化学发光功能化纳米材料在新型生物传感器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文首先综述了化学发光、化学发光生物分析以及发光功能化纳米材料在生物分析中的应用的研究现状。近年来,一系列固载和富集发光试剂的化学发光功能化纳米材料被制备出来,该材料具有很好的信号放大作用,已成为化学发光生物分析发展的新趋势。我们实验室前期的研究工作中,发展了一系列新的合成方法,制备了一批新型的发光功能化纳米材料,包括鲁米诺及其类似物功能化的纳米金、鲁米诺功能化纳米银、鲁米诺功能化纳米银/氧化石墨烯和鲁米诺衍生物及血红素双功能化石墨烯等。这些发光功能化纳米材料为核酸分析和免疫分析提供了理想的具有放大功能的信号探针,能够有效提高传感器的灵敏度。基于此,本论文围绕着发光功能化纳米材料在化学发光生物传感器中的应用这一研究主题,开展了一系列研究工作。基于N-(4-氨基丁基)-N-乙基异鲁米诺功能化的纳米金,构建了一个三明治结构DNA传感器用于结核病(MTB)的检测和一个无标记适配体传感器用于凝血酶的检测;基于鲁米诺功能化纳米银,构建了一个竞争性的免疫分析传感器用于小分子抗生素氯霉素的检测;基于鲁米诺功能化纳米银/氧化石墨烯复合材料和ABEI血红素双功能化石墨烯复合材料构建了无标记适配体传感器用于2,4,6-三硝基甲苯(TNT)的检测。主要研究内容如下:
     1.利用N-(4-氨基丁基)-N-乙基异鲁米诺功能化纳米金作为标记物构建了一个有效的DNA传感器用于MTB的特异DNA序列的检测。生物素化的DNA捕获探针通过电极表面修饰的链霉亲和素包被的纳米金直接固载到电极上,目标DNA和N-(4-氨基丁基)-N-乙基异鲁米诺功能化纳米金标记的DNA序列随后通过DNA特异性杂交反应连接在电极表面形成三明治结构的DNA传感器。该DNA传感器在含有1.75×10-3mol/L H2O2的CBS缓冲中施加双脉冲电压能得到很好的电致化学发光信号。该方法能检测到1.0×10-15-1.0×10-12mol/L范围内的MTB的特异DNA序列,检测限低至3.3×10-16mol/L,优于之前报道的无需PCR放大的MTB分析方法。在实际样品血清样中,该方法对于检测MTB的特异DNA序列也有很好的测定能力。该传感器简单,快速,可靠。因为N-(4-氨基丁基)-N-乙基异鲁米诺功能化纳米金的信号放大作用,简单的标记过程和传感器的构建过程简单,使得该方法在灵敏度和成本方面有很大的优势。该方法在临床上快速测定MTB具有巨大的应用前景。
     2.基于鲁米诺功能化纳米银作为纳米标记物我们首次开发了一个竞争的免疫分析传感器用于小分子氯霉素的灵敏检测。在1.0-10-8-1.0×10-6g/mL范围内可以根据发光强度测定氯霉素含量,检测限低至7.6×10-9g/mL。标记过程简单快速,优于所有文献报道的标记方法。由于小分子的标记是非常困难的工作,此项工作提供了一种新颖而有效的氯霉素标记策略。该免疫分析方法简单、快捷、有效、灵敏度和选择性好,且简捷不需要复杂的仪器设备,使之很有希望用于实际样品中氯霉素的快速检测。
     3.基于适配体,凝血酶和N-(4-氨基丁基)-N-乙基异鲁米诺功能化纳米金的动态组装构建了一个电致化学发光生物分析方法用于凝血酶的检测。所提出电致化学发光生物分析方法灵敏、特异、简便、快捷。该方法在1.0×10-12-1.0×10-9mol/L较宽的范围内具有线性关系,检测限为3.8×10-13mol/L,优于大多数文献报道的基于适配体的无标记生物分析方法。另外,在动态组装过程中基质中的干扰物质可以通过简单的清洗电极很容易地从检测系统分离。因此,该方法具有较高的灵敏度和很小的基体效应,因为基质中的很多物质可增强和抑制鲁米诺和类似物的发光导致干扰。该方法已成功地应用于实际人血清样品中凝血酶的检测。这项工作为设计基于适配体检测重要生物分子提供了一个新的思路。在原理上,使用相应的适配体,本章提出的分析方法也适用于其它重要生物分子的测定。
     4.基于两种新型的功能化石墨烯复合材料和适配体构建了一种无标记的电致化学发光适配体传感器用于TNT的检测。该传感器在1.0×10-12-1.0×10-9g/mL较宽的范围内具有良好的线性,检测限低至6.3×10-13g/mL,优于大多数文献报道其他TNT传感器。课题组新开发出的两种新型石墨烯复合材料首次被用于无标记传感器的构建,表现出了良好的发光性能,有效提高了该方法的灵敏度。我们开发的传感器构建过程简单、耗时短,目标物不需要标记和纯化,线性范围宽且检测限优于文献报道的TNT传感器。理论上,基于该传感器的构建原理,可用于其它具有适配体的各种目标分析物的测定。
In this dissertation, the state of arts in the field of chemiluminescence (CL), CL biosensors, and the applications of CL functionalized nanomaterials in biosensors were reviewed. In recent years, chemiluminescence (CL) functionalized nanomaterials have received more and more attention because a single functionalized nanoparticle could bind thousands of CL reagent molecules, leading to excellent signal amplification. In our research group, a series of novel methods was developed for the preparation of various CL functionalized nanomaterials and nanocomposites including luminol and its derivatives functionalized gold nanomaterials, luminol functionalized silver nanoparticles, luminol functionalized silver/graphene oxide composite(Ag/GO), N-(Aminobutyl)-N-(ethylisoluminol) and hemin dual-functionalized graphene hybrids. This new type of various CL functionalized nanomaterials and nanocomposites would be used as signal reporters for nucleic acid analysis and immunoassays with excellent signal amplification, improving the sensitivity of the bioassays. The aim of this dissertation is to explore the applications of chemiluminescence functionalized nanomaterials in novel DNA sensors and immunosensors. Based on N-(Aminobutyl)-N-(ethylisoluminol) functionalized gold nanomaterials, a sandwich-type electrochemiluminescence (ECL) DNA sensor and a label-free ECL aptamer sensor were developed for tuberculosis diagnosis and thrombin determination; Using luminol functionalized silver nanoparticles as labeling, a novel immunoassay based on competitive reaction was developed for sensitive detection of small molecules chloramphenicol; Based on luminol functionalized silver/graphene oxide composite (Ag/GO) and N-(Aminobutyl)-N-(ethylisoluminol) and hemin dual-functionalized graphene hybrids, a novel label-free aptasensor for2,4,6-trinitrotoluene (TNT) detection was developed. The main results are as follows:
     1. An effective sensor for detecting sequence-specific DNA from MTB was developed based on ABEI-AuNPs labeling. The DNA sensor exhibited excellent ECL response with a double step potential in CBS containing1.75x10-3M of H2O2. The sequence-specific DNA from MTB in range of1.0x10-15-1.0x10-12M can be detected by use of the ECL intensity with a considerably low detection limit of3.3x10-16M, which is superior to the previously reported methods without PCR amplification for the determination of MTB. Being challenged in real serum samples, this proposed method also shows an excellent capability for the determination of the target DNA from MTB. The proposed sensor is simple, rapid and reliable. It is also of a great advantage in terms of sensitivity and cost because of great signal amplification of ABEI functionalized gold nanoparticles, simple labeling procedure, and easy construction of the sensor. It is of great application potential for rapid diagnosis of TB in clinical fields.
     2. A competitive immunoassay for sensitive detection of small molecules CHL was developed using the luminol functionalized silver nanoparticles as nanoprobe for the first time. CHL in a range of1.0x10-8-1.0x10-6g mL-1could be detected by use of the CL intensity with a low detection limit of7.6x10-9mL-1.The labeling procedure is simple and fast, superior to all the previously reported labeling procedures. Since the labeling of small molecules is very difficult work, the present work provides a novel and effective labeling strategy for CHL. The immunoassay is simple, fast, cost-effective, sensitive and selective.
