moments invariants for shape discrimination",Pattern Recognition,Vol.26,No.5,1993,pp683-686
    [119]Ballard D H.,"Generalizing the Hough transform to detected arbitrary shapes",Pattern Recognition,Vol.13,No.2,1981,pp111-122
    [120]Amenta N,Choi S,Kolluri R K.,"The power crust,union of balls,and the medial axis transform",Computational Geometry:Theory and Applications,Vol.19,No.2/3,2001,pp127-153
    [121]Sherbrooke E C,Patrikalakis N M,Brisson E.,"An algorithm for the medial axis transform of 3D polyhedral solids",IEEE Transactions on Visualization and Computer Graphics,Vol.2,No.1,1996,pp44-61
    [122]Chuang J H,Wsai C H,Ko M C.,"Skeletonization of three-dimensional object using generalized potential field",IEEE Trans.on PAMI,Vol.22,No.11,2000,pp1241-1251
    [123]Shinagawa Y,Tosiya.,"Constructing a reeb graph automatically from cross section",IEEE Computer Graphics & Applications,Vol.11,No.6,1999,pp44-51
    [124]Novotni M,Klein R.,"A geometric approach to 3D object comparison"Proceedings of the 1st International Conference on Shape Modeling and Applications,genova,2001,pp167-175
    [125]Novotni M,Klein R.,"Geometric 3D comparison an application",Proceedings of ECDL WS Generalized Documents 2001,Bonn,2001,pp39-44
    [126]Varady T.,Martin R.R.,Cox J.,"Reverse engineering of geometric models an introduction",Computer-Aided Design,Vol.29,No.4,1997,pp255-268
    [127]M.Uenohara and Takeo Kanade,"Use of Fourier and Karhunen-Love Decomposition for Fast Pattern Matching With a Large Set of Templates",IEEE Trans.on Pattern Analysis and Machine Intelligence,Vol.9,No.8,1997,pp891-898
    [128]J.Li and H.Ling,"Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts",IEE Proc.Radar Sonar Ravig.,Vol.150,No.4,August 2003,pp284-291
    [129]Herman,G.T,Liu,H.K.,"Three-Dimensional display of human organs form computed tomography",Computer graphics & Image Processing,Vol.9,No.1,1979,pp1-29
    [130]Besl P J,Mckay N D.,"A method for registration of 3-D shapes",IEEE Trans.Pattern Anal Mach lntell,Vol.14,No.2,1992,pp239-256
    [131]BHATTACHARYA P,ZHU W,QIAN K.,"Shape Recognition Method Using Morphological Hit-or-Miss Transform",Journal Optical Engineering,Vol.34,No.6,1995,pp1718-1725

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700