     3. An ECL bioassay based on dynamic interaction of aptamer, thrombin and ABEI-AuNPs for the detection of thrombin has been developed. The presented ECL bioassay is sensitive, specific, simple and fast. It exhibits a wide dynamic range from1.0x10-12-1.0x10-9M with a low detection limit of3.8x10-13M, which is superior to most previously reported label-free aptamer-based bioassays for thrombin. Moreover, the interfering species in the matrix can be well separated from the detection system by simply washing the electrode during the dynamic interaction. Thus the method is of high sensitivity and small matrix effects since many substances in the matrix could enhance and inhibit the CL of luminol and analogues leading to the interference. It has been successfully applied to the detectionof thrombin in real human serums. This work provides a new way to design aptamer-based protocols for the determination of bio-logically important substances. In principle, the proposed strategy might also be applicable for the determination of other biologically important substances by using corresponding aptamer.
     4. A label-free electrochemiluminescence aptasensor for2,4,6-trinitrotoluene detection was proposed based on an assembly strategy of luminol functionalized silver/graphene oxide composite(Ag/GO) and N-(Aminobutyl)-N-(ethylisoluminol) and hemin dual-functionalized graphene hybrids. It exhibits a wide dynamic range from1.0x10-12-1.0x10-9g/mL with a low detection limit of6.3x10-13g/mL, which is superior to most previously reported bioassays for TNT. The proposed aptasensor has some advantages such as simple operation, high sensitivity, no need of complex labeling and purification steps, making this methods time-saving and easy automation. Due to the wide target recognition range of aptamer, this strategy provides a promising way to develop new aptasensor for other analytes.
引文
[1]Zhao L X, Sun L, Chu X G. Chemiluminescence immunoassay [J]. Trac-Trends in Analytical Chemistry,2009,28(4):404-415.
    [2]Roda A, Pasini P, Guardigli M, et al. Bio-and chemiluminescence in bioanalysis [J]. Fresenius Journal of Analytical Chemistry,2000,366(6-7):752-759.
    [3]Richter M M. Electrochemiluminescence (ECL) [J]. Chemical Reviews,2004,104(6): 3003-3036.
    [4]Dodeigne C, Thunus L, Lejeune R. "Chemiluminescence as a diagnostic tool. A review". Talanta,2000,51(3):415-439.
    [5]Qi H L, Peng Y, Gao Q, et al. "Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors". Sensors,2009,9(1):674-695.
    [6]Knight A W. "A review of recent trends in analytical applications of electrogenerated chemiluminescence". Trac-Trends in Analytical Chemistry,1999,18(1):47-62.
    [7]徐叙瑢,苏勉曾.发光学与发光材料[J].北京:化学工业出版社,2004.
    [8]陆明刚.化学发光分析[M].合肥:安徽科技出版社,1986.
    [9]Li C., Kang Q., Chen Y., et al. Electrochemiluminescence of luminol on Ti/TiO2 NT electrode and its application for pentachlorophenol detection. Analyst,2010,135(11):2806-10.
    [10]Li N., Wang W., Tian D. Y., et al. pH-dependent catalytic properties of Pd-Ag nanoparticles in luminol chemiluminescence. Chemical Communications,2010,46(9):1520-1522.
    [11]Ding C. F., Li H., Li X. L., et al. A new strategy of photoelectrochemical analysis without an external light source based on isoluminol chemiluminescence probe. Chemical Communications, 2010,46(42):7990-7992.
    [12]Tsukagoshi K., Sawanoi K., Nakajima R. Migration behavior of isoluminol isothiocyanate-labeled alpha-amino acids in capillary electrophoresis with an absorption/chemiluminescence dual detection system. Journal of Chromatography A,2007, 1143(1-2):288-290.
    [13]Yang M. L., Liu C. Z., Qian K. J., et al. Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis. Analyst,2002,127(9):1267-1271.
    [14]Wen Y. Q., Yuan H. Y., Mao J. F., et al. Droplet detector for the continuous flow luminol-hydrogen peroxide chemiluminescence system. Analyst,2009,134(2):354-360.
    [15]Alpeeva I. S., Sakharov I. Y. Soybean peroxidase-catalyzed oxidation of luminol by hydrogen peroxide. Journal of Agricultural and Food Chemistry,2005,53(14):5784-5788.
    [16]Kuroda N., Shimoda R., Wada M., et al. Lophine derivatives and analogues as new phenolic enhancers for the luminol-hydrogen peroxide-horseradish peroxidase chemiluminescence system. Analytica Chimica Acta,2000,403(1-2):131-136.
    [17]Duarte A. J., Rocha C., Silveira F., et al. Luminol-Doped Nanostructured Composite Materials for Chemiluminescent Sensing of Hydrogen Peroxide. Analytical Letters,2010, 43(17):2762-2772.
    [18]Heller M. I., Croot P. L. Application of a superoxide (O-2(-)) thermal source (SOTS-1) for the determination and calibration of O-2(-) fluxes in seawater. Analytica Chimica Acta,2010, 667(1-2):1-13.
    [19]Yamaguchi S., Kishikawa N., Ohyama K., et al. Evaluation of chemiluminescence reagents for selective detection of reactive oxygen species. Analytica Chimica Acta,2010,665(1):74-78.
    [20]Zhang B. T., Lin J. M. Chemiluminescence and energy transfer mechanism of lanthanide ions in different media based on peroxomonosulfate system. Luminescence,2010,25(4):322-327.
    [21]Francis P. S., Barnett N. W., Lewis S. W., et al. Hypohalites and related oxidants as chemiluminescence reagents:a review. Luminescence,2004,19(2):94-115.
    [22]Selloum L., Djelili H., Sebihi L., et al. Scavenger effect of flavonols on HOC1-induced luminol chemiluminescence. Luminescence,2004,19(4):199-204.
    [23]Magalhaes L. M., Segundo M. A., Reis S., et al. Automatic in vitro determination of hypochlorous acid scavenging capacity exploiting multisyringe flow injection analysis and chemiluminescence. Analytical Chemistry,2007,79(10):3933-3939.
    [24]Nacapricha D., Sangkarn P., Karuwan C., et al. Pervaporation-flow injection with chemiluminescence detection for determination of iodide in multivitamin tablets. Talanta,2007, 72(2):626-633.
    [25]Chen Y. C., Lin W. Y. Enhancement of chemiluminescence of the K1O(4)-luminol system by gallic acid, acetaldehyde and Mn2+:application for the determination of catecholamines. Luminescence,2010,25(1):43-49.
    [26]Li S. F., Li X. Z., Xu J., et al. Flow-injection chemiluminescence determination of polyphenols using luminol-NaIO4-gold nanoparticles system. Talanta,2008,75(1):32-37.
    [27]Xu H., Duan C. F., Lai C. Z., et al. Inhibition and enhancement by organic compounds of luminol-KIO4-H2O2 chemiluminescence. Luminescence,2006,21(3):195-201.
    [28]Liu M. L., Lin Z., Lin J. M. A review on applications of chemiluminescence detection in food analysis. Analytica Chimica Acta,2010,670(1-2):1-10.
    [29]Kamidate T., Maruya M., Tani H., et al. Application of 4-Iodophenol-enhanced Luminol Chemiluminescence to Direct Detection of Horseradish Peroxidase Encapsulated in Liposomes. Analytical Sciences,2009,25(9):1163-1166.
    [30]Li B. X., Zhang Z. J., Zhao L. X. Chemiluminescent flow-through sensor for hydrogen peroxide based on sol-gel immobilized hemoglobin as catalyst. Analytica Chimica Acta,2001, 445(2):161-167.
    [31]Fujiwara T., Tanimoto N., Nakahara K., et al. Catalytic behavior of iron (Ⅲ)-8-quinolinol complex in the chemiluminescence reaction of luminol with hydrogen peroxide in reverse micelles. Chemistry Letters,1991,20(7):1137-1140.
    [32]Ci Y. X., Tie J. K., Yao F. J., et al. Catalytic behaviour of iron (Ⅱ)-oxime complexes in the chemiluminescence reaction of luminol with hydrogen peroxide. Analytica Chimica Acta,1993, 277(1):67-72.
    [33]Gammelgaard B., Liao Y. P., Jons O. Improvement on simultaneous determination of chromium species in aqueous solution by ion chromatography and chemiluminescence detection. Analytica Chimica Acta,1997,354(1-3):107-113.
    [34]Li Y. X., Zhao D. H., Zhu C. Q., et al. Determination of proteins at nanogram levels by their quenching effect on the chemiluminscence reaction between luminol and hydrogen peroxide with manganese-tetrasulfonatophthalocyanine as a new catalyst. Analytical and Bioanalytical Chemistry,2002,374(3):395-398.
    [35]Liang S. X., Zhao L. X., Zhang B. T., et al. Experimental studies on the chemiluminescence reaction mechanism of carbonate/bicarbonate and hydrogen peroxide in the presence of cobalt(II). Journal of Physical Chemistry A,2008,112(4):618-623.
    [36]Uzu T., Sasaki S. A new Copper(Ⅱ) complex as an efficient catalyst of luminol chemiluminescence. Organic Letters,2007,9:4383-4386.
    [37]Kotov V Y, Ilyukhin A B, Zenin A V. Lucigenin hexacyanoferrates [J]. Russ J Inorg Chem, 2008,53(4):552-556.
    [38]Papadopoulos K, Nikokavouras J. Synthesis of Novel Protected Hemiaminal N-Methoxymethyl-N'-Methyl-9,9'-Biacridylidene from Lucigenin [J]. Tetrahedron Lett,1993, 34(8):1371-1372.
    [39]Rathakrishnan C, Tiku M L. Lucigenin-Dependent Chemiluminescence in Articular Chondrocytes [J]. Free Radical Bio Med,1993,15(2):143-149.
    [40]Mohazzabh K M, Wolin M S. Sites of Superoxide Anion Production Detected by Lucigenin in Calf Pulmonary-Artery Smooth-Muscle [J]. Am J Physiol-Lung C,1994,267(6):815-L822.
    [41]Ruberto M A, Grayeski M L. Investigation of Acridinium Labeling for Chemiluminescence Detection of Peptides Separated by Capillary Electrophoresis [J]. J Microcolumn Sep,1994,6(6): 545-550.
    [42]林金明.化学发光基础理论与应用[M].北京:化学工业出版社,2004.
    [43]Pan S. M., Zhao L. L., Schenkman J. B., et al. Evaluation of Electrochemiluminescent Metabolic Toxicity Screening Arrays Using a Multiple Compound Set. Analytical Chemistry, 2011,83(7):2754-2760.
    [44]Guo L. H., Fu F., Chen G. N. Capillary electrophoresis with electrochemiluminescence detection:fundamental theory, apparatus, and applications. Analytical and Bioanalytical Chemistry,2011,399(10):3323-3343.
    [45]Luan L., Lin Z. J., Wu G. H., et al. Encoding electrochemiluminescence using Ru(bpy)(3)(2+) and fluorescein isothiocyanate co-doped silica nanoparticles. Chemical Communications,2011, 47(13):3963-3965.
    [46]Xiaoying W., Xiangyi Z., Pingang H., et al. Sensitive detection of p53 tumor suppressor gene using an enzyme-based solid-state electrochemiluminescence sensing platform. Biosensors & Bioelectronics,2011:3608-13.
    [47]Lai Y Q, Qi Y Y, Wang J, et al. Using acridinium ester as the sonochemiluminescent probe for labeling of protein [J]. Analyst,2009,134(1):131-137.
    [48]Kanwal S, Fu X H, Su X G. Highly sensitive flow-injection chemiluminescence determination of pyrogallol compounds [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2009,74(5):1046-1049.
    [49]Li S F, Zhang X M, Yao Z J, et al. Enhanced Chemiluminescence of the Rhodamine 6G-Cerium(IV) System by Au-Ag Alloy Nanoparticles [J]. J Phys Chem C,2009,113(35): 15586-15592.
    [50]Ishii H, Tsukino K, Sekine M, et al. Singlet oxygen-sensitized delayed emissions from hydrogen peroxide/gallic acid/potassium ferricyanide systems containing organic solvents [J]. Chem Phys Lett,2009,474(4-6):285-289.
    [51]Jones A M, Ragland C A, Healy E F, et al. Dramatic heavy atom effect in the quenching of chloro-substituted lucigenin [J]. Abstr Pap Am Chem S,2009,237
    [52]Attiq-ur-Rehman, Yaqoob M, Waseem A, et al. Determination of phosphate in freshwater samples by flow-injection with lucigenin chemiluminescence [J]. Int J Environ Anal Chem,2010, 90(14-15):1119-1129.
    [53]Qiu B, Zhu X, Liu Y, et al. Anodic electrochemiluminescent behavior of lucigenin on MWNT/GCE [J]. Electrochem Commun,2009,11(2):254-257.
    [54]Nohara Y, Usui T, Suzuki J, et al. The Generation of Lucigenin Chemiluminescence from the Reaction of Guanidino Compounds with Phenylglyoxal under Alkaline Conditions and Its Application [J]. Chem Pharm Bull,2009,57(7):700-703.
    [55]Zanarini S, Rampazzo E, Della Ciana L, et al. Ru(bpy)(3) Covalently Doped Silica Nanoparticles as Multicenter Tunable Structures for Electrochemiluminescence Amplification [J]. J Am Chem Soc,2009,131(6):2260-2267.
    [56]Maeda K, Tachibana H, Morita M, et al. Interfacial-specific Chemiluminescence at Liqud/Liquid Interfaces or at O/W Emulsions Containing Lucigenin in Oil Phase [J]. Anal Sci, 2009,25(2):195-200.
    [57]Fang L Q, Li H F, Zheng G J. Determination of Gallic Acid in Chinese Herbal Medicine with Flow Injection Chemiluminescence Method [J]. Chinese J Anal Chem,2010,38(8):1110-1114.
    [58]Cui H, Li S F, Lin X Q. Chemiluminescence of Ce(IV) and surfactant Tween 20 [J]. Analyst, 2001,126(5):553-554.
    [59]Chen S Y, Zhao F. Highly sensitive chemiluminescence determination of tenoxicam using a cerium (IV)-sodium hyposulphite system in micellar medium [J]. Luminescence,2012,27(4): 279-284.
    [60]Benbarek H, Ayad A, Deby-Dupont G, et al. Modulatory effects of non-steroidal anti-inflammatory drugs on the luminol and lucigenin amplified chemiluminescence of equine neutrophils [J]. Vet Res Commun,2012,36(1):29-33.
    [61]Zhidkova T V, Proskurnina E V, Parfenov E A, et al. Determination of superoxide dismutase and SOD-mimetic activities by a chemical system:Co-2/H2O2/lucigenin [J]. Anal Bioanal Chem, 2011,401(1):381-386.
    [62]Sun S W, Zhou F L, Wang G F, et al. Reversed Flow Injection Chemiluminescence Determination of Pyridoxine Hydrochloride Based on the Cerium(IV)-Sodium Sulfite System [J]. Anal Lett,2011,44(1-3):48-57.
    [63]Francis P S, Costin J W, Conlan X A, et al. A rapid antioxidant assay based on acidic potassium permanganate chemiluminescence [J]. Food Chem,2010,122(3):926-929.
    [64]Shkapova E A, Kurtasova L M, Savchenko A A. Lucigenin-and Luminol-Dependent Chemiluminescence of Blood Neutrophils in Patients with Renal Cancer [J]. B Exp Biol Med, 2010,149(2):239-241.
    [65]Lopez-Tocon I, Otero J C, Arenas J F, et al. Multicomponent Direct Detection of Polycyclic Aromatic Hydrocarbons by Surface-Enhanced Raman Spectroscopy Using Silver Nanoparticles Functionalized with the Viologen Host Lucigenin [J]. Anal Chem,2011,83(7):2518-2525.
    [66]Zare H R, Nasirizadeh N. Simultaneous determination of ascorbic acid, adrenaline and uric acid at a hematoxylin multi-wall carbon nanotube modified glassy carbon electrode [J]. Sensor Actuat B-Chem,2010,143(2):666-672.
    [67]Jaffrezic-Renault N., Martelet C., Chevolot Y., et al. "Biosensors and Bio-Bar Code Assays Based on Biofunctionalized Magnetic Microbeads". Sensors 2007.7(4): 589-614.
    [68]Okahata Y., Kawase M., Niikura K., et al. "Kinetic Measurements of DNA Hybridisation an an Oligonucleotide-Immobilized 27-Mhz Quartz Crystal Microbalance". Analytical Chemistry 1998.70(7):1288-1296.
    [69]Hashimoto K., Ito K., Ishimori Y. "Sequence-Specific Gene Detection with a Gold Electrode Modified with DNA Probes and an Electrochemically Active Dye". Analytical Chemistry 1994.66(21):3830-3833.
    [70]Zhou X.C., Huang L.Q., Li S.F.Y. "Microgravimetric DNA Sensor Based on Quartz Crystal Microbalance:Comparison of Oligonucleotide Immobilization Methods and the Application in Genetic Diagnosis". Biosensors & Bioelectronics 2001.16(1-2):85-95.
    [71]Liu X.J., Tan W.H. "A Fiber-Optic Evanescent Wave DNA Biosensor Based on Novel Molecular Beacons". Analytical Chemistry 1999.71(22):5054-5059.
    [72]Mannelli I., Minunni M., Tombelli S., et al. "Direct Immobilisation of DNA Probes for the Development of Affinity Biosensors". Bioelectrochemistry (Amsterdam, Netherlands) 2005.66(1-2):129-138.
    [73]Wang J. "Electrochemical Biosensors:Towards Point-of-Care Cancer Diagnostics". Biosensors & Bioelectronics 2006.21(10):1887-1892.
    [74]Miesenbock G., De Angelis D.A., Rothman J.E. "Visualizing Secretion and Synaptic Transmission with Ph-Sensitive Green Fluorescent Proteins". Nature 1998.394(6689):192-195.
    [75]Gaylord B.S., Heeger A.J., Bazan G.C. "DNA Hybridization Detection with Water-Soluble Conjugated Polymers and Chromophore-Labeled Single-Stranded DNA". Journal of the American Chemical Society 2003.125(4):896-900.
    [76]Melo J.A., Cohen J., Toczyski D.P. "Two Checkpoint Complexes Are Independently Recruited to Sites of DNA Damage in Vivo". Genes & Development 2001.15(21):2809-2821.
    [77]Hong Y., Lam J.W.Y., Tang B.Z. "Aggregation-Induced Emission:Phenomenon, Mechanism and Applications". Chemical Communications 2009.29):4332-4353.
    [78]Zhang G.J., Zhou Y.K., Yuan J.W., et al. "A Chemiluminescence Fiber-Optic Biosensor for Detection of DNA Hybridization". Analytical Letters 1999.32(14):2725-2736.
    [79]Ding C., Zhong H., Zhang S. "Ultrasensitive Flow Injection Chemiluminescence Detection of DNA Hybridization Using Nanocus Tags". Biosensors & Bioelectronics 2008.23(8):1314-1318.
    [80]Zhang X., Zhao Y., Zhou H., et al. "A New Strategy for Photoelectrochemical DNA Biosensor Using Chemiluminescence Reaction as Light Source". Biosensors & Bioelectronics 26(5):2737-2741.
    [81]Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase. Science,1990,249(4968):505-510.
    [82]Yalow R S. Berson S A. Assay of Plasma Insulin in Human Subjects by Immunological Methods. Nature,1959.19:691.
    [83]Berson S A. Yalow RS. BaumanA. Rothhild M. A. Newly K. J. Insulin-1131 metabolism in human subjects:demonstration of insulin binding globulin in the circulation of insulin treated subjects. J. Clin. Invest.1956,35 170.
    [84]Kumar P., Verma A., Maiti S., et al. "Tetraplex DNA Transitions within the Human C-Myc Promoter Detected by Multivariate Curve Resolution of Fluorescence Resonance Energy Transfer". Biochemistry 2005.44(50):16426-16434.
    [85]Shusheng Zhang, Hua Zhong, and Caifeng Ding. Ultrasensitive Flow Injection Chemiluminescence Detection of DNA Hybridization Using Signal DNA Probe Modified with Au and CuS Nanoparticles. Anal. Chem.2008,80,7206-7212.
    [86]Wang X, Yun W, Dong P, et al. "A Controllable Solid-State Ru(Bpy)(3)(2+) Electrochemiluminescence Film Based on Conformation Change of Ferrocene-Labeled DNA Molecular Beacon". Langmuir,2008,24(5):2200-2205.
    [87]Halmann M, Velan B, Sery T. Rapid identification and quantitation of small numbers of microorganisms by a chemiluminescent immunoreaction. Appl. Environ. Microbiol.,1977, 34(5):473-477.
    [88]Kohen F, Pazzagli M, Kim JB, et al. An assay procedure for plasma progesterone based on antibody-enhanced chemiluminescence. Febs Lett.,1979,104(1):201-205.
    [89]Schroeder HR, Yeager FM, Boguslaski RC, et al. Immunoassay for serum thyroxine monitored by chemiluminescence. J. Immunol. Methods,1979,25(3):275-282.
    [90]Kim JB, Barnard GJ, Collins WP, et al. Measurement of plasma 17β-estradiol by solid-phase chemiluminescence immunoassay. Clin. Chem.,1982,28(5):1120-1124.
    [91]Schroeder HR. Chemiluminescence immunoassay for serum thyroxine. Meth. Enzymol., 1982,84(Immunochem. Tech., Pt. D):303-317.
    [92]Xiaoyan Yang, Yingshu Guo, Aiguo Wang. Luminol/antibody labeled gold nanoparticles for chemiluminescence immunoassay of carcinoembryonic antigen. Analytica Chimica Acta 666 (2010) 91-96.
    [93]Wu TJ, Lin CL, Taylor RL, et al. Proinsulin level in diabetes mellitus measured by a new immunochemiluminometric assay. Ann. Clin. Lab. Sci.,1995,25(6):467-474.
    [94]Leidy JW. High-sensitivity 2-site immunoradiometric and immunochemiluminometric assays for rat growth hormone-releasing hormone-Development of an acridinium ester based chemiluminescence assay for the avidin-coated bead system. J. Immunol. Methods,1994, 172(2):197-207.
    [95]Koszegi T. Immunoluminometric detection of human procalcitonin. J. Biochem. Biophys. Methods,2002,53(1-3):157-164.
    [96]Ogbonna G, Caines PS, Catomeris P, et al. A competitive chemiluminescent immunoassay for the sensitive measurement of apolipoprotein B 100. Clin. Biochem.,1995,28(2):117-122.
    [97]Fahnrich KA, Pravda M, Guilbault GG. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta,2001,54(4):531-559.
    [98]Yu H, Raymonda JW, McMahon TM, et al. Detection of biological threat agents by immunomagnetic microsphere-based solid phase fluorogenic-and electro-chemiluminescence. Biosens. Bioelectron.,2000,14(10-11):829-840.
    [99]Forest JC, Masse J, Lane A. Evaluation of the analytical performance of the Boehringer Mannheim Elecsys (R) 2010 immunoanalyzer. Clin. Biochem.,1998,31(2):81-88.
    [100]Bronstein I, McGrath P. Chemiluminescence lights up. Nature,1989,338(6216):599-600.
    [101]Bronstein I, Voyta JC, Edwards B. A comparison of chemiluminescent and colorimetric substrates in a hepatitis B virus DNA hybridization assay. Anal. Biochem.,1989,180(1):95-98.
    [102]Schaap AP, Akhavan H, Romano LJ. Chemiluminescent substrates for alkaline phosphatase: application to ultrasensitive enzyme-linked immunoassays and DNA probes. Clin. Chem.,1989, 35(9):1863-1864.
    [103]Zhang L, Dong S. Electrogenerated chemiluminescence sensors using Ru(bpy)(3)(2+) doped in silica nanoparticles [J]. Analytical Chemistry,2006,78(14):5119-5123. [104] Zanarini S, Rampazzo E, Bonacchi S, et al. Iridium Doped Silica-PEG Nanoparticles:
    Enabling Electrochemiluminescence of Neutral Complexes in Aqueous Media [J]. Journal of the American Chemical Society,2009,131(40):14208-+.
    [105]Zanarini S, Rampazzo E, Della Ciana L, et al. Ru(bpy)(3) Covalently Doped Silica Nanoparticles as Multicenter Tunable Structures for Electrochemiluminescence Amplification [J]. Journal of the American Chemical Society,2009,131(6):2260-2267.
    [106]Zhan W, Bard A J. Electrogenerated chemiluminescence.83. Immunoassay of human C-reactive protein by using Ru(bpy)(3)(2+)-encapsulated liposomes as labels [J]. Analytical Chemistry,2007,79(2):459-463.
    [107]Lee D, Khaja S, Velasquez-Castano J C, et al. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles [J]. Nature Materials,2007,6(10):765-769.
    [108]Roux S, Garcia B, Bridot J L, et al. Synthesis, characterization of dihydrolipoic acid capped gold nanoparticles, and functionalization by the electroluminescent luminol [J]. Langmuir,2005, 21(6):2526-2536.
    [109]Zhou X M, Xing D, Zhu D B, et al. Magnetic Bead and Nanoparticle Based Electrochemiluminescence Amplification Assay for Direct and Sensitive Measuring of Telomerase Activity [J]. Analytical Chemistry,2009,81(1):255-261.
    [110]Wu Y F, Chen C L, Liu S Q. Enzyme-Functionalized Silica Nanoparticles as Sensitive Labels in Biosensing [J]. Analytical Chemistry,2009,81(4):1600-1607.
    [111]Poznyak S K, Talapin D V, Shevchenko E V, et al. Quantum dot chemiluminescence [J]. Nano Letters,2004,4(4):693-698.
    [112]Li L L, Liu K P, Yang G H, et al. Fabrication of Graphene-Quantum Dots Composites for Sensitive Electrogenerated Chemiluminescence Immunosensing [J]. Advanced Functional Materials,2011,21(5):869-878.
    [113]Old/silica/CdSe-CdS nanostructures for ultrasensitive immunoassay of protein tumor marker [J]. Chemical Communications,2010,46(8):1323-1325.
    [114]Cui H, Wang W, Duan C F, et al. Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor [J]. Chemistry-a European Journal,2007,13(24):6975-6984.
    [115]Tian D Y, Zhang H L, Chai Y, et al. Synthesis of N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanomaterials for chemiluminescent bio-probe [J]. Chemical Communications, 2011,47(17):4959-4961.
    [116]Haiping Huang, Jun-Jie Zhu. DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin. Biosensors and Bioelectronics 25 (2009) 927-930.
    [117]Ying Chai, Dayong Tian, Wei Wang and Hua Cui. A novel electrochemiluminescence strategy for ultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labeling and amplification of gold nanoparticles and biotin-streptavidin system. Chem. Commun.,2010,46,7560-7562.
    [118]Wu Y F, Chen C L, Liu S Q. Enzyme-Functionalized Silica Nanoparticles as Sensitive Labels in Biosensing [J]. Analytical Chemistry,2009,81(4):1600-1607.
    [119]Qian J, Zhang C Y, Cao X D, et al. Versatile Immunosensor Using a Quantum Dot Coated Silica Nanosphere as a Label for Signal Amplification [J]. Analytical Chemistry,2010,82(15): 6422-6429.
    [120]Stoller M D, Park S, Zhu Y, et al. "Graphene-Based Ultracapacitors". Nano Letters,2008, 8(10):3498-3502.
    [121]Stankovich S, Dikin D A, Dommett G H B, et al. "Graphene-based composite materials". Nature,2006,442(7100):282-286.
    [122]Shen W, Yu Y Q, Shu J N, Cui H. "A graphene-based composite material noncovalently functionalized with a chemiluminescence reagent:synthesis and intrinsic chemiluminescence activity". Chemical Communications,2012,48:2894-289.
    [123]Ron Gill, Ronen Polsky, and Itamar Willner.Pt Nanoparticles Functionalized with Nucleic Acid Act as Catalytic Labels for the Chemiluminescent Detection of DNA and Proteins. Small 2006,2,1037-1041.
    [124]Sai Bi, Hong Zhou, Shusheng Zhang. Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker. Biosensors and Bioelectronics 24 (2009) 2961-2966.
    [1]C. Dye, S. Scheele, P. Dolin, V. Pathania and MC Raviglione, Global Burden of TuberculosisEstimated Incidence, Prevalence, and Mortality by Country. JAMA 282 (1999) 677-686.
    [2]P. Upadhyay, M. Hanif and S. Bhaskar, Visual detection of IS6110 of Mycobacterium tuberculosis in sputum samples using a test based on colloidal gold and latex beads CMI 12 (2006) 1118-1122.
    [3]P. Costal, A. Amaro, A. Botelho, J. Ina'cio and P. V. Baptistal, Gold nanoprobe assay for the identification of mycobacteria of the Mycobacterium tuberculosis complex. Clin Microbiol Infect 16 (2010) 1464-1469.
    [4]T. Tsuneyoshi, K. Ishikawa, Y. Koga, Y. Naito, S. Baba, H. Terunuma, R. Arakawa and D. J. Prockop, Mass Spectrometric Gene Diagnosis of One-base Substitution from Polymerase Chain Reaction Amplified Human DNA.Rapid Commun. Mass Spectron.11 (1997) 719-722.
    [5]J. Jiang, Y. Chai and H. Cui, The electrogenerated chemiluminescence detection of IS6110 of Mycobacterium tuberculosis based on a luminol functionalized gold nanoprobe. RSC Adv.1 (2011)247-254.
    [6]D.Y. Tian, Y. Chai, H.L. Zhang and H. Cui, Synthesis of N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanomaterials for chemiluminescent bio-probe. Chem. Commun.47 (2011) 4959-4961.
    [7]W. Shen, D.Y. Tian and H. Cui, Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels. Biosens. Bioelectron.27 (2011) 18-24.
    [8]Y. Chai, D.Y. Tian, J. Gu and H. Cui, A novel electrochemiluminescence aptasensor for protein based on a sensitive N-(aminobutyl)-N-ethylisoluminol-functionalized gold nanoprobe. Analyst 136 (2011) 3244-3251.
    [9]Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.241 (1973) 20-22.
    [10]X.B. Yin, Y.Y. Xin, Y. Zhao, Label-free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru (phen) 32+-double-strand DNA composite film electrode. Anal. Chem.81 (2009) 9299-9305.
    [11]M. Chen, C.Y. Dub, G.P. Yin, P.F. Shi and T.S. Zhao, Numerical analysis of the electrochemical impedance spectra of the cathode of direct methanol fuel cells. Int. J. Hydrogen Energy 34 (2009) 1522-1530.
    [12]L.Y. Fang, Z.Z. Lu, H. Wei and E. Wang, A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode. Anal. Chim. Acta 628 (2008) 80-86.
    [13]D.Y. Tian, C.F. Duan, W. Wang, N. Li, H. Zhang, H. Cui and Y.Y. Lu, Sandwich-type electrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethylisoluminol labeling and gold nanoparticle amplificationTalanta 78 (2009) 399-404.
    [14]M. Yang, C.Z. Liu, K.J. Qian, P.G. He and Y.Z. Fang, Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis. Analyst 127 (2002) 1267-1271.
    [15]X.B. Yin, B. Qi, X.P. Sun, X.R. Yang, E.K. Wang,4-(Dimethylamino) butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification. Anal. Chem.77(2005) 3525-3530.
    [1]E.H. Allen. Review of chromatographic methods for chloramphenicol residues in milk, eggs and tissues from food-producing animals. J. Assoc. Off. Anal. Chem.68 (1985) 990.
    [2]A.A.M. Stolker, U. A. T. Brinkman, J. Chromatogr. Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals.1067 (2005) 15.
    [3]J. Xu, W. Yin, Y. Zhang, J. Yi, M. Meng, Y. Wang, H. Xue, T. Zhang, R. Xi. Establishment of magnetic beads-based enzyme immunoassay for detection of chloramphenicol in milk. Food Chem.134 (2012) 2526.
    [4]I.S. Park, N. Kim. Development of a chemiluminescent immunosensor for chloramphenicol. Anal. Chim. Acta 578 (2006) 19.
    [5]A.Y. Kolosova, J.V. Samsonova, A.M. Egorov. Competitive ELISA of Chloramphenicol: Influence of Immunoreagent Structure and Application of the Method for the Inspection of Food of Animal Origin. Food Agric. Immunol.12 (2000) 115.
    [6]C. Zhang, S. Wang, G.Z. Fang, Y. Zhang, L.Q. Jiang. Competitive immunoassay by capillary electrophoresis with laser-induced fluorescence for the trace detection of chloramphenicol in animal-derived foods. Electrophoresis 29 (2008) 3422.
    [7]N.V. Gasilova, S.A. Eremin. Determination of chloramphenicol in milk by a fluorescence polarization immunoassay. J. Anal. Chem.65 (2010) 255.
    [8]P. Jarujamrus, R. Chawengkirttikul, J. Shiowatana, A. Siripinyanond. Towards chloramphenicol detection by inductively coupled plasma mass spectrometry (ICP-MS) linked immunoassay using gold nanoparticles (AuNPs) as element tags. J. Anal. At. Spectrom.27 (2007) 884.
    [9]M. Yuan, W. Sheng, Y. Zhang, J.P. Wang, Y.J. Yang, S.G. Zhang, I.Y. Goryacheva, S. Wang. Fluorescent nanoparticles for intracellular sensing:a review. Anal. Chim. Acta 751 (2012) 128.
    [10]H. Cui, W. Wang, C.F. Duan, Y.P. Dong, J.Z. Guo. Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor. Chem. Eur. J.13 (2007) 6975.
    [11]W. Wang, H. Cui. Chitosan-luminol reduced gold nanoflowers:From one-pot synthesis to morphology-dependent SPR and chemiluminescence sensing. J. Phys. Chem. C 112 (2008) 10759.
    [12]Y. He, D.Q. Liu, X.Y. He, H. Cui. One-pot synthesis of luminol functionalized silver nanoparticles with chemiluminescence activity for ultrasensitive DNA sensing. Chem. Commun. 47(2011)10692.
    [13]Y.Q. Yu, M. Zhou, H. Cui. Synthesis and electrochemiluminescence of bis(2,2'-bipyridine)(5-amino-1,10-phenanthroline) ruthenium(II)-functionalized gold nanoparticles. J. Mater. Chem.21 (2011) 12622.
    [14]D.Y. Tian, Y. Chai, H.L. Zhang, H. Cui. Synthesis of N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanomaterials for chemiluminescent bio-probe. Chem. Commun.47 (2011) 4959.
    [15]D.Y. Tian, C.F. Duan, W. Wang, N. Li, H. Zhang, H. Cui, Y.Y. Lu. Sandwich-type electrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethylisoluminol labelling and gold nanoparticle amplification-Talanta 78 (2009) 399.
    [16]N. Li, J.Z. Guo, B. Liu, Y.Q. Yu, H. Cui, L.Q. Mao, Y.Q. Lin. Determination of monoamine neurotransmitters and their metabolites in a mouse brain microdialysate by coupling high-performance liquid chromatography with gold nanoparticle-initiated chemiluminescence. Anal. Chim. Acta 645 (2009) 48.
    [17]Y. Chai, D.Y. Tian, W. Wang, H. Cui. A novel electrochemiluminescence strategy for ultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labelling and amplification of gold nanoparticles and biotin-streptavidin system.Chem. Commun.46 (2010) 7560.
    [18]D.Y. Tian, C.F. Duan, W. Wang, H. Cui. Ultrasensitive electrochemiluminescence immunosensor based on luminol functionalized gold nanoparticle labelling. Biosens. Bioelectron. 25 (2010) 2290.
    [19]J. Jiang, Y. Chai, H. Cui. The electrogenerated chemiluminescence detection of IS6110 of Mycobacterium tuberculosis based on a luminol functionalized gold nanoprobe. RSC Adv.1 (2011)247.
    [20]W. Shen, D.Y. Tian, H. Cui, D. Yang, Z.P. Bian. Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels. Biosens. Bioelectron.27 (2011) 18.
    [21]Y. Chai, D.Y. Tian, J. Gu, H. Cui. A novel electrochemiluminescence aptasensor for protein based on a sensitive N-(aminobutyl)-N-ethylisoluminol-functionalized gold nanoprobe. Analyst 136(2011)3244.
    [22]Y. Chai, D.Y. Tian, H. Cui. Electrochemiluminescence biosensor for the assay of small molecule and protein based on bifunctional aptamer and chemiluminescent functionalized gold nanoparticles. Anal. Chim. Acta 715(2012) 86.
    [23]S. Li, Y. Shen, A. Xie, X. Yu, L. Qiu, L. Zhang, Q. Zhang. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem.9 (2007) 852.
    [24]S. S. Patil, R. S. Dhumal, M. V. Varghese, A. R. Paradkar, P. K. Khannal. Synthesis and Antibacterial Studies of Chloramphenicol Loaded Nano-Silver against Salmonella typhi. Synth. React. Inorg. M 39 (2009) 65.
    [25]J.Z. Guo, H. Cui, W. Zhou, W. Wang. Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. J. Photochem. Photobiol. A 193 (2008) 89.
    [26]A. Mer'enyi, J.S. Lind. Role of a peroxide intermediate in the chemiluminescence of luminol. A mechanistic study. J. Am. Chem. Soc.102 (1980) 5830.
    [27]A.L. Rose, T.D. Waite. Chemiluminescence of luminol in the presence of iron (II) and oxygen:oxidation mechanism and implications for its analytical use. Anal. Chem.73 (2001) 5909.
    [28]G. Mer'enyi, J. Lind, T.E. Eriksen. Luminol chemiluminescence:chemistry, excitation, emitter. J. Biolumin. Chemilumin.5(1990) 53.
    [29]C.F. Duan, H. Cui, Z.F. Zhang, B. Liu, J.Z. Guo, W. Wang. Size-dependent inhibition and enhancement by gold nanoparticles of luminol-ferricyanide chemiluminescence.J. Phys. Chem. C 111(2007)4561.
    [30]L. Wang, Y. Zhang, X. Gao, Z.J. Duan, S. Wang. Determination of Chloramphenicol Residues in Milk by Enzyme-Linked Immunosorbent Assay:Improvement by Biotin-Streptavidin-Amplified System. J. Agric. Food Chem.58 (2010) 3265.
    [31]D.M. Kim, M.A. Rahman, M. H. Do, C. Ban, Y.B. Shim. An amperometric chloramphenicol immunosensor based on cadmium sulfide nanoparticles modified-dendrimer bonded conducting polymer. Biosens. Bioelectron.25 (2010) 1781.
    [32]A.R. Berlina, N.A. Taranova, A.V. Zherdev, Y.Y. Vengerov, B.B. Dzantiev. Competitive immunoassay by capillary electrophoresis with laser-induced fluorescence for the trace detection of chloramphenicol in animal-derived foods. Anal. Bioanal. Chem 405 (2013) 4997.
    [1]C.A. Holland, A.T. Henry, H.C. Whinna, F.C. Church, Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor II and antithrombin, FEBS Lett.484 (2000) 87.
    [2]L.C. Bock, L.C. Griffin, J.A. Latham, E.H. Vermaas, J.J. Toole, Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature 355 (1992) 564.
    [3]D.M. Tasset, M.F. Kubik, W. Steiner, Oligonucleotide inhibitors of human thrombin that bind distinct epitopes, J. Mol. Biol.272 (1997) 688.
    [4]S.R. Coughlin, Thrombin signalling and protease-activated receptors, Nature 407 (2000) 258.
    [5]J. Bichler, J.A. Heit and W.G. Owen, Detection of thrombin in human blood by ex-vivo hirudin, Thromb. Res.84 (1996) 289.
    [6]M.A. Syed, S. Pervaiz, Advances in aptamers, Oligonucleotides 20 (2010) 215.
    [7]W. Cheng, L. Ping, Y.L. Chen, F. Yan, H.X. Ju, Y.B. Yin, A facile scanometric strategy for ultrasensitive detection of protein using aptamer-initiated rolling circle amplification, Chem. Commun.46 (2010) 6720.
    [8]L.H. Tang, Y. Liu, M.M. Ali, D.K. Kang, W.A. Zhao, J.H. Li, Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme, Anal. Chem.84 (2012)4711.
    [9]Y. Wang, Z.H. Li, T.J. Weber, D.H. Hu, C.T. Lin, J.H. Li, Y.H Lin, In situ live cell sensing of multiple nucleotides exploiting DNA/RNA aptamers and graphene oxide nanosheets, Anal. Chem. 85 (2013) 6775.
    [10]A. Sassolas, L.J. Blum, B.D. Leca-Bouvier, Electrochemical aptasensors, Electroanalysis 21 (2009) 1237.
    [11]B.Y. Jiang, M. Wang, C. Li, J.Q. Xie, Label-free and amplified aptasensor for thrombin detection based on background reduction and direct electron transfer of hemin, Biosens. Bioelectron.43 (2013) 289.
    [12]D. Kwon, H. Jeong, B.H. Chung, Label-free electrochemical detection of human α-thrombin in blood serum using ferrocene-coated gold nanoparticles, Biosens. Bioelectron.28 (2011) 454.
    [13]Y.P. Wang, Y.H. Xiao, X.L. Ma, N. Li and X.D. Yang, Label-free and sensitive thrombin sensing on a molecularly grafted aptamer on graphene, Chem. Commun.48 (2012) 738.
    [14]E. Suprun, V. Shumyantseva, S. Rakhmetova, S. Voronina, S. Radko, N. Bodoev, A. Archakov, Label-free electrochemical thrombin aptasensor based on Ag nanoparticles modified electrode, Electroanalysis 22 (2012) 1386.
    [15]S.B. Xie, R. Yuan, Y.Q. Chai, L.J. Bai, Y.L. Yuan, Y. Wang, Label-free electrochemical aptasensor for sensitive thrombin detection using layer-by-layer self-assembled multilayers with toluidine blue-graphene composites and gold nanoparticles, Talanta 98 (2012) 7.
    [16]Y.L. Yuan, R. Yuan, Y.Q. Chai, Y. Zhuo, Z.Y. Liu, L. Mao, S. Guan, X.Q. Qian, A novel label-free electrochemical aptasensor for thrombin based on the{nano-Au/thionine}n multilayer films as redox probes, Anal. Chim. Acta 668 (2010) 171.
    [17]L.D. Li, H.T. Zhao, Z.B. Chen, X.J. Mu, L. Guo, Aptamer biosensor for label-free impedance spectroscopy detection of thrombin based on gold nanoparticles, Sensor Actuat. B.157 (2011)189.
    [18]W.L. Sun, T.M. Yao, S. Shi, A molecular light switch Ru complex and quantum dots for the label-free, aptamer-based detection of thrombin, Analyst 137 (2012) 1550.
    [19]X.Y. Zhang, R.X. Hu, N. Shao, Label-free sensing of thrombin based on quantum dots and thrombin binding aptamer, Talanta 107 (2013) 140.
    [20]D.W. Huang, C.G. Niu, Z.Z. Li, M. Ruan, X.Y. Wang and G.M. Zeng, A sensitive strategy for label-free and time-resolved fluorescence assay of thrombin using Tb-complex and unmodified gold nanoparticles, Analyst 137 (2012) 5607.
    [21]C.W. Chi, Y.H. Lao, Y.S. Li, L.C. Chen, A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter:application to label-free thrombin detection, Biosens. Bioelectron.26 (2011) 3346.
    [22]H.X. Chang, L.H. Tang, Y. Wang, J.H. Jiang, J.H. Li, Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection, Anal. Chem.82 (2010) 2341.
    [23]F. Li, H. Cui, A label-free electrochemiluminescence aptasensor for thrombin based on novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles, Biosens. Bioelectron.39 (2013) 261.
    [24]Y. Xu, Z.F. Zhang, H. Cui, Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode, Anal. Chem.76 (2004) 4002.
    [25]G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature Phys. Sci.241 (1973) 20.
    [26]V.B. Engelkes, J.M. Beebe, C.D. Frisbie, Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols:Effect of metal work function and applied bias on tunneling efficiency and contact resistance, J. Am. Chem. Soc.126 (2004) 14287.
    [27]D.Y. Tian, H.L. Zhang, Y. Chai and H. Cui, Synthesis of N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanomaterials for chemiluminescent bio-probe, Chem. Comm.47 (2011) 4959.
    [28]M. Chen, C.Y. Dub, G.P. Yin, P.F. Shi and T.S. Zhao, Numerical analysis of the electrochemical impedance spectra of the cathode of direct methanol fuel cells, Int. J. Hydrogen Energy 34 (2009) 1522.
    [29]B.L. Li, Y.L. Wang, H. Wei, S.J. Dong, Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model, Biosens. Bioelectron.23 (2008) 965.
    [30]Y.P. Dong, H. Cui, C.M. Wang, Electrogenerated chemiluminescence of luminol on a gold-nanorod-modified gold electrode, J. Phys. Chem. B.110 (2006) 18408.
    [31]H. Cui, Y. Xu and Z.F. Zhang, Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode, Anal. Chem.76 (2004) 4002.
    [32]D.Y. Tian, C.F. Duan, W. Wang, N. Li, H. Zhang, H. Cui and Y.Y. Lu, Sandwich-type electrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethylisoluminol labeling and gold nanoparticle amplification, Talanta 78 (2009) 399.
    [33]M.L. Yang, C.Z. Liu, K.J. Qian, P.G. He and Y.Z. Fang, Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis, Analyst 127 (2002) 1267.
    [34]X.B. Yin, B. Qi, X.P. Sun, X.R. Yang, E.K. Wang,4-(Dimethylamino)butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification, Anal. Chem.77 (2005) 3525.
    [35]X.M. Li, J.M. Liu, S.S. Zhang, Electrochemical analysis of two analytes based on a dual-functional aptamer DNA sequence, Chem. Commun.46 (2010) 595.
    [36]R.C. Becker, F.A. Spencer, Thrombin:structure, biochemistry, measurement, and status in clinical medicine, J. Thromb. Thrombolysis 5 (1998) 215.
    [37]A. Nishino, M. Suzuki, H. Ohtani, O. Motohashi, K. Umezawa, H. Nagura, T. Yoshimoto, Thrombin may contribute to the pathophysiology of central nervous system injury, J. Neurotrauma. 10 (1993) 167.
    [38]X.B. Yin, Y.Y. Xin, Y. Zhao, Label-Free Electrochemiluminescent Aptasensor with Attomolar Mass Detection Limits Based on a Ru (phen)32+-Double-Strand DNA Composite Film Electrode, Anal. Chem.81 (2009) 9299.
    [1]Pennington J C, Brannon J M. Environmental fate of explosives Thermochim. Acta 2002,384: 163-172.
    [2]Shriver-Lake L C, Breslin K A, Charles P T, Conrad D W, Golden J P, Ligler F S. Detection of TNT in Water Using an Evanescent Wave Fiber-Optic Biosensor Anal. Chem.1995,67(14): 2431-2435.
    [3]Shriver-Lake L C, Donner B L, Ligler F S, On-site detection of TNT with a portable fiber optic biosensor Environ. Sci. Technol.1997,31:837-841.
    [4]Roberts W C, Commons B J, Bausum H T, Abermathy C O, Murphy J J, Khanna K. Overview of the Health Effects of Selected Munitions Chemicals; EPA 822-R-93-022; U.S. Environmental Protection Agency:Washington, DC,1993.
    [5]Germain M E, Knapp M J. Optical explosives detection:from color changes to fluorescence turn-on [J]. Chem Soc Rev,2009,38(9):2543-2555.
    [6]Meaney M S, McGuffin V L. Luminescence-based methods for sensing and detection of explosives [J]. Anal Bioanal Chem,2008,391(7):2557-2576.
    [7]Moore D S. Instrumentation for trace detection of high explosives [J]. Review of Scientific Instruments,2004,75(8):2499-2512.
    [8]Salinas Y, Martinez-Manez R, Marcos M D, et al. Optical chemosensors and reagents to detect explosives [J]. Chem Soc Rev,2012,41(3):1261-1296.
    [9]Smith R G, D'Souza N, Nicklin S. A review of biosensors and biologically-inspired systems for explosives detection [J]. Analyst,2008,133(5):571-584.
    [10]Dasary S S, Senapati D, Singh A K, et al. Highly sensitive and selective dynamic light-scattering assay for TNT detection using p-ATP attached gold nanoparticle [J]. ACS Appl Mater Interfaces,2010,2(12):3455-3460.
    [11]Qu W G, Deng B, Zhong S L, et al. Plasmonic resonance energy transfer-based nanospectroscopy for sensitive and selective detection of 2,4,6-trinitrotoluene (TNT) [J]. Chem Commun,2011,47(4):1237-1239.
    [12]Ehrentreich-Forster E, Orgel D, Krause-Griep A, et al. Biosensor-based on-site explosives detection using aptamers as recognition elements [J]. Anal Bioanal Chem,2008,391(5): 1793-1800.
    [13]Xia Y, Song L, Zhu C. Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly [J]. Anal Chem,2011,83(4): 1401-1407.
    [14]Mao L Q, Jiang Y, Zhao H, et al. A Simple Assay for Direct Colorimetric Visualization of Trinitrotoluene at Picomolar Levels Using Gold Nanoparticles [J]. Angew Chem Int Ed,2008, 47(45):8601-8604.
    [15]Goh M S, Pumera M. Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater:the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles [J]. Anal Bioanal Chem,2011,399(1):127-131.
    [16]Guo C X, Lei Y, Li C M. Porphyrin Functionalized Graphene for Sensitive Electrochemical Detection of Ultratrace Explosives [J]. Electroanal,2011,23(4):885-893.
    [17]Guo C X, Lu Z S, Lei Y, et al. Ionic liquid-graphene composite for ultratrace explosive trinitrotoluene detection [J]. Electrochem Commun,2010,12(9):1237-1240.
    [18]Xiao C, Rehman A, Zeng X. Dynamics of redox processes in ionic liquids and their interplay for discriminative electrochemical sensing [J]. Anal Chem,2012,84(3):1416-1424.
    [19]Mirasoli M, Buragina A, Dolci L S, et al. Development of a chemiluminescence-based quantitative lateral flow immunoassay for on-field detection of 2,4,6-trinitrotoluene [J]. Anal Chim Acta,2012,721,167-172.
    [20]Pittman T L, Thomson B, Miao W. Ultrasensitive detection of TNT in soil, water, using enhanced electrogenerated chemiluminescence [J]. Anal Chim Acta,2009,632(2):197-202.
    [21]Wilson R, Clavering C, Hutchinson A. Electrochemiluminescence enzyme immunoassays for TNT and pentaerythritol tetranitrate [J]. Anal Chem,2003,75(16):4244-4249.
    [22]Wilson R, Clavering C, Hutchinson A. Paramagnetic bead based enzyme electrochemiluminescence immunoassay for TNT [J]. J Electroanal Chem,2003,557,109-118.
    [23]Chen Y, Zhang B, Liu G, et al. Graphene and its derivatives:switching ON and OFF [J]. Chem Soc Rev,2012,41(13):4688-4707.
    [24]Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide [J]. Chem Soc Rev,2010,39(1):228-240.
    [25]Loh K P, Bao Q, Ang P K, et al. The chemistry of graphene [J]. J Mater Chem,2010,20(12): 2277-2289.
    [26]Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene:The New Two-Dimensional Nanomaterial [J]. Angew Chem Int Ed,2009,48(42):7752-7777.
    [27]Geim A K. Graphene:Status and Prospects [J]. Science,2009,324(5934):1530-1534.
    [28]Morales-Narvaez E, Merkoci A. Graphene oxide as an optical biosensing platform [J]. Adv Mater,2012,24(25):3298-3308.
    [29]Loh K P, Bao Q, Eda G, et al. Graphene oxide as a chemically tunable platform for optical applications [J]. Nat Chem,2010,2(12):1015-1024.
    [30]Wei W, Qu X. Extraordinary physical properties of functionalized graphene [J]. Small,2012, 8(14):2138-2151.
    [31]He Y, Cui H. Synthesis of highly chemiluminescent graphene oxide/silver nanoparticle nano-composites and their analytical applications J. Mater. Chem.,2012,22,9086-9091.
    [32]Liu D Q, Huang G M, Yu Y Q, He Y, Zhang H L, Cui H. N-(Aminobutyl)-N-(ethylisoluminol) and hemin dual-functionalized graphene hybrids with high chemiluminescence Chem. Commun.2013,49,9794-9796.
    [33]Jaworski J W, Raorane D, Huh J H, et al. Evolutionary screening of biomimetic coatings for selective detection of explosives [J]. Langmuir,2008,24(9):4938-4943.
    [34]Roy D L, Yang W, Yin X, et al. High-sensitivity detector for molecular sensing using magnetic particles [J]. J Appl Phys,2011,109(7):07E532-507E532-533.
    [35]Cui H, Zou G Z, Lin X Q. Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode [J]. Anal Chem,2003,75(2):324-331.
    [36]Cui H, Xu Y, Zhang Z F. Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode [J]. Anal Chem,2004, 76(14):4002-4010.
    [37]Wu Y, Feng X, Zhou S H, Shi H Y, Wu H M, Zhao S J, Song W B. Sensing epinephrine with an ITO electrode modifiedwith an imprinted chitosan film containing multi-walled carbon nanotubes and a polymerized ionic liquid Microchim Acta 2013,180:1325-1332.
    [38]H. Cui, Y. Xu and Z.F. Zhang, Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode, Anal. Chem.2004, 76:4002.
    [39]D.Y. Tian, C.F. Duan, W. Wang, N. Li, H. Zhang, H. Cui and Y.Y. Lu, Sandwich-type electrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethylisoluminol labeling and gold nanoparticle amplification, Talanta 78 (2009) 399.
    [40]Wang Y Q, Zou W S.3-Aminopropyltriethoxysilane-functionalized manganese doped ZnS quantum dots for room-temperature phosphorescence sensing ultratrace 2,4,6-trinitrotoluene in aqueous solution [J]. Talanta,2011,85(1):469-475.
    [41]Wilson R, Clavering C, Hutchinson A. Electrochemiluminescence enzyme immunoassays for TNT and pentaerythritol tetranitrate [J]. Anal Chem,2003,75(16):4244-4249.
    [42]Y.Q. Yu, Q. Cao, M. Zhou, H. Cui. A novel homogeneous label-free aptasensor for 2,4,6-trinitrotoluene detection based on an assembly strategy of electrochemiluminescent graphene oxide with gold nanoparticles and aptamer Biosensors and Bioelectronics 43 (2013) 137-142.
    [43]T Kawaguchi, D. R. Shankaran, S.J. Kima, K. V. Gobi, K. Matsumoto, K. Toko, N. Miura. Fabrication of a novel immunosensor using functionalized self-assembled monolayer for trace level detection of TNT by surface plasmon resonance. Talanta 72 (2007) 554-560.
    [44]R Kaur, A.K. Paul, A Deep. Highly sensitive chemosensing of trinitrotoluene with europium organic framework/gold nanoparticle composite. Inorganic Chemistry Communications 43 (2014) 118-120.
    [45]E Fernandez, L Vidal, J Iniesta, J. P. Metters, C. E. Banks, A Canals. Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid-liquid microextraction for determination of 2,4,6-trinitrotoluene. Anal Bioanal Chem (2014) 406:2197-2204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700